
Computer Vision CS543

Homework 2

Due Date: 27 Feburary 2017

Submit your pdf and zip files on Compass. Be sure to include the required outputs described
below in your pdf, as well as any other equation or explanation indicated in the questions. Please
keep your code in separate folders for each problem. In each folder, include a ‘runThis.m’ for demo.
Thanks!

1 A feature tracker (50pt)

For this problem, you will track features from the image sequence hotel.seq0.png ... hotel.seq50.png.
Since this is a two part problem, we have included precomputed intermediate results in the supple-
mental material in case you’re unable to complete any portion.

Please also include pseudocode in your report. Furthermore, do not use existing keypoint
detectors, trackers, or structure from motion code, such as found in OpenCV.

1.1 Keypoint Selection (15pt)

For the first frame, use the second moment matrix to locate strong corners to use as keypoints.
These points will be tracked throughout the sequence.

You can either use the Harris criteria (1), or the Shi-Tomasi/Kanade-Tomasi criteria (2). Here
M is the second moment matrix, λ1, λ2 are the eigenvalues of M , and τ is the threshold for selecting
keypoints:

det(M)− α · trace(M)2 ≥ τ (1)

min(λ1, λ2) ≥ τ (2)

If using the Harris criteria, it is good to choose α ∈ [0.01, 0.06]. Choose τ so that edges and noisy
patches are ignored. Do local non-maxima suppression over a 5x5 window centered at each point.
This should give several hundred good points to track.
Required output:

1. Display the first frame of the sequence overlaid with the detected keypoints. Ensure that they
are clearly visible (try plot(..., ‘g.’, ‘linewidth’,3)).

Suggested Structure:

Write this as a function such as [keyXs, keyYs] = getKeypoints(im, tau); Be sure to smooth
the gradients when constructing the second moment matrix.

Useful functions:
imfilter.m

References:

C. Harris and M. Stephens. A Combined Corner and Edge Detector. 1988

J. Shi and C. Tomasi. Good Features to Track. 1993

1

1.2 Tracking (35pt)

Apply the Kanade-Lucas-Tomasi tracking procedure to track the keypoints found in part 1.1. For
each keypoint k, compute the expected translation from (x, y)→ (x′, y′):

I(x′, y′, t+ 1) = I(x, y, t) (3)

This can be done by iteratively applying (4): Given the ith estimate (x′i, y
′
i), we want to update

our estimate (x′i+1, y
′
i+1) = (x′i, y

′
i) + (u, v). Here, W is a 15x15 pixel window surrounding the

keypoint, which is located at (x, y) in frame t. Ix, Iy are the x, y gradients of image I(x, y, t),
computed at each element of W at time t. It = I(x′, y′, t+ 1)− I(x, y, t) is the “temporal” gradient.
A fixed, small number of iterations should be sufficient.

(x′0, y
′
0) = (x, y)

It ≈ I(x′i, y
′
i, t+ 1)− I(x, y, t)

[∑
W IxIx

∑
W IxIy∑

W IxIy
∑

W IyIy

] [
u
v

]
= −

[∑
W IxIt∑
W IyIt

]
(4)

(x′i+1, y
′
i+1) = (x′i, y

′
i) + (u, v)

This should be applied iteratively, that is, begin with (x′0, y
′
0)T = (x, y)T , which is needed to

compute It. Use this It to estimate (u, v)T , which can in turn be used to compute (x′1, y
′
1) =

(x′0, y
′
0) + (u, v), and so on. Note that (x′, y′)T (and (x, y)T) need not be integer, so you will need

to interpolate I(x′, y′, t+ 1) (Ix, Iy, ..., etc.) at these non-integer values.
Some keypoints will move out of the image frame over the course of the sequence. Discard any

track if the predicted translation falls outside the image frame.
Required Output:

1. For 20 random keypoints, draw the 2D path over the sequence of frames. That is, plot the
progression of image coordinates for each of the 20 keypoints. Plot each of the paths on the
same figure, overlaid on the first frame of the sequence.

2. On top of the first frame, plot the points which have moved out of frame at some point along
the sequence.

Useful functions:

interp2 - For computing Ix, Iy and I(x′, y′, t+ 1) when x, y, u, v are not integers.

meshgrid - For computing the indices for interp2

Suggested Structure:

[newXs newYs] = predictTranslationAll(startXs, startYs, im0, im1); - Compute new X,Y
locations for all starting locations. Precompute gradients Ix,Iy here, then compute translation
for each keypoint independently:

[newX newY] = predictTranslation(startX, startY, Ix, Iy, im0, im1); - For a single X,Y
location, use the gradients Ix, Iy, and images im0, im1 to compute the new location. Here it
may be necessary to interpolate Ix,Iy,im0,im1 if the corresponding locations are not integer.

References:

Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. 1992

2

2 Shape alignment (30pt)

Write a function that aligns two sets of points:

T = align shape(im1, im2)

where T is a transformation that maps non-zero points in im1 to non-zero points in im2 (see the
zip for the images). You may choose the alignment algorithm and the type of (global) transformation
(e.g., rigid Euclidean, affine, perspective).

Test your function by mapping: object2 to object2t, object1, object3. For example,

T 2t = align shape(imread(‘object2.png’)>0, imread(‘object2t.png’)>0);

should align the points in ‘object2’ to the points in ‘object2t’, display all three sets of points
(original and aligned) and compute the alignment error. We’ve included functions evalAlignment

and displayAlignment to help with evaluation and display.
Required output:

1. A brief explanation of your algorithm, initialization, and model of the transformation

2. For each result:

The alignment display;

The final error;

The runtime (e.g., use ‘tic’, ‘toc’).

Grading:

Your algorithm can align object2 to object2t. (10pt)

Your algorithm can align object2 to object1 and object3. (10pt)

Your writeup. (10pt)

3

Computer Vision CS 543 / ECE 549

Homework 3
Due April 5, 2011

Suggested Completion Dates: P1 by 3/22; P2, P3 by 3/29; P4 by 4/5

Answer the following questions and explain all solutions. Numbers in parentheses
give maximum credit value. Remember that code is not an explanation.

1. Object Instance Recognition (45%)

This problem explores the Lowe-style object instance recognition. For the third part, it is
strongly recommended to use the included Matlab source code and data.

Figure for Problem 1B

A. Given a keypoint descriptor g from one image and a set of keypoint descriptors f1...fn
from a second image, write the algorithm and equations to determine which keypoint in
f1...fn (if any) matches g. (5%)

B. Suppose that you have matched a keypoint in the object region to a keypoint in a second
image (see Figure 1B above). Given the object bounding box center x-y, width, and
height (x1, y1, w1, h1) and the position, scale, and orientation of each keypoint
(u1,v1,s1,theta1; u2,v2,s2,theta2), show how to compute the predicted center position,
width, height, and relative orientation of the object in image 2. (15%)

C. Implementation. Use the stop sign in stop1.jpg (stopim1) with coordinates ([x1 y1 x2 y2]
= [76 26 287 236]) as a training example. Match keypoints in the other four images and
recover the position, scale, and orientation of the objects. A rough result is ok – it is not
necessary to perform a subsequent geometric verification or refinement step (but you can,
if you want). Describe your algorithms to match keypoints and to use the matched points

Figure 1: Object instance detection from keypoint matching

3 Object instance recognition (20pt)

For this problem, you will explore Lowe-style object instance recognition problem. No code is
required.

3.1 Keypoint matching (5 pt)

Given a keypoint descriptor g from one image and a set of keypoint descriptors f1 . . . fn from a
second image, write the algorithm and equations to determine which keypoint in f1 . . . fn (if any)
matches g.

3.2 Object alignment (15 pt)

Suppose that you have matched a keypoint in the object region to a keypoint in a second image
(see Figure 1 above). Given the object bounding box center (x, y), width, and height (x1, y1, w1, h1)
and the position, scale, and orientation of each keypoint (u1, v1, s1, θ1;u2, v2, s2, θ2), show how to
compute the predicted center position, width, height, and relative orientation of the object in the
second image.

4

	A feature tracker (50pt)
	Keypoint Selection (15pt)
	Tracking (35pt)

	Shape alignment (30pt)
	Object instance recognition (20pt)
	Keypoint matching (5 pt)
	Object alignment (15 pt)

