Object Category Detection: Parts-based Models

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Goal: Detect all instances of objects

Cars

Faces

Cats

Last class: sliding window detection

Object model: last class

- Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

Image

Template Visualization

Last class: statistical template

 Object model = log linear model of parts at fixed positions

$$?$$
 +3 +2 -2-1 -2.5 = -0.5 $>$ 7.5 Non-object

$$+4+1+0.5+3+0.5=10.5 > 7.5$$
Object

When do statistical templates make sense?

Caltech 101 Average Object Images

Object models: this class

- Articulated parts model
 - Object is configuration of parts
 - Each part is detectable

Deformable objects

Images from Caltech-256

Deformable objects

Images from D. Ramanan's dataset

Compositional objects

Parts-based Models

Define object by collection of parts modeled by

- 1. Appearance
- 2. Spatial configuration

Slide credit: Rob Fergus

One extreme: fixed template

Another extreme: bag of words

Star-shaped model

Star-shaped model

Tree-shaped model

Many others...

a) Constellation

Fergus et al. '03 Fei-Fei et al. '03

e) Bag of features

Csurka '04 Vasconcelos '00

b) Star shape

Leibe et al. '04, '08 Crandall et al. '05 Fergus et al. '05

c) k-fan (k = 2)

Crandall et al. '05

Felzenszwalb & Huttenlocher '05

Bouchard & Triggs '05

g) Sparse flexible model

Carneiro & Lowe '06

from [Carneiro & Lowe, ECCV'06]

Today's class

- 1. Star-shaped model
 - Example: Deformable Parts Model
 - Felzenswalb et al. 2010

- 2. Tree-shaped model
 - Example: Pictorial structures
 - Felzenszwalb Huttenlocher 2005
- 3. Sequential prediction models

Deformable Latent Parts Model (DPM)

Detections

Template Visualization

root filters coarse resolution

part filters finer resolution

deformation models

Felzenszwalb et al. 2008, 2010

Review: Dalal-Triggs detector

- Extract fixed-sized (64x128 pixel) window at each position and scale
- Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

Deformable parts model

- Root filter models coarse whole-object appearance
- Part filters model finerscale appearance of smaller patches
- For each root window, part positions that maximize appearance score minus spatial cost are found
- Total score is sum of scores of each filter and spatial costs

Part filters

Spatial costs

DPM: computing object score

DPM: mixture model

- Each positive example is modeled by one of M detectors
- In testing, all detectors are applied with nonmax suppression

DPM: Training

```
1 F_n := \emptyset
                                                       Solve for latent parameters
2 for relabel := 1 to num-relabel do
                                                       (root/part positions, mixture
       F_p := \emptyset
                                                       component) that maximize
       for i := 1 to n do
                                                       score and are consistent with
          Add detect-best (\beta, I_i, B_i) to F_n
                                                       ground truth bounding box
       end
       for datamine := 1 to num-datamine do
                                                                Add negative
           for j := 1 to m do
                                                                 examples that achieve
              if |F_n| \geq memory-limit then break
                                                                some minimum score
              Add detect-all (\beta, J_j, -(1+\delta)) to F_n
10
                                                                 (> 1 - delta)
           end
11
          \beta := \operatorname{gradient-descent}(F_p \cup F_n)
                                                               Solve for SVM weights
12
          Remove (i, v) with \beta \cdot v < -(1 + \delta) from F_n
                                                               given current latent
13
                                                               parameters and
       end
14
                                                               negative examples
15 end
```

Procedure Train

Results

Improvement over time for HOG-based detectors

AP on PASCAL VOC 2007

Tree-shaped model

Pictorial Structures Model

Part = oriented rectangle

Felzenszwalb and Huttenlocher 2005

Pictorial Structures Model

$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

Modeling the Appearance

- Any appearance model could be used
 - HOG Templates, etc.
 - Here: rectangles fit to background subtracted binary map
- Can train appearance models independently (easy, not as good) or jointly (more complicated but better)

$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

Part representation

Background subtraction

Pictorial structures model

Optimization is tricky but can be efficient

$$L^* = \arg\min_{L} \left(\sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

For each l₁, find best l₂:

Best₂(
$$l_1$$
) = min $m_2(l_2) + d_{12}(l_1, l_2)$

- Remove v₂, and repeat with smaller tree, until only a single part
- For k parts, n locations per part, this has complexity of O(kn²), but can be solved in ~O(kn) using generalized distance transform

Distance Transform

 For each pixel p, how far away is the nearest pixel q of set G

$$-f(p) = \min_{q \in G} \ d(p, q)$$

G is often the set of edge pixels

Distance Transform - Applications

- Set distances e.g. Hausdorff Distance
- Image processing e.g. Blurring
- Robotics Motion Planning
- Alignment
 - Edge images
 - Motion tracks
 - Audio warping
- Deformable Part Models

Generalized Distance Transform

- Original form: $f(p) = \min_{q \in G} d(p, q)$
- General form: $f(p) = \min_{q \in [1,N]} m(q) + d(p,q)$

• For many deformation costs, $O(N^2) \rightarrow O(N)$

Quadratic
$$d(p,q) = \alpha(p-q)^2 + \beta(p-q)$$

Abs Diff
$$d(p,q) = \alpha |p-q|$$

Min Composition
$$d(p,q) = \min(d_1(p,q), d_2(p,q))$$

Bounded
$$d_{\tau}(p,q) = \left\{ \begin{array}{ll} d(p,q) & : |p-q| < \tau \\ \infty & : |p-q| \geq \tau \end{array} \right.$$

Results for person matching

Results for person matching

Enhanced pictorial structures

- Learn spatial prior
- Color models from soft segmentation (initialized by location priors of each part)

2 minute break

Which patch corresponds to a body part?

Example from Ramakrishna

Sequential structured prediction

- Can consider pose estimation as predicting a set of related variables (called structured prediction)
 - Some parts easy to find (head), some are hard (wrists)

 One solution: jointly solve for most likely variables (DPM, pictorial structures)

 Another solution: iteratively predict each variable based in part on previous predictions

Pose machines

Local image evidence is weak Certain parts are easier to detect than others

L-Wrist

Stage I Confidence

Stage II Confidence

Example results

General principle

 "Auto-context" (Tu CVPR 2008): instead of fancy graphical models, create feature from past predictions and repredict

 Can view this as an "unrolled belief propagation" (Ross et al. 2011)

Many uses and variations on sequential structured prediction

Closing the Loop

Hoiem Efros Hebert 2008

Autocontext

Tu 2008 Tu Bai 2010

Cascaded Classification Model

Heitz Gould Saxena Koller 2008 Li Kowdle Saxena Chen 2010

Learning to search for landmarks

 Learn to find easy landmarks (body joints) first and use them as context for harder ones

Results: best (top) to worst (bottom)

Graphical models vs. structured prediction

- Advantages of sequential prediction
 - Simple procedures for training and inference
 - Learns how much to rely on each prediction
 - Can model very complex relations

- Advantages of BP/graphcut/etc
 - Elegant
 - Relations are explicitly modeled
 - Exact inference in some cases

Things to remember

- Models can be broken down into part appearance and spatial configuration
 - Wide variety of models
- Efficient optimization can be tricky but usually possible
 - Generalized distance transform is a useful trick
- Rather than explicitly modeling contextual relations, can encode through features/classifiers

Next classes

HW 5 due Monday (last one!!)

Tues: Object tracking with Kalman Filters

Thurs: Action Recognition