
Classifiers

Computer Vision

CS 543 / ECE 549

University of Illinois

Derek Hoiem

04/09/15

Today’s class

• Review of image categorization

• Classification

– A few examples of classifiers: nearest neighbor,
generative classifiers, logistic regression, SVM

– Important concepts in machine learning

– Practical tips

• What is a category?

• Why would we want to put an image in one?

• Many different ways to categorize

To predict, describe, interact. To organize.

Examples of Categorization in Vision

• Part or object detection
– E.g., for each window: face or non-face?

• Scene categorization
– Indoor vs. outdoor, urban, forest, kitchen, etc.

• Action recognition
– Picking up vs. sitting down vs. standing …

• Emotion recognition
• Region classification

– Label pixels into different object/surface categories

• Boundary classification
– Boundary vs. non-boundary

• Etc, etc.

Image Categorization

Training
Labels

Training

Images

Classifier
Training

Training

Image
Features

Trained
Classifier

Image Categorization

Training
Labels

Training

Images

Classifier
Training

Training

Image
Features

Image
Features

Testing

Test Image

Trained
Classifier

Trained
Classifier Outdoor

Prediction

Feature design is paramount

• Most features can be thought of as templates,
histograms (counts), or combinations

• Think about the right features for the problem

– Coverage

– Concision

– Directness

Classifier

A classifier maps from the feature space to a
label

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

Different types of classification

• Exemplar-based: transfer category labels from
examples with most similar features
– What similarity function? What parameters?

• Linear classifier: confidence in positive label is a
weighted sum of features
– What are the weights?

• Non-linear classifier: predictions based on more
complex function of features
– What form does the classifier take? Parameters?

• Generative classifier: assign to the label that best
explains the features (makes features most likely)
– What is the probability function and its parameters?

Note: You can always fully design the classifier by hand, but usually this is

too difficult. Typical solution: learn from training examples.

One way to think about it…

• Training labels dictate that two examples are the
same or different, in some sense

• Features and distance measures define visual
similarity

• Goal of training is to learn feature weights or
distance measures so that visual similarity
predicts label similarity

• We want the simplest function that is confidently
correct

Exemplar-based Models

• Transfer the label(s) of the most similar
training examples

K-nearest neighbor classifier

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

1-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

3-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

5-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

Using K-NN

• Simple, a good one to try first

• Higher K gives smoother functions

• No training time (unless you want to learn a
distance function)

• With infinite examples, 1-NN provably has error
that is at most twice Bayes optimal error

Discriminative classifiers

Learn a simple function of the input features that
confidently predicts the true labels on the training set

Training Goals

1. Accurate classification of training data

2. Correct classifications are confident

3. Classification function is simple

𝑦 = 𝑓 𝑥

Classifiers: Logistic Regression

• Objective

• Parameterization

• Regularization

• Training

• Inference

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

The objective function of most discriminative classifiers

includes a loss term and a regularization term.

Using Logistic Regression

• Quick, simple classifier (good one to try first)

• Use L2 or L1 regularization

– L1 does feature selection and is robust to
irrelevant features but slower to train

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o

o
o

o

o

o

x2

x1

Classifiers: Kernelized SVM

xx xx oo o

x

x

x

x

x

o

o
o

x

x2

Using SVMs

• Good general purpose classifier
– Generalization depends on margin, so works well with

many weak features

– No feature selection

– Usually requires some parameter tuning

• Choosing kernel
– Linear: fast training/testing – start here

– RBF: related to neural networks, nearest neighbor

– Chi-squared, histogram intersection: good for histograms
(but slower, esp. chi-squared)

– Can learn a kernel function

Classifiers: Decision Trees

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

Ensemble Methods: Boosting

figure from Friedman et al. 2000

Boosted Decision Trees

…

Gray?

High in

Image?

Many Long

Lines?

Yes

No

NoNo

No

Yes Yes

Yes

Very High

Vanishing

Point?

High in

Image?

Smooth? Green?

Blue?

Yes

No

NoNo

No

Yes Yes

Yes

Ground Vertical Sky

[Collins et al. 2002]

P(label | good segment, data)

Using Boosted Decision Trees

• Flexible: can deal with both continuous and
categorical variables

• How to control bias/variance trade-off

– Size of trees

– Number of trees

• Boosting trees often works best with a small
number of well-designed features

• Boosting “stubs” can give a fast classifier

Generative classifiers

• Model the joint probability of the features and
the labels

– Allows direct control of independence assumptions

– Can incorporate priors

– Often simple to train (depending on the model)

• Examples

– Naïve Bayes

– Mixture of Gaussians for each class

Naïve Bayes

• Objective

• Parameterization

• Regularization

• Training

• Inference

x1 x2 x3

y

Using Naïve Bayes

• Simple thing to try for categorical data

• Very fast to train/test

Clustering (unsupervised)

x x

x
x

x

x

o

o

o

o

o

x1

x

x2

+ +

+
+

+

+

+

+

+

+

+

x2

x1

+

Many classifiers to choose from

• SVM

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Boosted Decision Trees

• K-nearest neighbor

• RBMs

• Deep networks

• Etc.

Which is the best one?

No Free Lunch Theorem

Generalization Theory

• It’s not enough to do well on the training set:
we want to also make good predictions for
new examples

Bias-Variance Trade-off

E(MSE) = noise2 + bias2 + variance

See the following for explanation of bias-variance (also Bishop’s “Neural

Networks” book):

• http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable

error

Error due to

incorrect

assumptions

Error due to variance

parameter estimates

from training samples

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Bias and Variance

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t
E

rr
o
r

Error = noise2 + bias2 + variance

Choosing the trade-off

• Need validation set

• Validation set is separate from the test set

Training error

Test error

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Effect of Training Size

Testing

Training

Number of Training Examples

E
rr

o
r

Generalization Error

Fixed classifier

How to measure complexity?

• VC dimension

• Other ways: number of parameters, etc.

Training error +

Upper bound on generalization error

N: size of training set

h: VC dimension

: 1-probability that bound holds

What is the VC dimension

of a linear classifier for N-

dimensional features? For

a nearest neighbor

classifier?

Test error <=

How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Use fewer features

• Get more training data

Which of these could actually lead to greater error?

Reducing Risk of Error

• Margins

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

The perfect classification algorithm

• Objective function: encodes the right loss for the problem

• Parameterization: makes assumptions that fit the problem

• Regularization: right level of regularization for amount of
training data

• Training algorithm: can find parameters that maximize
objective on training set

• Inference algorithm: can solve for objective function in
evaluation

Comparison

Naïve

Bayes

Logistic

Regression

Linear

SVM

Nearest

Neighbor

Kernelized

SVM

Learning Objective

 

 

















i
i

j

jiij

yP

yxP

0;log

;|log
maximize





Training

 

  Krky

rkyx

i

i

i

iij

kj















1

Inference

 

 
 
 
 0|0

1|0
log

,
0|1

1|1
log where

 01

0

1

01













yxP

yxP

yxP

yxP

j

j

j

j

j

j

TT





xθxθ

  

    xθθx

θθx

T

ii

i

i

yyP

yP





exp1/1,| where

,|logmaximize 

Gradient ascent tT xθ

 tT xθ
Quadratic programming

or subgradient opt.
0 , 1 such that

2

1
 minimize





ii

T

i

i

i

iy 



xθ

θ

Quadratic

programming
complicated to write

most similar features  same label Record data

  
i

iii Ky 0,ˆ xx

 xx ,ˆ argmin where

i
i

i

Ki

y



assuming x in {0 1}

Characteristics of vision learning problems

• Lots of continuous features
– E.g., HOG template may have 1000 features

– Spatial pyramid may have ~15,000 features

• Imbalanced classes
– often limited positive examples, practically infinite

negative examples

• Difficult prediction tasks

When a massive training set is available

• Relatively new phenomenon
– MNIST (handwritten letters) in 1990s, LabelMe in

2000s, ImageNet (object images) in 2009, …

• Want classifiers with low bias (high variance ok)
and reasonably efficient training

• Very complex classifiers with simple features are
often effective
– Random forests
– Deep convolutional networks

New training setup with moderate sized
datasets

Training
Labels

Training

Images

Tune CNN features and
Neural Network classifier

Trained
Classifier

Dataset similar to task with
millions of labeled examples

Initialize

CNN

Features

Practical tips
• Preparing features for linear classifiers

– Often helps to make zero-mean, unit-dev

– For non-ordinal features, convert to a set of binary features

• Selecting classifier meta-parameters (e.g., regularization weight)
– Cross-validation: split data into subsets; train on all but one subset, test on remaining;

repeat holding out each subset

• Leave-one-out, 5-fold, etc.

• Most popular classifiers in vision
– SVM: linear for when fast training/classification is needed; performs well with lots of

weak features

– Logistic Regression: outputs a probability; easy to train and apply

– Nearest neighbor: hard to beat if there is tons of data (e.g., character recognition)

– Boosted stumps or decision trees: applies to flexible features, incorporates feature
selection, powerful classifiers

– Random forests: outputs probability; good for simple features, tons of data

– Deep networks / CNNs: flexible output; learns features; adapt existing network (which is
trained with tons of data) or train new with tons of data

• Always try at least two types of classifiers

What to remember about classifiers

• No free lunch: machine learning algorithms are tools

• Try simple classifiers first

• Better to have smart features and simple classifiers
than simple features and smart classifiers
– Though with enough data, smart features can be learned

• Use increasingly powerful classifiers with more
training data (bias-variance tradeoff)

Some Machine Learning References

• General
– Tom Mitchell, Machine Learning, McGraw Hill, 1997
– Christopher Bishop, Neural Networks for Pattern Recognition, Oxford

University Press, 1995

• Adaboost
– Friedman, Hastie, and Tibshirani, “Additive logistic regression: a statistical

view of boosting”, Annals of Statistics, 2000

• SVMs
– http://www.support-vector.net/icml-tutorial.pdf

• Random forests
– http://research.microsoft.com/pubs/155552/decisionForests_MSR_TR

_2011_114.pdf

http://www.support-vector.net/icml-tutorial.pdf
http://research.microsoft.com/pubs/155552/decisionForests_MSR_TR_2011_114.pdf

Next class

• Detection using sliding windows and region
proposals

