Image Features and Categorization

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem Jia-Bin Huang

Where are we now?

Object instance recognition

Face recognition

Today: Image features and categorization

Object detection

Object tracking

Today: Image features and categorization

- General concepts of categorization
 - Why? What? How?
- Image features
 - Color, texture, gradient, shape, interest points
 - Histograms, feature encoding, and pooling
 - CNN as feature

Image and region categorization

What do you see in this image?

Forest

Describe, predict, or interact with the object based on visual cues

Is it dangerous?

How **fast** does it run?

Is it alive?

Does it have a tail?

Is it **soft**?

Can I poke with it?

Why do we care about categories?

- From an object's category, we can make predictions about its behavior in the future, beyond of what is immediately perceived.
- Pointers to knowledge
 - Help to understand individual cases not previously encountered
- Communication

Theory of categorization

How do we determine if something is a member of a particular category?

Definitional approach

Prototype approach

Exemplar approach

Definitional approach: classical view of categories

- Plato & Aristotle
 - Categories are defined by a list of properties shared by all elements in a category
 - Category membership is binary
 - Every member in the category is equal

Aristotle by Francesco Hayez

The Categories (Aristotle)

Prototype or sum of exemplars?

Prototype Model

Figure 7.3. Schematic of the prototype model. Although many exemplars are seen, only the prototype is stored. The prototype is updated continually to incorporate more experience with new exemplars.

Category judgments are made by comparing a new exemplar to the prototype.

Exemplars Model

Figure 7.4. Schematic of the exemplar model. As each exemplar is seen, it is encoded into memory. A prototype is abstracted only when it is needed, for example, when a new exemplar must be categorized.

Category judgments are made by comparing a new exemplar to all the old exemplars of a category or to the exemplar that is the most appropriate

Slide Credit: Torralba

Levels of categorization [Rosch 70s]

Definition of Basic Level:

- **Similar shape**: Basic level categories are the highest-level category for which their members have similar shapes.
- **Similar motor interactions**: ... for which people interact with its members using similar motor sequences.
- **Common attributes**: ... there are a significant number of attributes in common between pairs of members.

Rosch et a. Principle of categorization, 1978

Cat vs Dog

Object recognition

Caltech 101 Average Object Images

Fine-grained recognition

Visipedia Project

Place recognition

Visual font recognition

[Chen et al. CVPR 2014]

Dating historical photos

1940

1953

1966

1977

[Palermo et al. ECCV 2012]

Image style recognition

[Karayev et al. BMVC 2014]

Region categorization

Layout prediction

Surface Layout

Assign regions to orientation

Geometric context [Hoiem et al. IJCV 2007]

Assign regions to depth Make3D [Saxena et al. PAMI 2008]

Region categorization

Semantic segmentation from RGBD images

[Silberman et al. ECCV 2012]

Region categorization

Material recognition

[Bell et al. CVPR 2015]

Supervised learning

= Category label

Examples

+Image Features + Classifier

Training phase

Testing phase

Testing phase

Q: What are good features for...

recognizing a beach?

Q: What are good features for...

recognizing cloth fabric?

Q: What are good features for...

recognizing a mug?

What are the right features?

Depend on what you want to know!

- Object: shape
 - Local shape info, shading, shadows, texture
- Scene: geometric layout
 - linear perspective, gradients, line segments
- •Material properties: albedo, feel, hardness
 - Color, texture
- Action: motion
 - Optical flow, tracked points

General principles of representation

Coverage

Ensure that all relevant info is captured

Concision

Minimize number of features without sacrificing coverage

Directness

Ideal features are independently useful for prediction

Image representations

- Templates
 - Intensity, gradients, etc.

- Histograms
 - Color, texture, SIFT descriptors,
 etc.
- Average of features

Image Intensity

Gradient template

Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

Data samples in 2D

Probability or count of data in each bin

Marginal histogram on feature 2

Joint histogram

Modeling multi-dimensional data

Joint histogram

- Requires lots of data
- Loss of resolution to avoid empty bins

Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Modeling multi-dimensional data

Clustering

Use the same cluster centers for all images

Computing histogram distance

Histogram intersection

histint
$$(h_i, h_j) = 1 - \sum_{m=1}^{K} \min(h_i(m), h_j(m))$$

Chi-squared Histogram matching distance

$$\chi^{2}(h_{i}, h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{\left[h_{i}(m) - h_{j}(m)\right]^{2}}{h_{i}(m) + h_{j}(m)}$$

- Earth mover's distance (Cross-bin similarity measure)
 - minimal cost paid to transform one distribution into the other

Histograms: implementation issues

- Quantization
 - Grids: fast but applicable only with few dimensions
 - Clustering: slower but can quantize data in higher dimensions

Many Bins
Need more data
Finer representation

Matching

- Histogram intersection or Euclidean may be faster
- Chi-squared often works better
- Earth mover's distance is good for when nearby bins represent similar values

What kind of things do we compute histograms of?

Color

Hue

b color space HSV color space

Texture (filter banks or HOG over regions)

What kind of things do we compute histograms of?

Histograms of descriptors

"Bag of visual words"

Analogy to documents

Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that r For a long tig sensory, brain, image wa centers i visual, perception, movie s etinal, cerebral cortex, image discove eye, cell, optical know th nerve, image perceptic more com Hubel, Wiesel following the to the various de ortex. Hubel and Wiesel nademonstrate that the message about image falling on the retina undergoes wise analysis in a system of nerve cell. stored in columns. In this system each d has its specific function and is responsible a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of \$90bn (£51bn) to \$100bn this year, a threefold increase on 2004's \$32bn. The Commerce Ministry said the surplus would be created by a predicted 30% compared w China, trade, \$660bn. T annoy th surplus, commerce, China's exports, imports, US, deliber agrees vuan, bank, domestic, yuan is foreign, increase, governo trade, value also need demand so country. China yuan against the dunpermitted it to trade within a narrow the US wants the yuan to be allowed freely. However, Beijing has made it ch it will take its time and tread carefully be allowing the yuan to rise further in value.

Bag of visual words

Image patches

BoW histogram

Codewords

Image categorization with bag of words

Training

- 1. Extract keypoints and descriptors for all training images
- 2. Cluster descriptors
- 3. Quantize descriptors using cluster centers to get "visual words"
- 4. Represent each image by normalized counts of "visual words"
- 5. Train classifier on labeled examples using histogram values as features

Testing

- 1. Extract keypoints/descriptors and quantize into visual words
- 2. Compute visual word histogram
- 3. Compute label or confidence using classifier

HW5 - Prob2 scene categorization

Training and testing images for 8 categories

- Implement repres
- BoW model: preprocessed descriptors
 - Learning dictionary using K-Means
 - Learning classifier (NN, SVM)
- Report results

Take a break...

Image source: http://mehimandthecats.com/feline-care-guide/

Bag of visual words image classification

[Chatfieldet al. BMVC 2011]

Feature encoding

Hard/soft assignment to clusters

Histogram encoding

Kernel codebook encoding

Locality constrained encoding

Fisher encoding

[Chatfieldet al. BMVC 2011]

Fisher vector encoding

Fit Gaussian Mixture Models

$$\Theta = (\mu_k, \Sigma_k, \pi_k : k = 1, \dots, K)$$

Posterior probability

$$q_{ik} = \frac{\exp\left[-\frac{1}{2}(\mathbf{x}_i - \mu_k)^T \Sigma_k^{-1} (\mathbf{x}_i - \mu_k)\right]}{\sum_{t=1}^K \exp\left[-\frac{1}{2}(\mathbf{x}_i - \mu_t)^T \Sigma_k^{-1} (\mathbf{x}_i - \mu_t)\right]}$$

First and second order differences to cluster k

$$u_{jk} = \frac{1}{N\sqrt{\pi_k}} \sum_{i=1}^{N} q_{ik} \frac{x_{ji} - \mu_{jk}}{\sigma_{jk}},$$

$$v_{jk} = \frac{1}{N\sqrt{2\pi_k}} \sum_{i=1}^{N} q_{ik} \left[\left(\frac{x_{ji} - \mu_{jk}}{\sigma_{jk}} \right)^2 - 1 \right] \qquad \Phi(I) = \begin{bmatrix} \vdots \\ \mathbf{u}_k \\ \vdots \\ \mathbf{v}_k \\ \vdots \end{bmatrix}$$
[Perronnin et al. ECCV 2010]

[Perronnin et al. ECCV 2010]

Performance comparisons

- Fisher vector encoding outperforms others
- Higher-order statistics helps

[Chatfieldet al. BMVC 2011]

But what about spatial layout?

All of these images have the same color histogram

Spatial pyramid

Compute histogram in each spatial bin

Spatial pyramid

High number of features – PCA to reduce dimensionality

[Lazebnik et al. CVPR 2006]

Pooling

Average/max pooling

 Second-order pooling [Joao et al. PAMI 2014]

Convolved **Pooled** feature feature

> Source: Unsupervised Feature Learning and Deep Learning

$$\mathbf{G}_{avg}(R_j) = \frac{1}{|F_{R_j}|} \sum_{i: (\mathbf{f}_i \in R_j)} \mathbf{x}_i \cdot \mathbf{x}_i^{\top}$$
$$\mathbf{G}_{max}(R_j) = \max_{i: (\mathbf{f}_i \in R_j)} \mathbf{x}_i \cdot \mathbf{x}_i^{\top}$$

$$\mathbf{G}_{max}(R_j) = \max_{i:(\mathbf{f}_i \in R_j)} \mathbf{x}_i \cdot \mathbf{x}_i^{\top}$$

2012 ImageNet 1K

(Fall 2012)

Shallow vs. deep learning

Engineered vs. learned features

Gradient-Based Learning Applied to Document Recognition, LeCun, Bottou, Bengio and Haffner, Proc. of the IEEE, 1998

Imagenet Classification with Deep Convolutional Neural Networks, Krizhevsky, Sutskever, and Hinton, NIPS 2012

Slide Credit: L. Zitnick

Gradient-Breed Learning Applied to Document Recognition, LeCun, Bottou, Bengio and Haffner, Proc. of the IEEE, 1998

Imagenet Clas: * Rectified activations and dropout

Slide Credit: L. Zitnick

Convolutional activation features

Region representation

- Segment the image into superpixels
- Use features to represent each image segment

Region representation

- Color, texture, BoW
 - Only computed within the local region

Shape of regions

Position in the image

Working with regions

Spatial support is important – multiple segmentation

(a) Input

Geometric context [Hoiem et al. ICCV 2005]

Spatial consistency – MRF smoothing

Beyond categorization

- Exemplar models [Malisiewicz and Efros NIPS09, ICCV11]
 - Ask not "what is this?", ask "what is this like" -

Moshe Bar

• A train?

Things to remember

Visual categorization help transfer knowledge

- Image features
 - Coverage, concision, directness
 - Color, gradients, textures, motion, descriptors
 - Histogram, feature encoding, and pooling
 - CNN as features

Image/region categorization

Next lecture - Classifiers

