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This section

• Clustering: grouping together similar points, 
images, feature vectors, etc.

• Segmentation: dividing the image into meaningful 
regions
– Segmentation by clustering: K-means and mean-shift
– Graph approaches to segmentation: graph cuts and 

normalized cuts
– Segmentation from boundaries: watershed

• EM: soft clustering, or parameter estimation with 
hidden data



Today’s class

• Clustering algorithms
– K-means

• Application to fast object search

– Hierarchical clustering
• Bottom-up agglomerative clustering

• Top-down divisive clustering

– Spectral Clustering
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Clustering: group together similar points 
and represent them with a single token

Key Questions:
1) What makes two points/images/patches 
similar?
2) How do we determine the grouping from 
pairwise similarities?



Why do we cluster?

• Summarizing data
– Visualization
– Patch-based compression

• Counting
– Represent a large continuous vector with the cluster number

– Histograms of texture, color, SIFT vectors
– Otherwise impossible with continuous values

• Segmentation
– Separate the image into different regions

• Prediction
– Images in the same cluster may have the same labels



K-means algorithm

We wish to partition the data into K 
sets S = {S1, S2, … SK} with 
corresponding centers μi 

Partition such that variance in each partition is as 
low as possible
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K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 
center

3. Compute new 
center (mean) for 
each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering


K-means algorithm
1.Initialize K centers μi  (usually randomly)

2.Assign each point x to its nearest center:

3.Update cluster centers as the mean of its 
members

4.Repeat 2-3 until convergence (t = t+1)



K-means demos

    
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html 

http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/

General

Color clustering

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/


Kmeans: Matlab code
function C = kmeans(X, K)

% Initialize cluster centers to be randomly sampled points
[N, d] = size(X);
rp = randperm(N);
C = X(rp(1:K), :);

lastAssignment = zeros(N, 1);
while true
  

  % Assign each point to nearest cluster center
  bestAssignment = zeros(N, 1);
  mindist = Inf*ones(N, 1);
  for k = 1:K
    for n = 1:N
      dist = sum((X(n, :)-C(k, :)).^2);
      if dist < mindist(n)
        mindist(n) = dist;
        bestAssignment(n) = k;
      end
    end
  end
  

  % break if assignment is unchanged  
  if all(bestAssignment==lastAssignment), break; end;
 

  % Assign each cluster center to mean of points within it
  for k = 1:K 
    C(k, :) = mean(X(bestAssignment==k, :));
  end
end



K-means: design choices
● Initialization

– Randomly select K points as initial cluster centers

– Greedily choose K points to minimize residual

● Distance measures
– Traditionally Euclidean, could be others

● Optimization
– Converges to a local minimum

– May want to perform multiple restarts (re-initialize and try 
again)



How to choose the number of clusters?

● Elbow method

● Stop adding 
clusters when 
improvement is 
small
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How to choose the number of clusters?

• Validation set
– Try different number of clusters and look at 

performance



K-means space partitioning 

● Creates a voronoi 
partitioning

– Generally convex 
shaped partitions

Source: The Elements of Statistical Learning, Hastie et 
al.



Conclusions: K-means

Good
• Finds cluster centers that minimize conditional 

variance (good representation of data)
• Simple to implement, widespread application

Bad
• Sensitive to starting locations
• Need to choose K
• All clusters have the same parameters (e.g., distance 

measure is non-adaptive)



K-medoids

• Just like K-means except
– Represent the cluster with one of its members, 

rather than the mean of its members
– Choose the member (data point) that 

minimizes cluster dissimilarity

• Applicable when a mean is not meaningful
–Clustering hue values

● Average of red and green would be 
yellow-ish

• Less sensitive to outliers 



How to quickly find images in a large 
database that match a given image 
region?

Application of K-means



Simple idea

See how many SIFT 
keypoints are close to 
SIFT keypoints in each 
other image

Lots of 
Matches

Few or No 
Matches

But this will be really, really slow!



Bag of Visual Words

● Cluster the keypoint descriptors into a 
managable vocabulary size

● Assign each descriptor to a cluster number
Codebook of cluster 
centers



Bag of Visual Words
Assign to nearest 
codeword

...
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How many instances 
of each codeword 
appeared in this 
image?



Bag of Visual Words

● Each image is represented by a histogram 
of codeword frequencies

● Similar images should have similar 
histograms



Bag of Visual Words

● How to match?
● First normalize histogram vectors

– Compute similarity using cosine distance, 
histogram intersection, inner product, etc.



Bag of Visual Words

● How to match?
● First normalize histogram vectors

– Compute similarity using cosine distance, 
histogram intersection, inner product, etc.

● What if we're querying from a large 
dataset?
– Pairwise comparisons will take forever



Bag of Visual Words

● How to match?
● First normalize histogram vectors

– Compute similarity using cosine distance, 
histogram intersection, inner product, etc.

● What if we're querying from a large 
dataset?
– Pairwise comparisons will take forever

● Are all codewords equally important?



Bag of Visual Words

● Inverted Index

– Analogous to index section of a book

– Store mapping from codeword to images it appears in

● Fast inner product computation on large datasets:

– Only operate on images containing relevant codewords
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Bag of Visual Words

● Inverted Index

– Analogous to index section of a book

– Store mapping from codeword to images it appears in

● Fast inner product computation on large datasets:

– Only operate on images containing relevant codewords

ABB ACD BCD CDE



Bag of Visual Words

● Term Frequency-Inverse Document 
Frequency
– The more documents/images the word 

appears in, the less informative it is

tf-idf: Term Frequency – Inverse Document Frequency

# words in document

# times word 
appears in document

#  documents

#  documents that 
contain the word



Bag of Visual Words

● How many codewords for a retrieval task?
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Bag of Visual Words

● How many codewords for a retrieval task?
– Fixed dataset, don't worry about overfitting
– Generally, the more the better

● Codewords better approximate data

● Computational cost of too many 
codewords?
– C codewords and F unmapped features 

vectors
– C*F distance calculations to encode
– Can we do better? 



Bag of Visual Words

● Hierarchical K-means
● Iteratively partition space into 

smaller voronoi partitions
● C codewords, F unmapped 

features, branching factor K
–  (K*logKC)*F distance 

calcualtions to encode 



Bag of Visual Words
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Performance



More words is better

Improves
Retrieval

Improves
Speed

Branch factor



Agglomerative clustering
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Agglomerative clustering

How many clusters?
- Clustering creates a dendrogram (a 

tree)
- Threshold based on max number of 

clusters or based on distance between 
merges
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Agglomerative clustering

● How to define cluster 
similarity?
● Single linkage: closest pair 
of points
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Agglomerative clustering

● How to define cluster 
similarity?
● Single linkage: closest pair 
of points

● Complete linkage: furthest 
pair of points

● Average linkage: average 
over all pairs



Agglomerative clustering

Source: The Elements of Statistical Learning, Hastie et 
al.



Agglomerative clustering demo

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html



Conclusions: Agglomerative 
Clustering
Good
• Simple to implement, widespread 
application

• Clusters have adaptive shapes
• Provides a hierarchy of clusters

Bad
• Resulting hierarchy is sensitive to choice 
of similarity metric

• Still have to choose number of clusters or 
threshold 

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html


Divisive Clustering
● Top down hierarchical clustering
● Start with one large group and 

recursively split
● Possible splitting criteria: 

– Kmeans with K=2



Spectral Clustering
● Groups points based on pairwise 

affinities
● Use spectral techniques to determine 

a partitioning 

A
B



Spectral Clustering

A
B

● Build similarity graph



Spectral Clustering

A
B

● Build similarity graph
● Find a cut through the graph



Normalized Cuts

● Partition the graph G = (V, E)  into two disjoint subsets A and B to:

– Minimize the weights of the cut edges (dashed red)

● Introduce a normalization factor to avoid tiny partitions

A
B

Adapted from: Seitz

(Shi, Malik, TPAMI 2000)



Normalized cuts for segmentation



Visual PageRank

• Determining importance by random walk
–What’s the probability that you will randomly 
walk to a given node?
• Create adjacency matrix based on visual similarity
• Edge weights determine probability of transition
• Rank by image search results by stationary 

distribution

Jing Baluja 2008



Spectral Clustering

Goal: Find 5 clusters 



Spectral Clustering

Spectral K-means



Spectral Clustering
function[memb] = spectral_cluster(data, c, num_clusters)
% a simple implementation for unnormalized spectral clustering
% each row of data should be a data point

%% setup affinity matrix W                                                                        
num_data = size(data,1);
D = zeros(num_data, num_data);
for i = 1:size(data,1)
    dists = data - repmat(data(i,:), [num_data, 1]);
    D(:,i) = sqrt(sum(dists.*dists, 2));
end
W = exp(-(D.*D)/c);
W = W-diag(diag(W)); % remove diagonal

%% setup degree matrix G                                                                          
gs = sum(W, 2);
G = diag(gs);

%% compute laplacian                                                                              
L = G - W;
[V, D] = eigs(L, num_clusters, 'sm');   
memb = kmeans(V, num_clusters);
end



Spectral Clustering
● Pros:

– Fast for sparse datasets
– Can output partitions with complex shapes

● Cons:
– Hard to determine membership of unseen 

samples
– Computationally expensive for large, dense 

datasets



How do we cluster?

• K-means
– Iteratively re-assign points to the nearest cluster 

center

• Agglomerative clustering
– Start with each point as its own cluster and 

iteratively merge the closest clusters

• Graph-based clustering
– Split the nodes in a graph based on assigned links 

with similarity weights



Which algorithm to use?

• Quantization/Summarization: K-means
–Aims to preserve variance of original data
–Can easily assign new point to a cluster

Quantization for 
computing histograms

Summary of 20,000 photos of Rome using “greedy k-
means”

http://grail.cs.washington.edu/projects/canonview/



Which algorithm to use?

• Image segmentation: agglomerative 
clustering
–More flexible with distance measures (e.g., can 
be based on boundary prediction)

–Adapts better to specific data
–Hierarchy can be useful

van de Sande et. al



Which algorithm to use?

• Image segmentation: spectral clustering
–Captures pairwise connectivities 
–Allows for variances within a partition



Things to remember

• K-means useful for summarization, 
building dictionaries of patches, 
general clustering
–Fast object retrieval using visual 

words and inverse index table

• Agglomerative clustering useful for 
segmentation, general clustering

• Spectral clustering useful for 
determining relevance, general 
clustering, segmentation



Next class

• Gestalt grouping

• Image segmentation

–Mean-shift segmentation

–Watershed segmentation


	Slide 1
	This section
	Today’s class
	Slide 4
	Slide 5
	Slide 6
	Why do we cluster?
	Slide 8
	Slide 9
	K-means algorithm
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Kmeans: Matlab code
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Conclusions: K-means
	K-medoids
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Agglomerative clustering
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

