

Clustering with Applications to
Fast Object Search

Computer Vision
CS 543/ECE 549

University of Illinois

Kevin Shih

This section

• Clustering: grouping together similar points,
images, feature vectors, etc.

• Segmentation: dividing the image into meaningful
regions
– Segmentation by clustering: K-means and mean-shift
– Graph approaches to segmentation: graph cuts and

normalized cuts
– Segmentation from boundaries: watershed

• EM: soft clustering, or parameter estimation with
hidden data

Today’s class

• Clustering algorithms
– K-means

• Application to fast object search

– Hierarchical clustering
• Bottom-up agglomerative clustering

• Top-down divisive clustering

– Spectral Clustering

Clustering: group together similar points
and represent them with a single token

Clustering: group together similar points
and represent them with a single token

Clustering: group together similar points
and represent them with a single token

Key Questions:
1) What makes two points/images/patches
similar?
2) How do we determine the grouping from
pairwise similarities?

Why do we cluster?

• Summarizing data
– Visualization
– Patch-based compression

• Counting
– Represent a large continuous vector with the cluster number

– Histograms of texture, color, SIFT vectors
– Otherwise impossible with continuous values

• Segmentation
– Separate the image into different regions

• Prediction
– Images in the same cluster may have the same labels

K-means algorithm

We wish to partition the data into K
sets S = {S1, S2, … SK} with
corresponding centers μi

Partition such that variance in each partition is as
low as possible

K-means algorithm

We wish to partition the data into K
sets S = {S1, S2, … SK} with
corresponding centers μi

Partition such that variance in each partition is as
low as possible

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly
select K centers

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly
select K centers

2. Assign each
point to nearest
center

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly
select K centers

2. Assign each
point to nearest
center

3. Compute new
center (mean) for
each cluster

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly
select K centers

2. Assign each
point to nearest
center

3. Compute new
center (mean) for
each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm
1.Initialize K centers μi (usually randomly)

2.Assign each point x to its nearest center:

3.Update cluster centers as the mean of its
members

4.Repeat 2-3 until convergence (t = t+1)

K-means demos

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/

General

Color clustering

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/

Kmeans: Matlab code
function C = kmeans(X, K)

% Initialize cluster centers to be randomly sampled points
[N, d] = size(X);
rp = randperm(N);
C = X(rp(1:K), :);

lastAssignment = zeros(N, 1);
while true

 % Assign each point to nearest cluster center
 bestAssignment = zeros(N, 1);
 mindist = Inf*ones(N, 1);
 for k = 1:K
 for n = 1:N
 dist = sum((X(n, :)-C(k, :)).^2);
 if dist < mindist(n)
 mindist(n) = dist;
 bestAssignment(n) = k;
 end
 end
 end

 % break if assignment is unchanged
 if all(bestAssignment==lastAssignment), break; end;

 % Assign each cluster center to mean of points within it
 for k = 1:K
 C(k, :) = mean(X(bestAssignment==k, :));
 end
end

K-means: design choices
● Initialization

– Randomly select K points as initial cluster centers

– Greedily choose K points to minimize residual

● Distance measures
– Traditionally Euclidean, could be others

● Optimization
– Converges to a local minimum

– May want to perform multiple restarts (re-initialize and try
again)

How to choose the number of clusters?

● Elbow method

● Stop adding
clusters when
improvement is
small

K

4321 5 876

S
u
m

 o
f

v
a
r i

a
n
ce

s

How to choose the number of clusters?

• Validation set
– Try different number of clusters and look at

performance

K-means space partitioning

● Creates a voronoi
partitioning

– Generally convex
shaped partitions

Source: The Elements of Statistical Learning, Hastie et
al.

Conclusions: K-means

Good
• Finds cluster centers that minimize conditional

variance (good representation of data)
• Simple to implement, widespread application

Bad
• Sensitive to starting locations
• Need to choose K
• All clusters have the same parameters (e.g., distance

measure is non-adaptive)

K-medoids

• Just like K-means except
– Represent the cluster with one of its members,

rather than the mean of its members
– Choose the member (data point) that

minimizes cluster dissimilarity

• Applicable when a mean is not meaningful
–Clustering hue values

● Average of red and green would be
yellow-ish

• Less sensitive to outliers

How to quickly find images in a large
database that match a given image
region?

Application of K-means

Simple idea

See how many SIFT
keypoints are close to
SIFT keypoints in each
other image

Lots of
Matches

Few or No
Matches

But this will be really, really slow!

Bag of Visual Words

● Cluster the keypoint descriptors into a
managable vocabulary size

● Assign each descriptor to a cluster number
Codebook of cluster
centers

Bag of Visual Words
Assign to nearest
codeword

...

O
cc

u
rr

e
n
ce

s

How many instances
of each codeword
appeared in this
image?

Bag of Visual Words

● Each image is represented by a histogram
of codeword frequencies

● Similar images should have similar
histograms

Bag of Visual Words

● How to match?
● First normalize histogram vectors

– Compute similarity using cosine distance,
histogram intersection, inner product, etc.

Bag of Visual Words

● How to match?
● First normalize histogram vectors

– Compute similarity using cosine distance,
histogram intersection, inner product, etc.

● What if we're querying from a large
dataset?
– Pairwise comparisons will take forever

Bag of Visual Words

● How to match?
● First normalize histogram vectors

– Compute similarity using cosine distance,
histogram intersection, inner product, etc.

● What if we're querying from a large
dataset?
– Pairwise comparisons will take forever

● Are all codewords equally important?

Bag of Visual Words

● Inverted Index

– Analogous to index section of a book

– Store mapping from codeword to images it appears in

● Fast inner product computation on large datasets:

– Only operate on images containing relevant codewords

Bag of Visual Words

● Inverted Index

– Analogous to index section of a book

– Store mapping from codeword to images it appears in

● Fast inner product computation on large datasets:

– Only operate on images containing relevant codewords

ABB ACD BCD CDE

Bag of Visual Words

● Inverted Index

– Analogous to index section of a book

– Store mapping from codeword to images it appears in

● Fast inner product computation on large datasets:

– Only operate on images containing relevant codewords

ABB ACD BCD CDE

Bag of Visual Words

● Inverted Index

– Analogous to index section of a book

– Store mapping from codeword to images it appears in

● Fast inner product computation on large datasets:

– Only operate on images containing relevant codewords

ABB ACD BCD CDE

Bag of Visual Words

● Inverted Index

– Analogous to index section of a book

– Store mapping from codeword to images it appears in

● Fast inner product computation on large datasets:

– Only operate on images containing relevant codewords

ABB ACD BCD CDE

Bag of Visual Words

● Term Frequency-Inverse Document
Frequency
– The more documents/images the word

appears in, the less informative it is

tf-idf: Term Frequency – Inverse Document Frequency

words in document

times word
appears in document

documents

documents that
contain the word

Bag of Visual Words

● How many codewords for a retrieval task?

Bag of Visual Words

● How many codewords for a retrieval task?
– Fixed dataset, don't worry about overfitting
– Generally, the more the better

● Codewords better approximate data

Bag of Visual Words

● How many codewords for a retrieval task?
– Fixed dataset, don't worry about overfitting
– Generally, the more the better

● Codewords better approximate data

● Computational cost of too many
codewords?

Bag of Visual Words

● How many codewords for a retrieval task?
– Fixed dataset, don't worry about overfitting
– Generally, the more the better

● Codewords better approximate data

● Computational cost of too many
codewords?
– C codewords and F unmapped features

vectors
– C*F distance calculations to encode
– Can we do better?

Bag of Visual Words

● Hierarchical K-means
● Iteratively partition space into

smaller voronoi partitions
● C codewords, F unmapped

features, branching factor K
– (K*logKC)*F distance

calcualtions to encode

Bag of Visual Words

Slide

110,000,000
Images in
5.8 Seconds

This slide and following by David Nister

Performance

More words is better

Improves
Retrieval

Improves
Speed

Branch factor

Agglomerative clustering

Agglomerative clustering

Agglomerative clustering

Agglomerative clustering

Agglomerative clustering

Agglomerative clustering

How many clusters?
- Clustering creates a dendrogram (a

tree)
- Threshold based on max number of

clusters or based on distance between
merges

di
st

an
ce

Agglomerative clustering

● How to define cluster
similarity?
● Single linkage: closest pair
of points

Agglomerative clustering

● How to define cluster
similarity?
● Single linkage: closest pair
of points

● Complete linkage: furthest
pair of points

Agglomerative clustering

● How to define cluster
similarity?
● Single linkage: closest pair
of points

● Complete linkage: furthest
pair of points

● Average linkage: average
over all pairs

Agglomerative clustering

Source: The Elements of Statistical Learning, Hastie et
al.

Agglomerative clustering demo

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html

Conclusions: Agglomerative
Clustering
Good
• Simple to implement, widespread
application

• Clusters have adaptive shapes
• Provides a hierarchy of clusters

Bad
• Resulting hierarchy is sensitive to choice
of similarity metric

• Still have to choose number of clusters or
threshold

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html

Divisive Clustering
● Top down hierarchical clustering
● Start with one large group and

recursively split
● Possible splitting criteria:

– Kmeans with K=2

Spectral Clustering
● Groups points based on pairwise

affinities
● Use spectral techniques to determine

a partitioning

A
B

Spectral Clustering

A
B

● Build similarity graph

Spectral Clustering

A
B

● Build similarity graph
● Find a cut through the graph

Normalized Cuts

● Partition the graph G = (V, E) into two disjoint subsets A and B to:

– Minimize the weights of the cut edges (dashed red)

● Introduce a normalization factor to avoid tiny partitions

A
B

Adapted from: Seitz

(Shi, Malik, TPAMI 2000)

Normalized cuts for segmentation

Visual PageRank

• Determining importance by random walk
–What’s the probability that you will randomly
walk to a given node?
• Create adjacency matrix based on visual similarity
• Edge weights determine probability of transition
• Rank by image search results by stationary

distribution

Jing Baluja 2008

Spectral Clustering

Goal: Find 5 clusters

Spectral Clustering

Spectral K-means

Spectral Clustering
function[memb] = spectral_cluster(data, c, num_clusters)
% a simple implementation for unnormalized spectral clustering
% each row of data should be a data point

%% setup affinity matrix W
num_data = size(data,1);
D = zeros(num_data, num_data);
for i = 1:size(data,1)
 dists = data - repmat(data(i,:), [num_data, 1]);
 D(:,i) = sqrt(sum(dists.*dists, 2));
end
W = exp(-(D.*D)/c);
W = W-diag(diag(W)); % remove diagonal

%% setup degree matrix G
gs = sum(W, 2);
G = diag(gs);

%% compute laplacian
L = G - W;
[V, D] = eigs(L, num_clusters, 'sm');
memb = kmeans(V, num_clusters);
end

Spectral Clustering
● Pros:

– Fast for sparse datasets
– Can output partitions with complex shapes

● Cons:
– Hard to determine membership of unseen

samples
– Computationally expensive for large, dense

datasets

How do we cluster?

• K-means
– Iteratively re-assign points to the nearest cluster

center

• Agglomerative clustering
– Start with each point as its own cluster and

iteratively merge the closest clusters

• Graph-based clustering
– Split the nodes in a graph based on assigned links

with similarity weights

Which algorithm to use?

• Quantization/Summarization: K-means
–Aims to preserve variance of original data
–Can easily assign new point to a cluster

Quantization for
computing histograms

Summary of 20,000 photos of Rome using “greedy k-
means”

http://grail.cs.washington.edu/projects/canonview/

Which algorithm to use?

• Image segmentation: agglomerative
clustering
–More flexible with distance measures (e.g., can
be based on boundary prediction)

–Adapts better to specific data
–Hierarchy can be useful

van de Sande et. al

Which algorithm to use?

• Image segmentation: spectral clustering
–Captures pairwise connectivities
–Allows for variances within a partition

Things to remember

• K-means useful for summarization,
building dictionaries of patches,
general clustering
–Fast object retrieval using visual

words and inverse index table

• Agglomerative clustering useful for
segmentation, general clustering

• Spectral clustering useful for
determining relevance, general
clustering, segmentation

Next class

• Gestalt grouping

• Image segmentation

–Mean-shift segmentation

–Watershed segmentation

	Slide 1
	This section
	Today’s class
	Slide 4
	Slide 5
	Slide 6
	Why do we cluster?
	Slide 8
	Slide 9
	K-means algorithm
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Kmeans: Matlab code
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Conclusions: K-means
	K-medoids
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Agglomerative clustering
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

