Clustering with Applications to Fast Object Search

Computer Vision
CS 543/ECE 549
University of Illinois

Kevin Shih

This section

- Clustering: grouping together similar points, images, feature vectors, etc.
- Segmentation: dividing the image into meaningful regions
 - Segmentation by clustering: K-means and mean-shift
 - Graph approaches to segmentation: graph cuts and normalized cuts
 - Segmentation from boundaries: watershed
- EM: soft clustering, or parameter estimation with hidden data

Today's class

- Clustering algorithms
 - K-means
 - Application to fast object search
 - Hierarchical clustering
 - Bottom-up agglomerative clustering
 - Top-down divisive clustering
 - Spectral Clustering

Clustering: group together similar points and represent them with a single token

Clustering: group together similar points and represent them with a single token

Clustering: group together similar points and represent them with a single token

Key Questions:

- 1) What makes two points/images/patches similar?
- 2) How do we determine the grouping from pairwise similarities?

Why do we cluster?

Summarizing data

- Visualization
- Patch-based compression

Counting

- Represent a large continuous vector with the cluster number
- Histograms of texture, color, SIFT vectors
- Otherwise impossible with continuous values

Segmentation

Separate the image into different regions

Prediction

- Images in the same cluster may have the same labels

$$\underset{S,\mu_{i,i=1..K}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_i} ||x - \mu_i||^2$$

We wish to partition the data into K sets $S = \{S_1, S_2, ..., S_K\}$ with corresponding centers μ_i

Partition such that variance in each partition is as low as possible

$$\underset{S,\mu_{i,i=1..K}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_i} ||x - \mu_i||^2$$

We wish to partition the data into K sets $S = \{S_1, S_2, ..., S_K\}$ with corresponding centers μ_i

Partition such that variance in each partition is as low as possible

1. Randomly select K centers

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly select K centers

2. Assign each point to nearest center

1. Randomly select K centers

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly select K centers

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster

- 1.Initialize K centers μ_i (usually randomly)
- 2. Assign each point x to its nearest center:

$$S^t = \arg\min_S \sum_{i=1}^K \sum_{x \in S_i} ||x - \mu_i||^2$$
 3.Update cluster centers as the mean of its

members

$$\mu^{t} = \underset{\mu_{i,i=1..K}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2}$$

4. Repeat 2-3 until convergence (t = t+1)

K-means demos

General

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/AppletKM.html

Color clustering

http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/

Kmeans: Matlab code

```
function C = kmeans(X, K)
% Initialize cluster centers to be randomly sampled points
[N, d] = size(X);
rp = randperm(N);
C = X(rp(1:K), :);
lastAssignment = zeros(N, 1);
while true
  % Assign each point to nearest cluster center
  bestAssignment = zeros(N, 1);
  mindist = Inf*ones(N, 1);
  for k = 1:K
    for n = 1:N
      dist = sum((X(n, :) - C(k, :)).^2);
      if dist < mindist(n)</pre>
        mindist(n) = dist;
        bestAssignment(n) = k;
      end
    end
  end
  % break if assignment is unchanged
  if all(bestAssignment==lastAssignment), break; end;
  % Assign each cluster center to mean of points within it
  for k = 1:K
    C(k, :) = mean(X(bestAssignment==k, :));
  end
end
```

K-means: design choices

Initialization

- Randomly select K points as initial cluster centers
- Greedily choose K points to minimize residual

Distance measures

- Traditionally Euclidean, could be others

Optimization

- Converges to a local minimum
- May want to perform multiple restarts (re-initialize and try again)

- Elbow method
- Stop adding clusters when improvement is small

How to choose the number of clusters?

- Validation set
 - Try different number of clusters and look at performance

K-means space partitioning

- Creates a voronoi partitioning
 - Generally convex shaped partitions

Source: The Elements of Statistical Learning, Hastie et al.

Conclusions: K-means

Good

- Finds cluster centers that minimize conditional variance (good representation of data)
- Simple to implement, widespread application

Bad

- Sensitive to starting locations
- Need to choose K
- All clusters have the same parameters (e.g., distance measure is non-adaptive)

K-medoids

- Just like K-means except
 - Represent the cluster with one of its members,
 rather than the mean of its members
 - Choose the member (data point) that minimizes cluster dissimilarity
- Applicable when a mean is not meaningful
 - -Clustering hue values
 - Average of red and green would be yellow-ish
- Less sensitive to outliers

Application of K-means

How to quickly find images in a large database that match a given image region?

Simple idea

See how many SIFT keypoints are close to SIFT keypoints in each other image

Few or No Matches

But this will be really, really slow!

- Cluster the keypoint descriptors into a managable vocabulary size
- Assign each descriptor to a cluster number

Codebook of cluster centers

Assign to nearest codeword Occurrences How many instances of each codeword appeared in this image?

- Each image is represented by a histogram of codeword frequencies
- Similar images should have similar histograms

- How to match?
- First normalize histogram vectors
 - Compute similarity using cosine distance, histogram intersection, inner product, etc.

- How to match?
- First normalize histogram vectors
 - Compute similarity using cosine distance, histogram intersection, inner product, etc.
- What if we're querying from a large dataset?
 - Pairwise comparisons will take forever

- How to match?
- First normalize histogram vectors
 - Compute similarity using cosine distance, histogram intersection, inner product, etc.
- What if we're querying from a large dataset?
 - Pairwise comparisons will take forever
- Are all codewords equally important?

- Inverted Index
 - Analogous to index section of a book
 - Store mapping from codeword to images it appears in
- Fast inner product computation on large datasets:
 - Only operate on images containing relevant codewords

- Inverted Index
 - Analogous to index section of a book
 - Store mapping from codeword to images it appears in
- Fast inner product computation on large datasets:
 - Only operate on images containing relevant codewords

- Inverted Index
 - Analogous to index section of a book
 - Store mapping from codeword to images it appears in
- Fast inner product computation on large datasets:
 - Only operate on images containing relevant codewords

- Inverted Index
 - Analogous to index section of a book
 - Store mapping from codeword to images it appears in
- Fast inner product computation on large datasets:
 - Only operate on images containing relevant codewords

- Inverted Index
 - Analogous to index section of a book
 - Store mapping from codeword to images it appears in
- Fast inner product computation on large datasets:
 - Only operate on images containing relevant codewords

- Term Frequency-Inverse Document Frequency
 - The more documents/images the word appears in, the less informative it is

tf-idf: Term Frequency – Inverse Document Frequency

times word appears in document
$$t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}$$
 # documents that contain the word

words in document

How many codewords for a retrieval task?

- How many codewords for a retrieval task?
 - Fixed dataset, don't worry about overfitting
 - Generally, the more the better
 - Codewords better approximate data

- How many codewords for a retrieval task?
 - Fixed dataset, don't worry about overfitting
 - Generally, the more the better
 - Codewords better approximate data
- Computational cost of too many codewords?

- How many codewords for a retrieval task?
 - Fixed dataset, don't worry about overfitting
 - Generally, the more the better
 - Codewords better approximate data
- Computational cost of too many codewords?
 - C codewords and F unmapped features vectors
 - C*F distance calculations to encode
 - Can we do better?

- Hierarchical K-means
- Iteratively partition space into smaller voronoi partitions
- C codewords, F unmapped features, branching factor K
 - (K*log_KC)*F distance calcualtions to encode

110,000,000Images in5.8 Seconds

This slide and following by David Nister

Performance

ImageSearch at the VizCentre

New query: Browse... Send File
File is 500x320

Top n results of your query.

More words is better

 Say "Every point is its own cluster"

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- 4. Repeat

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- Repeat

How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges

- How to define cluster similarity?
 - Single linkage: closest pair of points

- How to define cluster similarity?
 - Single linkage: closest pair of points
 - Complete linkage: furthest pair of points

- How to define cluster similarity?
 - Single linkage: closest pair of points
 - Complete linkage: furthest pair of points
 - Average linkage: average over all pairs

Source: The Elements of Statistical Learning, Hastie et al.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html

Conclusions: Agglomerative Clustering Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad

- Resulting hierarchy is sensitive to choice of similarity metric
- Still have to choose number of clusters or threshold

Divisive Clustering

- Top down hierarchical clustering
- Start with one large group and recursively split
- Possible splitting criteria:
 - Kmeans with K=2

- Groups points based on pairwise affinities
- Use spectral techniques to determine a partitioning

Build similarity graph

- Build similarity graph
- Find a cut through the graph

Normalized Cuts

- Partition the graph G = (V, E) into two disjoint subsets A and B to:
 - Minimize the weights of the cut edges (dashed red)

$$cut(A,B) = \sum_{u \in A, v \in B} w(u,v)$$

Introduce a normalization factor to avoid tiny partitions

$$Ncut(A, B) = \frac{cut(A, B)}{volume(A)} + \frac{cut(A, B)}{volume(B)}$$

Adapted from: Seitz

Normalized cuts for segmentation

Visual PageRank

- Determining importance by random walk
 - -What's the probability that you will randomly walk to a given node?
 - Create adjacency matrix based on visual similarity
 - Edge weights determine probability of transition
 - Rank by image search results by stationary distribution

Goal: Find 5 clusters


```
function[memb] = spectral cluster(data, c, num clusters)
% a simple implementation for unnormalized spectral clustering
% each row of data should be a data point
%% setup affinity matrix W
num data = size(data,1);
D = zeros(num data, num data);
for i = 1:size(data.1)
  dists = data - repmat(data(i,:), [num_data, 1]);
  D(:,i) = sqrt(sum(dists.*dists, 2));
end
W = \exp(-(D.*D)/c);
W = W-diag(diag(W)); % remove diagonal
%% setup degree matrix G
qs = sum(W, 2);
G = diag(gs);
%% compute laplacian
L = G - W:
[V, D] = eigs(L, num_clusters, 'sm');
memb = kmeans(V, num clusters);
end
```

• Pros:

- Fast for sparse datasets
- Can output partitions with complex shapes

Cons:

- Hard to determine membership of unseen samples
- Computationally expensive for large, dense datasets

How do we cluster?

- K-means
 - Iteratively re-assign points to the nearest cluster center
- Agglomerative clustering
 - Start with each point as its own cluster and iteratively merge the closest clusters
- Graph-based clustering
 - Split the nodes in a graph based on assigned links with similarity weights

Which algorithm to use?

- Quantization/Summarization: K-means
 - -Aims to preserve variance of original data
 - -Can easily assign new point to a cluster

Quantization for computing histograms

Summary of 20,000 photos of Rome using "greedy k-means"

http://grail.cs.washington.edu/projects/canonview/

Which algorithm to use?

- Image segmentation: agglomerative clustering
 - More flexible with distance measures (e.g., can be based on boundary prediction)

-Adapts better to specific data

-Hierarchy can be useful

van de Sande et. al

Which algorithm to use?

- Image segmentation: spectral clustering
 - -Captures pairwise connectivities
 - -Allows for variances within a partition

Things to remember

- K-means useful for summarization, building dictionaries of patches, general clustering
 - Fast object retrieval using visual words and inverse index table
- Agglomerative clustering useful for segmentation, general clustering
- Spectral clustering useful for determining relevance, general clustering, segmentation

Next class

- Gestalt grouping
- Image segmentation
 - -Mean-shift segmentation

-Watershed segmentation

