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This class: structure from motion

* Recap of epipolar geometry
— Depth from two views

* Projective structure from motion

e Affine structure from motion



Recap: Epipoles

Point x in left image corresponds to epipolar line |’ in right
image

Epipolar line passes through the epipole (the intersection of
the cameras’ baseline with the image plane
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Recap: Fundamental Matrix

* Fundamental matrix maps from a point in one
image to a line in the other
'=Fx 1=F'X

* |f xand x’ correspond to the same 3d point X:

x''Fx = ()



Recap: Automatic Estimation of F

Assume we have matched points x= x’ with outliers

8-Point Algorithm for Recovering F

* Correspondence Relation
X"Fx=0

1. Normalize image coordinates
X=Tx X'=T%
2. RANSAC with 8 points

— Randomly sample 8 points

— Compute F via least squares

— Enforce det(E): Oby SVD

— Repeat and choose F with most inliers

3. De-normalize: F=T""FT



Recap

 We can get projection matrices P and P’ up to a
projective ambiguity (see HZ p. 255-256)

P=[110] P'=|[e'LF|e'] e"F=0
See HZ p. 255-256

* Code:
function P = vgg P from F (F)
[U,S,V] = svd(F);
e U(:,3);

P [-vgg contreps (e) *F e];


http://www.robots.ox.ac.uk/~vgg/hzbook/code/

Triangulation: Linear Solution

* Generally, rays C2>x \/\
and C'->x’ will not TS

m—
,I
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“

exactly intersect X
 (Can solve via SVD, C e
finding a least squares
solution to a system of \ /
equations
X =PX 8 X'=P'X
up, —p,
Ax=0 a-| PP
up; —p,
V'py —py |

Further reading: HZ p. 312-313




Triangulation: Linear Solution . - -

u u
Given P, P/, x, X’ X=W V| X'=wV
1. Precondition points and projection 1 1
matrices o
2. Create matrix A Py o]
3. [U,S, V] =svd(A) P=1p: | P'=|p]
4. X=V(:; end) Ps | py
T T
Pros and Cons :Ez _Si
* Works for any number of A= upT p!
corresponding images VT _p!

* Not projectively invariant

Code: http://www.robots.ox.ac.uk/~vga/hzbook/code/vgg multiview/vgg X from xP lin.m



http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m

Triangulation: Non-linear Solution

 Minimize projected error while satisfying
%' Fx=0

cost(X) = dist(x,x)? + dist(x',x")?

Figure source: Robertson and Cipolla (Chpt 13 of Practical Image Processing and Computer Vision)



Triangulation: Non-linear Solution

 Minimize projected error while satisfying

%' FR=0
cost(X) = dist(x,x)? + dist(x',x")?

o,
1= FT:;'T-\“\\RLI{’ x x' e .
X ; >
s . 5 X'
[e(0~_e S 0)
image 1 — . o —2l image 2

* Solution is a 6-degree polynomial of t,
mlnlmIZIHg d(x, 1(t “”_{_d(x I'(1)) V)2

Further reading: HZ p. 318



Projective structure from motion

e Given: mimages of n fixed 3D points
le:PIXj’ i:].,...,m, J::I., ...,n

e Problem: estimate m projection matrices P;and n 3D points
X; from the mn corresponding 2D points x;

Slides from Lana Lazebnik



Projective structure from motion

Given: m images of n fixed 3D points
°Xij=Pin, 1=1,...,m j=1 ..,n

Problem: estimate m projection matrices P,
and n 3D points X; from the mn corresponding
points x;

With no calibration info, cameras and points

can only be recovered up to a 4x4 projective
transformation Q:

e X->QX, P> PQ1l
We can solve for structure and motion when
e 2mn>=11m+3n-15
For two cameras, at least 7 points are needed



Sequential structure from motion

e|nitialize motion (calibration) from
two images using fundamental matrix

e|nitialize structure by triangulation points
eFor each additional view: teesssne
a & & & & & 8 @9
— Determine projection matrix of % T EEEEE
new camera using all the known o EEEEEERE
3D points that are visible in its = e 0000 00
image — calibration/resectioning 8 se R0
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Sequential structure from motion

e|nitialize motion from two images
using fundamental matrix

e|nitialize structure by triangulation

eFor each additional view:

— Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

— Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

cameras

points
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Sequential structure from motion

e|nitialize motion from two images
using fundamental matrix

e|nitialize structure by triangulation points

v

eFor each additional view:

— Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

cameras
* & & & & & 8 @
e e o o 00 00
® o 0 8 880 00
® o o 0 0 00 09
® o o 00 00 00
* & & & & " " 8O

— Refine and extend structure:

compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

eRefine structure and motion: bundle
adjustment
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Bundle adjustment

e Non-linear method for refining structure and motion

e Minimizing reprojection error ,

E(P, X) = Zmlz D(x;,PX;)

X




Auto-calibration

e Auto-calibration: determining intrinsic camera
parameters directly from uncalibrated images

e For example, we can use the constraint that a
moving camera has a fixed intrinsic matrix

— Compute initial projective reconstruction and find 3D
projective transformation matrix Q such that all
camera matrices are in the form P; = K [R; | ti]

e Can use constraints on the form of the calibration
matrix, such as zero skew



Summary so far

* From two images, we can:
— Recover fundamental matrix F
— Recover canonical cameras P and P’ from F

— Estimate 3D positions (if K is known) that correspond
to each pixel

* For a moving camera, we can:
— Initialize by computing F, P, X for two images

— Sequentially add new images, computing new P,
refining X, and adding points

— Auto-calibrate assuming fixed calibration matrix to
upgrade to similarity transform



Recent work in STM

* Reconstruct from many images by efficiently
finding subgraphs
— http://www.cs.cornell.edu/projects/matchminer/
(Lou et al. ECCV 2012)

* Improving efficiency of bundle adjustment or
* http://vision.soic.indiana.edu/projects/disco/ (Crandall et

al. ECCV 2011)

* http://imagine.enpc.fr/”moulonp/publis/iccv2013/index.h
tml (Moulin et al. ICCV 2013)

(best method with software available; also has good overview of recent methods)

Reconstruction of Cornell (Crandall et al. ECCV 2011)



http://www.cs.cornell.edu/projects/matchminer/
http://vision.soic.indiana.edu/projects/disco/
http://imagine.enpc.fr/~moulonp/publis/iccv2013/index.html
https://www.youtube.com/watch?v=hlKlbpHpNEE

3D from multiple images

Building Rome in a Day: Agarwal et al. 2009



Structure from motion under orthographic projection

3D Reconstruction of a Rotating Ping-Pong Ball
eReasonable choice when

eChange in depth of points in scene is much smaller than distance to camera
eCameras do not move towards or away from the scene

C. Tomasi and T. Kanade. Shape and motion from imaqge streams under orthography:

A factorization method. 1JCV, 9(2):137-154, November 1992.



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Orthographic projection for
rotated/translated camera




Affine structure from motion

e Affine projection is a linear mapping + translation in
inhomogeneous coordinates

) bkre

= Y [+ =AX+t
A e y Ay Ay Ay v y /
a, /y/ Broiect
e X rojection of

a world origin

1. We are given corresponding 2D points (x) in several frames

2. We want to estimate the 3D points (X) and the affine
parameters of each camera (A)



Step 1: Simplify by getting rid of t: shift to centroid of
points for each camera

-

\_

N

1Q 1Q 1Q
xij——ink=Aixj+ti—HkZ;(Aixk+ti)=Ai(xj——Zxk

2d normalized point
(observed)

4

Xy =AX, \
T 3d normalized point

Linear (affine) mapping




Suppose we know 3D points and affine
camera parameters ...
then, we can compute the observed 2d
positions of each point

_Al_
A

R D R
A I
L7 tm | 3D Points (3xn)

Camera Parameters (2mx3)



What if we instead observe corresponding
2d image points?

Can we recover the camera parameters and 3d

points?
cameras (2m)
X1 Xy 0 Xy Al
/N /N oy ?
Xop Xy o0 Xyl | Az
D = = X, X,
_Xml Xm2 an_ _Am_
points (n)

What rank is the matrix of 2D points?



Factorizing the measurement matrix

o < |
D = AX
< 3 >

y
Source: M. Hebert

A

2m

.

n



Factorizing the measurement matrix

e Singular value decomposition of D:
n I

< > < >
M Iy H
< > < >
h
2
= X I
y
W
3
M

Source: M. Hebert



Factorizing the measurement matrix

e Singular value decomposition of D:
n I

>
n i
e ey e e
< o = -
h
X n
¥

To reduce to rank 3, we
just need to set all the
singular values to O except

3 for the first 3

< o -
= ral <

A

ra
Y

Source: M. Hebert



Factorizing the measurement matrix

e Obtaining a factorization from SVD:

2m D _

Source: M. Hebert



Factorizing the measurement matrix

e Obtaining a factorization from SVD:

n
3
< < I

Possible decomp051t10n

M U W1f2 Wl.fZ VT

2m D _

Source: M. Hebert



Affine ambiguity

<

e The decomposition is not unique. We get the
same D by using any 3X3 matrix C and applying
the transformations A = AC, X ©>C1X

e That is because we have only an affine
transformation and we have not enforced any
Euclidean constraints (like forcing the image
axes to be perpendicular, for example)

Source: M. Hebert



Eliminating the affine ambiguity

e Orthographic: image axes are perpendicular
and of unit length

/ a,-a,=0
X

|a;? = |ay|>=1

Source: M. Hebert



Solve for orthographic constraints

Three equations for each image |

CCT~ _1 [ ~T |
T~ iy
a,ZCC , =1 where A =l 5T
ilCCT~i2 =0 -

e Solve forL=CCT

* Recover C from L by Cholesky decomposition:
L=CCT

 Update Aand X: A=AC, X =C1X



Algorithm summary

e Given: mimages and n tracked features X;;
e For each image i, center the feature coordinates

e Construct a 2m X n measurement matrix D:
— Columnj contains the projection of pointj in all views
— Row i contains one coordinate of the projections of all
the n points in image i
e Factorize D:
— Compute SVD: D=UW VT
— Create U, by taking the first 3 columns of U
— Create V, by taking the first 3 columns of V
— Create W, by taking the upper left 3 X 3 block of W
e Create the motion (affine) and shape (3D) matrices:
A =U,W.,” and X = W, V,T
e Eliminate affine ambiguity

Source: M. Hebert



Dealing with missing data
e So far, we have assumed that all points are
visible in all views

e In reality, the measurement matrix typically
looks something like this:

cameras

ok

points
One solution:

— solve using a dense submatrix of visible points
— |teratively add new cameras



Reconstruction results (your HW 3.4)

120

C. Tomasi and T. Kanade. Shape and motion from imaqge streams under orthography:

A factorization method. 1JCV, 9(2):137-154, November 1992.



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Further reading

e Short explanation of Affine SfM: class notes
from Lischinksi and Gruber

http://www.cs.huji.ac.il/~csip/sfm.pdf

* Clear explanation of epipolar geometry and
projective StTM

— http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBo
ok/2008-SFM-chapters.pdf



http://www.cs.huji.ac.il/~csip/sfm.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf

Review of Affine SfM from Interest Points

1. Detect interest points (e.g., Harris)

IE(GD) ley(O-D)
L1, (op) 1(op) 1. Image

lLl(G| ’O-D) = g(GI)*|:
derivatives

2. Square of
detM = A4 derivatives
traceM =4, +
it 3. Gaussian ' Vi)
filter g(o;) a

(
I v
(LR
4. Cornerness function — both eigenvalues are strong

har = det[u(c, 0 )] - altrace(u(o, o )21 =
g(1)9(1 ) =[a(L, 1) —alg(15) +9(1)F

5. Non-maxima suppression




Review of Affine SfM from Interest Points

2. Correspondence via Lucas-Kanade tracking

c e . Original (x,y) position
a) Initialize (xy’) = (x,y) |

b) Compute (u,v) by = I(x" yi 1) -1, ¥, 1)

Shle SELIy|[u] _ [ SL
S Lly, SELI, || v ]|~ | S
‘\

2"d moment matrix for feature ol t
patch in first image ISplacemen

c) Shift window by (u, v): x’ =x’+u; y’'=y’+v;
d) Recalculate I,
e) Repeat steps 2-4 until small change

 Use interpolation for subpixel values



Review of Affine SfM from Interest Points

3. Get Affine camera matrix and 3D points using
Tomasi-Kanade factorization

n 1

11 1

Solve for
2k orthographic
constraints




Tips for HW 3

* Problem 1: vanishing points
— Use lots of lines to estimate vanishing points

— For estimation of VP from lots of lines, see single-view
geometry chapter, or use robust estimator of a central
intersection point

— For obtaining intrinsic camera matrix, numerical solver
(e.g., fsolve in matlab) may be helpful

* Problem 3: epipolar geometry

— Use reprojection distance for inlier check (make sure to
compute line to point distance correctly)

* Problem 4: structure from motion
— Use Matlab’s chol and svd

— If you weren’t able to get tracking to work from HW2 can
use provided points



Distance of point to epipolar line

|I=Fx=[a b ]

. x‘=[uv 1]

lau + bv + c|

A ==




The Reading List

* “A computer algorithm for reconstructing a scene from two images”, Longuet-
Higgins, Nature 1981

 “Shape and motion from image streams under orthography:
A factorization method.” C. Tomasi and T. Kanade, IJCV, 9(2):137-154, November
1992

* “In defense of the eight-point algorithm”, Hartley, PAMI 1997

 “An efficient solution to the five-point relative pose problem”, Nister, PAMI 2004

 “Accurate, dense, and robust multiview stereopsis”, Furukawa and Ponce, CVPR
2007

 “Photo tourism: exploring image collections in 3d”, ACM SIGGRAPH 2006

 “Building Rome in a day”, Agarwal et al., ICCV 2009

(also see reading from earlier slides)


http://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
ftp://vista.eng.tau.ac.il/dropbox/SimonKolotov-Thesis/Articles/15.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/cvpr07a.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://research.microsoft.com/pubs/156722/agarwal-rome-cacm11.pdf

Next class

* Clustering and using clustered interest points
for matching images in a large database

— Kevin is lecturing



