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HW 3 is back 

Stats 
• HW1: mean= 93, quartile= 91, median= 97 

• HW2: mean= 89, quartile= 86, median= 96 

• HW3: mean= 94, quartile= 89, median= 99 

 

Summary 
• Most homeworks were basically correct 

• Problem 1b: u2, v2 need to account for scale and orientation 

• Problem 1c: main causes of error were perspective and 
multiple objects 

• Problem 3: some extra credit possible 

• Problem 4: sometimes wanted more detail  

 



This class: Two-View Geometry 

 

• Epipolar geometry 

– Relates cameras from two views 

 

• Stereo depth estimation 

– Recover depth from two images 

 

 

 



Depth from Stereo 

• Goal: recover depth by finding image coordinate x’ 
that corresponds to x 
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Depth from Stereo 

• Goal: recover depth by finding image coordinate x’ that 
corresponds to x 

• Problems 

– Calibration: How do we recover the relation of the cameras (if 
not already known)? 

– Correspondence: How do we search for the matching point x’? 
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Correspondence Problem 

 

• We have two images taken from cameras at different 
positions 

 

• How do we match a point in the first image to a point in the 
second?  What constraints do we have? 



Potential matches for x have to lie on the corresponding line l’. 

Potential matches for x’ have to lie on the corresponding line l. 

Key idea: Epipolar constraint 
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• Epipolar Plane – plane containing baseline (1D family) 

• Epipoles  

= intersections of baseline with image planes  

= projections of the other camera center 

• Baseline – line connecting the two camera centers 

Epipolar geometry: notation 
X 

x x’ 



• Epipolar Lines - intersections of epipolar plane with image 

  planes (always come in corresponding pairs) 

 

Epipolar geometry: notation 
X 

x x’ 

• Epipolar Plane – plane containing baseline (1D family) 

• Epipoles  

= intersections of baseline with image planes  

= projections of the other camera center 

• Baseline – line connecting the two camera centers 



Example: Converging cameras 



Example: Motion parallel to image plane 



Example: Forward motion 

 

 

 What would the epipolar lines look like if the 
camera moves directly forward? 



e 

e’ 

Example: Forward motion 

Epipole has same coordinates in both 

images. 

Points move along lines radiating from e: 

“Focus of expansion” 
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Epipolar constraint: Calibrated case 

 Suppose that we know the intrinsic and extrinsic parameters of the 
cameras.  Then we can… 

1. Convert to normalized coordinates by pre-multiplying all points with the 
inverse of the calibration matrix  

2. Set the first camera’s coordinate system as world coordinates and define 
R and t that map from X’ to X 

XxKx 1  ˆ XxKx 1  ˆHere, x is in homogeneous 

coordinates but X is in 

inhomogeneous coordinates tXRX 



X 

Epipolar constraint: Calibrated case 

R 

t 

 

The vectors   ,   , and       are coplanar  xRˆtx̂

XxKx 1  ˆ XxKx 1  ˆ

tXRX 

txR  ˆ

x x’ 



Essential Matrix 

(Longuet-Higgins, 1981) 

Essential matrix 

0)]ˆ([ˆ  xRtx RtExExT  with0ˆˆ
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x x’ 

 

The vectors   ,   , and       are coplanar  xR tx̂
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x x’ 

Properties of the Essential matrix 

• E x’  is the epipolar line associated with x’ (l = E x’) 
• ETx  is the epipolar line associated with x (l’ = ETx) 
• E e’ = 0   and   ETe = 0 
• E is singular (rank two) 
• E has five degrees of freedom  

– (3 for R, 2 for t because it’s up to a scale)  

0)]ˆ([ˆ  xRtx RtExExT  with0ˆˆ
Drop ^ below to simplify notation 



Epipolar constraint: Uncalibrated case 

• If we don’t know K and K’, then we can 
write the epipolar constraint in terms of 
unknown normalized coordinates: 

X 

x x’ 

0ˆˆ xExT xKxxKx  ˆ,ˆ



The Fundamental Matrix 
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Fundamental Matrix 

(Faugeras and Luong, 1992) 
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Properties of the Fundamental matrix 

1with0   KEKFxFx TT

• F x’  is the epipolar line associated with x’ (l = F x’) 

• FTx  is the epipolar line associated with x (l’ = FTx) 
• F e’ = 0   and   FTe = 0 

• F is singular (rank two): det(F)=0 

• F has seven degrees of freedom 

X 

x x’ 



Estimating the Fundamental Matrix 

 
• 8-point algorithm 

– Least squares solution using SVD on equations from 8 pairs of 
correspondences 

– Enforce det(F)=0 constraint using SVD on F 

 
• 7-point algorithm 

– Use least squares to solve for null space (two vectors) using SVD 
and 7 pairs of correspondences 

– Solve for linear combination of null space vectors that satisfies 
det(F)=0 

 
• Minimize reprojection error 

– Non-linear least squares 



8-point algorithm 

1. Solve a system of homogeneous linear 
equations 

a. Write down the system of equations 

0xx FT



8-point algorithm 

1. Solve a system of homogeneous linear 
equations 

a. Write down the system of equations 

b. Solve f from  Af=0 using SVD 

Matlab:  
[U, S, V] = svd(A); 

f = V(:, end); 

F = reshape(f, [3 3])’; 



Need to enforce singularity constraint 



8-point algorithm 

1. Solve a system of homogeneous linear 
equations 

a. Write down the system of equations 

b. Solve f from  Af=0 using SVD 

 

 
 

2. Resolve det(F) = 0 constraint by SVD 

Matlab:  
[U, S, V] = svd(A); 

f = V(:, end); 

F = reshape(f, [3 3])’; 

Matlab:  
[U, S, V] = svd(F); 

S(3,3) = 0; 

F = U*S*V’; 



8-point algorithm 

1. Solve a system of homogeneous linear equations 
a. Write down the system of equations 

b. Solve f from  Af=0 using SVD 

2. Resolve det(F) = 0 constraint by SVD 

 

Notes: 

• Use RANSAC to deal with outliers (sample 8 points) 

• Solve in normalized coordinates 
– mean=0 

– RMS distance = (1,1,1) 

– just like with estimating the homography for stitching 

 



Comparison of homography estimation and the 
8-point algorithm 

Homography (No Translation) Fundamental Matrix (Translation) 

Assume we have matched points x   x’ with outliers 

  



Homography (No Translation) 

• Correspondence Relation 

 

1. Normalize image 
coordinates 

 

2. RANSAC with 4 points 

 

3. De-normalize:  
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Fundamental Matrix (Translation) 

Comparison of homography estimation and the 
8-point algorithm 

Assume we have matched points x   x’ with outliers 



Comparison of homography estimation and the 
8-point algorithm 

Homography (No Translation) Fundamental Matrix (Translation) 

• Correspondence Relation 

 

1. Normalize image 
coordinates 

 

2. RANSAC with 8 points 

3. Enforce   by SVD 

4. De-normalize: 

 

 

 

• Correspondence Relation 

 

1. Normalize image 
coordinates 

 

2. RANSAC with 4 points 

 

3. De-normalize:  

 

 

 

 

 

 
 

Assume we have matched points x   x’ with outliers 

0HxxHxx  ''

Txx ~ xTx ~

THTH
~1

Txx ~ xTx ~

TFTF
~1

  0
~

det F

0 Fxx
T



7-point algorithm 

Faster (need fewer points) and could be more robust (fewer 

points), but also need to check for degenerate cases 



“Gold standard” algorithm 

• Use 8-point algorithm to get initial value of F 

• Use F to solve for P and P’ (discussed later) 

• Jointly solve for 3d points X and F that 
minimize the squared re-projection error 

 
X 

x x' 

See Algorithm 11.2 and Algorithm 11.3 in HZ (pages 284-285) for details 



Comparison of estimation algorithms 

8-point Normalized 8-point Nonlinear least squares 

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel 

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel 



We can get projection matrices P and P’ up 
to a projective ambiguity 

 

 

 

 

 

 Code: 
 function P = vgg_P_from_F(F) 

 [U,S,V] = svd(F); 

 e = U(:,3); 

 P = [-vgg_contreps(e)*F e]; 

 

 0IP |   e|FeP   0 Fe
T

See HZ p. 255-256 

K’*translation K’*rotation 

http://www.robots.ox.ac.uk/~vgg/hzbook/code/
http://www.robots.ox.ac.uk/~vgg/hzbook/code/


From epipolar geometry to camera 
calibration 
 

• Estimating the fundamental matrix is known as “weak 
calibration” 

 

• If we know the calibration matrices of the two cameras, we 
can estimate the essential matrix: E = KTFK’ 

 

• The essential matrix gives us the relative rotation and 
translation between the cameras, or their extrinsic 
parameters 



Moving on to stereo… 

 Fuse a calibrated binocular stereo pair to 
produce a depth image 

image 1 image 2 

Dense depth map 

Many of these slides adapted from 

Steve Seitz and Lana Lazebnik 



Basic stereo matching algorithm 

• For each pixel in the first image 
– Find corresponding epipolar line in the right image 
– Examine all pixels on the epipolar line and pick the best match 
– Triangulate the matches to get depth information 

 
• Simplest case: epipolar lines are scanlines 

– When does this happen? 



Simplest Case: Parallel images 
• Image planes of cameras are 

parallel to each other and to 
the baseline 

• Camera centers are at same 
height 

• Focal lengths are the same 

 



Simplest Case: Parallel images 
• Image planes of cameras are 

parallel to each other and to 
the baseline 

• Camera centers are at same 
height 

• Focal lengths are the same 

• Then, epipolar lines fall along 
the horizontal scan lines of the 
images 

 



Simplest Case: Parallel images 
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Depth from disparity 
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Stereo image rectification 



Stereo image rectification 

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers 
 

• Pixel motion is horizontal 
after this transformation 
 
 

• Two homographies (3x3 
transform), one for each 
input image reprojection 
 

 C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999. 

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example 

 



Basic stereo matching algorithm 

• If necessary, rectify the two stereo images to transform 
epipolar lines into scanlines 

• For each pixel x in the first image 
– Find corresponding epipolar scanline in the right image 
– Examine all pixels on the scanline and pick the best match x’ 
– Compute disparity x-x’ and set depth(x) = fB/(x-x’) 



Matching cost 

disparity 

Left Right 

scanline 

Correspondence search 

• Slide a window along the right scanline and 
compare contents of that window with the 
reference window in the left image 

• Matching cost: SSD or normalized correlation 



Left Right 

scanline 

Correspondence search 

SSD 



Left Right 

scanline 

Correspondence search 

Norm. corr 



Effect of window size 

W = 3 W = 20 

• Smaller window 
+ More detail 

– More noise 

 

• Larger window 
+ Smoother disparity maps 

– Less detail 

 



Failures of correspondence search 

Textureless surfaces Occlusions, repetition 

Non-Lambertian surfaces, specularities 



Results with window search 

Window-based matching Ground truth 

Data 



How can we improve window-based 
matching? 

 

• So far, matches are independent for each 
point 

 

• What constraints or priors can we add? 



Stereo constraints/priors 

• Uniqueness  
– For any point in one image, there should be at 

most one matching point in the other image 



Stereo constraints/priors 
• Uniqueness  

– For any point in one image, there should be at most 
one matching point in the other image 

• Ordering 
– Corresponding points should be in the same order in 

both views 



Stereo constraints/priors 
• Uniqueness  

– For any point in one image, there should be at most 
one matching point in the other image 

• Ordering 
– Corresponding points should be in the same order in 

both views 

Ordering constraint doesn’t hold 



Priors and constraints 
• Uniqueness  

– For any point in one image, there should be at most one 
matching point in the other image 

• Ordering 
– Corresponding points should be in the same order in both 

views 

• Smoothness 
– We expect disparity values to change slowly (for the most 

part) 



Stereo matching as energy minimization 

I1 
I2 D 

• Energy functions of this form can be minimized 
using graph cuts 

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization 
via Graph Cuts,  PAMI 2001 
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http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Many of these constraints can be encoded in an energy 
function and solved using graph cuts 

Graph cuts Ground truth 

For the latest and greatest:  http://www.middlebury.edu/stereo/  

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy 

Minimization via Graph Cuts,  PAMI 2001 

Before 

http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Summary 

 
• Epipolar geometry 

– Epipoles are intersection of baseline with image planes 
– Matching point in second image is on a line passing through its 

epipole 
– Fundamental matrix maps from a point in one image to a line 

(its epipolar line) in the other 
– Can solve for F given corresponding points (e.g., interest points) 
– Can recover canonical camera matrices from F (with projective 

ambiguity) 

 
• Stereo depth estimation 

– Estimate disparity by finding corresponding points along 
scanlines 

– Depth is inverse to disparity 

 



Next class: structure from motion 


