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HW 3 is back

Stats

HW1: mean= 93, quartile= 91, median= 97
HW2: mean= 89, quartile= 86, median= 96
HW3: mean= 94, quartile= 89, median= 99

Summary

Most homeworks were basically correct
Problem 1b: u2, v2 need to account for scale and orientation

Problem 1c: main causes of error were perspective and
multiple objects

Problem 3: some extra credit possible
Problem 4: sometimes wanted more detail



This class: Two-View Geometry

* Epipolar geometry

— Relates cameras from two views

e Stereo depth estimation

— Recover depth from two images



Depth from Stereo

e Goal: recover depth by finding image coordinate x’
that corresponds to x

X

C Baseline C’
B



Depth from Stereo

e Goal: recover depth by finding image coordinate x’ that
corresponds to x
* Problems

— Calibration: How do we recover the relation of the cameras (if
not already known)?

— Correspondence: How do we search for the matching point x’?

X

C Baseline 'C’
B



Correspondence Problem

 We have two images taken from cameras at different
positions

* How do we match a point in the first image to a point in the
second? What constraints do we have?



Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line /’.

Potential matches for x” have to lie on the corresponding line |.



Epipolar geometry: notation

X

4

. e e¢
O
» Baseline — line connecting the two camera centers

* Epipolar Plane — plane containing baseline (1D family)
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center



Epipolar geometry: notation

X

4

. e e¢
O
» Baseline — line connecting the two camera centers

* Epipolar Plane — plane containing baseline (1D family)
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

* Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)




Example: Converging cameras




Example: Motion parallel to image plane




Example: Forward motion

What would the epipolar lines look like if the
camera moves directly forward?



Example: Forward motion

e

Epipole has same coordinates in both
images.

Points move along lines radiating from e:
“Focus of expansion”




Epipolar constraint: Calibrated case

X

0 o’
Suppose that we know the intrinsic and extrinsic parameters of the
cameras. Then we can...
1. Convert to normalized coordinates by pre-multiplying all points with the
inverse of the calibration matrix

2. Set the first camera’s coordinate system as world coordinates and define
R and t that map from X’ to X

Here, x is in homogeneous )’Z — K_l)( — X )/Z’ — K’_1X’ — X ’

coordinates but X is in ,
inhomogeneous coordinates X — RX +1



Epipolar constraint: Calibrated case

X=Rx"+t

X=K*'x=X R'=K'*'x'=X'
X =RX'+t
The vectors X, t, and RX’ are coplanar




Essential matrix
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R-[tx(RR)]=0 ®mmy K'EX' =0 with E=txR

: .

Essential Matrix
(Longuet-Higgins, 1981)

The vectors X, t, and Rx’ are coplanar



Properties of the Essential matrix

X

(@)

R-[tx(RR)]=0 ®mmy K'EX' =0 with E=txR

Drop ” below to simplify notation

E x’ is the epipolar line associated with x” (/ = E x’)
E'x is the epipolar line associated with x (I’ = E'x)
Ee’=0 and E'e=0

E is singular (rank two)

E has five degrees of freedom
— (3 forR, 2 for t because it’s up to a scale)



Epipolar constraint: Uncalibrated case

e |f we don’t know K and K’, then we can
write the epipolar constraint in terms of
unknown normalized coordinates:

LTEX =0 x=KX, X =K¥



The Fundamental Matrix
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Fundamental Matrix
(Faugeras and Luong, 1992)
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Properties of the Fundamental matrix

O.’

X FX'=0 with F=K TEK'™?

F x’ is the epipolar line associated with x’ (/ =F X’)

Fx is the epipolar line associated with x (/’ = FTX)
Fe'=0 and F'e=0

F is singular (rank two): det(F)=0

F has seven degrees of freedom



Estimating the Fundamental Matrix

e 8-point algorithm
— Least squares solution using SVD on equations from 8 pairs of
correspondences

— Enforce det(F)=0 constraint using SVD on F

e 7-point algorithm
— Use least squares to solve for null space (two vectors) using SVD
and 7 pairs of correspondences

— Solve for linear combination of null space vectors that satisfies
det(F)=0

* Minimize reprojection error
— Non-linear least squares



8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations
X'Fx'=0
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8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

b. Solve f from Af=0 using SVD

Matlab:

[U, S, V] = svd(d);

f V(:, end);

F reshape (£, [3 31)';



Need to enforce singularity constraint

Fundamental matrix has rank 2 : det(F) = 0.
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Left : Uncorrected F — epipolar lines are not coincident.

Right: Epipolar lines from corrected F.



8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

b. Solve f from Af=0 using SVD

Matlab:

[U, S, V] = svd(d);

f V(:, end);

F reshape (£, [3 31)';

2. Resolve det(F) = 0 constraint by SVD

Matlab:

(U, S, V] = svd(F);
S(3,3) = 0;

F = U*xS*V’;



8-point algorithm

1. Solve a system of homogeneous linear equations

a. Write down the system of equations
b. Solve f from Af=0 using SVD

2. Resolve det(F) = 0 constraint by SVD

Notes:
 Use RANSAC to deal with outliers (sample 8 points)

* Solve in normalized coordinates
— mean=0
— RMS distance =(1,1,1)
— just like with estimating the homography for stitching



Comparison of homography estimation and the
8-point algorithm
Assume we have matched points x= X’ with outliers

Homography (No Translation) = Fundamental Matrix (Translation)



Comparison of homography estimation and the

8-point algorithm

Assume we have matched points X« X’ with outliers

Homography (No Translation)

* Correspondence Relation
X'=HX=XxHx =0

1. Normalize image
coordinates
X=Tx X'=T%
2. RANSAC with 4 points

3. De-normalize: H=T""'HT

Fundamental Matrix (Translation)



Comparison of homography estimation and the
8-point algorithm

Assume we have matched points x= x’ with outliers

Homography (No Translation) = Fundamental Matrix (Translation)

* Correspondence Relation * Correspondence Relation

X'= HX = X'xHx = 0 X""TFx =0
1. Normalize image 1. Normalize image
coordinates coordinates
X=Tx X' =T X=Tx X' =T
2. RANSAC with 4 points 2. RANSAC with 8 points

Enforce det(ﬁ)zo by SVD
3. De-normalize: H=T'"*HT 4. De-normalize: F=T"'FT



7-point algorithm

Computation of F from 7 point correspondences

() Form the 7 x O set of equations Af = (.
(i) System has a 2-dimensional solution set.
(i) General solution (use SVD) has form

f=A,+ pt
(iv) In matrix terms

F = \Fp [LEF
(v) Condition det F = 0 gives cubic equation in A and .
(vi) Either one or three real solutions for ratio A : p.

Faster (need fewer points) and could be more robust (fewer
points), but also need to check for degenerate cases



“Gold standard” algorithm

* Use 8-point algorithm to get initial value of F
e Use F to solve for P and P’ (discussed later)

* Jointly solve for 3d points X and F that
minimize the squared re-projection error

X

C e ™ C'

\ /

See Algorithm 11.2 and Algorithm 11.3 in HZ (pages 284-285) for details

»




Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel




We can get projection matrices P and P’ up
to a projective ambiguity

K’ *rotation K’*translation

|
P=[110] P'=[e'[Fle’] ¢"F=0

See HZ p. 255-256

Code:
function P = vgg P from F (F)
[U,S5,V] = svd(F);

e = U(:,3);
P = [-vgg contreps(e)*F e]l;


http://www.robots.ox.ac.uk/~vgg/hzbook/code/
http://www.robots.ox.ac.uk/~vgg/hzbook/code/

From epipolar geometry to camera
calibration

e Estimating the fundamental matrix is known as “weak
calibration”

e |If we know the calibration matrices of the two cameras, we
can estimate the essential matrix: E = KTFK’

e The essential matrix gives us the relative rotation and
translation between the cameras, or their extrinsic
parameters



Moving on to stereo...

Fuse a calibrated binocular stereo pair to
produce a depth image

image 1

Dense depth map

Many of these slides adapted from
Steve Seitz and Lana Lazebnik




Basic stereo matching algorithm
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e For each pixel in the first image
— Find corresponding epipolar line in the right image
— Examine all pixels on the epipolar line and pick the best match
— Triangulate the matches to get depth information

e Simplest case: epipolar lines are scanlines
— When does this happen?



Simplest Case: Parallel images

Image planes of cameras are
parallel to each other and to
the baseline

Camera centers are at same
height

Focal lengths are the same



Simplest Case: Parallel images

Image planes of cameras are
parallel to each other and to
the baseline

Camera centers are at same
height

Focal lengths are the same
Then, epipolar lines fall along

the horizontal scan lines of the
images



Simplest Case: Parallel images

Epipolar constraint:

X' Ex'=0, E=txR

R=1  t=(T,0,0)
0 0 0
E=txR=|{0 0 -T
0T 0
0 0 0 u) (0
uv )0 0 -T|V|=0 (u v 1)-T|=0 Tv=TV
0T 0|1 LTV

The y-coordinates of corresponding points are the same



Depth from disparity

X

O Baseline O’
B

disparity = x—x'= B-1
4

Disparity is inversely proportional to depth.



Stereo image rectification




Stereo image rectification

Reproject image planes

onto a common plane
arallel to the line
etween camera centers

Pixel motion is horizontal
after this transformation

Two homographies (3x3
transform), one for each
iInput image reprojection

C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. [EEE Cont. Computer Vision

and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example




Basic stereo matching algorithm
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e |f necessary, rectify the two stereo images to transform
epipolar lines into scanlines

e For each pixel x in the first image
— Find corresponding epipolar scanline in the right image
— Examine all pixels on the scanline and pick the best match x’
— Compute disparity x-x" and set depth(x) = fB/(x-x’)



Correspondence search

Left | Right

scanline

Matching cost h
/\/\{ disparity

e Slide a window along the right scanline and
compare contents of that window with the
reference window in the left image

e Matching cost: SSD or normalized correlation




Correspondence search

Left Right

scanline

SSD



Correspondence search

Left Right

scanline

Norm. corr



Effect of window size

Smaller window

+ More detail

— More noise

Larger window
+ Smoother disparity maps
— Less detail



Failures of correspondence search
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Non-Lambertian surfaces, specularities




Results with window search

Data

Window-based matching Ground truth




How can we improve window-based
matching?

e So far, matches are independent for each
point

 What constraints or priors can we add?



Stereo constraints/priors

e Uniqueness

— For any point in one image, there should be at
most one matching point in the other image

o Violates uniqueness
constraint

0.9 Left image Right image 0/



Stereo constraints/priors

e Uniqueness

— For any point in one image, there should be at most
one matching point in the other image

e Ordering

— Corresponding points should be in the same order in
both views




Stereo constraints/priors

e Uniqueness

— For any point in one image, there should be at most
one matching point in the other image

e Ordering

— Corresponding points should be in the same order in
both views

Ordering constraint doesn’t hold



Priors and constraints

e Uniqueness

— For any point in one image, there should be at most one
matching point in the other image

e Ordering

— Corresponding points should be in the same order in both
views

e Smoothness

— We expect disparity values to change slowly (for the most
part)



Stereo matching as energy minimization

E — Edata(D; |11 |2) +IBEsmooth(D)

Era = > W, () -W, (i + D)) Egmon= 2|D0O-D)|

| neighborsi, j

e Energy functions of this form can be minimized
using graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization
via Graph Cuts, PAMI 2001



http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Many of these constraints can be encoded in an energy
function and solved using graph cuts

Before

Graph cuts Ground truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy
Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/



http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Summary

* Epipolar geometry
— Epipoles are intersection of baseline with image planes
— Matching point in second image is on a line passing through its
epipole
— Fundamental matrix maps from a point in one image to a line
(its epipolar line) in the other

— Can solve for F given corresponding points (e.g., interest points)

— Can recover canonical camera matrices from F (with projective
ambiguity)

e Stereo depth estimation

— Estimate disparity by finding corresponding points along
scanlines

— Depth is inverse to disparity
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Next class
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