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Measurement goes back to the inception of the
Internet

By the mid-1990s: Internet and its protocols were big,
wild, organic

o Complex system: hard to predict global effects of
Interacting components

® Distributed multi-party system: can’t see everything that’s
happening

Network measurement moved from “just monitoring”
to a science



Example: Model packet arrivals over time at a link

Simplest common model: Poisson process

® Parameter:rate A (mean arrivals per unit time)
® Pr[ time till next arrival > t] = e (exponential dist.)

Properties

® Memoryless: Even knowing entire history gives no clue as
to next arrival time

® Number of arrivals in a given time interval concentrates
around expected value
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Temporal patterns of traffic
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Temporal patterns of traffic
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Temporal patterns of traffic
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Temporal patterns of traffic
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Only a fraction of the system is visible

® For what we can observe, the cause is
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Collateral Damage of Censorship m




DNS injection censorship causes collateral damage,

censoring outside its jurisdiction
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DNS injection censorship causes collateral damage,
censoring outside its jurisdiction
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Need many vantage points to create global picture of
collateral damage!

e How could we do this?

I Passive inspection without suppressing
the legitimate DNS replies
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Figure 1: DNS query process and DNS injection
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267 of resolvers tested have at least some pollution!

Most commonly polluted: names in TLD .de:
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Figure 3: Distribution of affected resolvers for TLD .de.
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Discussion

How could you counteract this censorship!?
How could service providers offer protection?

How could an individual client protect itself?
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Key points \

Centrally managed, consistent across nodes

Pervasive (99.9% polluted)

Deployed at edge of country

At one node

- Load balancing based on (src, dst) IP across 360
processes

- 2800 censored responses per sec




“Our results may overestimate the GFWV injector
locations due to the problem of false negatives”

® |[f packets are dropped, wouldn’t that cause us to miss a
polluted response and underestimate GFWV locations!?

You can hack the Internet to infer surprising
information!

® |ndirect probes via King method

® Traceroutes to pointpoint censor locations
e TTL and IP ID tracking




Discussion

Even more vantage points are possible!
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Platform:“programmatic advertising”

Advertisers bid for placement in client’s requested pages
HTMLS iframe isolated from parent page

® Restricted in various ways (JavaScript making certain
browser-supported API calls like WebSocket, WebRTC)
e ...butallows connections to researcher’s chosen server
Tests JS Website 1
<iframe>
Tatets {gg\ljircl:terises/Regions > AdTag % )
i Operating Systems </iframe>
Website 2
—> Siframes Test and
DSP | rocess [xchange ||| | [AdTag Jel—»| "
</iframe>
\ Y / Website N
TEST DISTRIBUTION CHANNEL Siframes
—>{ || AdTag [€T—>
</iframe>
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High bang for the buck

o $0.10 starting “CPM” (cost per mille) at this Demand
Side Platform (ad broker)

Requires careful attention to ethical concerns

e E.g. may contact illicit sites without client knowing!
® May need to be even more conservative than an IRB

Cost:about $312

Project NodesT /IPs* ASes Countries Time Deployment strategy
AdTag " 7 days Targeted ads
RIPE Atlas 9,300 ,3UU 181 6 years Testbed / Dedicated node
Archipelago 1817 146 60 10 years Testbed / Dedicated node
Netalyzr 2,200,000* 14,500 196 6 years Crowdsourcing / Mobile app, browser applet
Luminati 1,300,000* 14,700 172 5 days P2P-based VPNs

Table 1: Comparison of a global AdTag campaign with previous studies in terms of network coverage, measurement
duration, and deployment strategy. (*: number of sessions; : pumber of nodes)




A word of caution

€ € The most important difference between
computer science and other scientific fields
is that: We build what we measure. Hence,
we are never quite sure whether the
behavior we observe, the bounds we
encounter, the princibles we teach, are truly
principles from which we can build a body
of theory, or merely artifacts of our
creations. ... this is a difference that should,
to use the vernacular, ‘'scare the bloody hell

out of us!’ )

— John Day



Announcements

Next time: Future ISP networks

Assignment 2 due Friday | lam



