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Science of network measurement

Measurement goes back to the inception of the 
Internet

By the mid-1990s: Internet and its protocols were big, 
wild, organic

• Complex system: hard to predict global effects of 
interacting components

• Distributed multi-party system: can’t see everything that’s 
happening

Network measurement moved from “just monitoring” 
to a science



Challenge #1: Emergent behavior

Example: Model packet arrivals over time at a link

Simplest common model: Poisson process

• Parameter: rate λ   (mean arrivals per unit time)
• Pr[ time till next arrival > t ] = e-λt    (exponential dist.)

Properties

• Memoryless: Even knowing entire history gives no clue as 
to next arrival time

• Number of arrivals in a given time interval concentrates 
around expected value



Temporal patterns of traffic

“On the Self-Similar Nature of Ethernet Traffic”
Leland, Taqqu, Willinger, Wilson, SIGCOMM 1993
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
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In other words, X is exactly self-similar if the aggregated
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0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated

ACM SIGCOMM –206– Computer Communication Review



Temporal patterns of traffic

“On the Self-Similar Nature of Ethernet Traffic”
Leland, Taqqu, Willinger, Wilson, SIGCOMM 1993

0 100 200 300 400 500 600 700 800 900 1000

0

20000    

40000    

60000    

Time Units, Unit = 100 Seconds  (a)

P
a

c
k
e

ts
/T

im
e

 U
n

it

0 100 200 300 400 500 600 700 800 900 1000

0

2000   

4000   

6000   

Time Units, Unit = 10 Seconds  (b)

P
a

c
k
e

ts
/T

im
e

 U
n

it

0 100 200 300 400 500 600 700 800 900 1000

0

200 

400 

600 

800 

Time Units, Unit = 1 Second  (c)

P
a

c
k
e

ts
/T

im
e

 U
n

it

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100 

Time Units, Unit = 0.1 Second  (d)

P
a

c
k
e

ts
/T

im
e

 U
n

it

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

Time Units, Unit = 0.01 Second  (e)

P
a

c
k
e

ts
/T

im
e

 U
n

it

Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)
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2], and an
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the form
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−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)
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the form
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where 0 < β < 1 (here and below, a 1, a 2,
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of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
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(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
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self-similarity parameter H = 1 − β/2 if the corresponding
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X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Challenge #2: Lack of visibility

Only a fraction of the system is visible

• For what we can observe, the cause is 
not obvious

Foundational work by Vern Paxson in 
the mid 1990s

• “End-to-End Routing Behavior in the 
Internet”, SIGCOMM 1996

• Loops, asymmetry, instability
• Established Internet measurement 

methodology:  “looking inside the 
black box” via end-to-end 
measurements

Name Description

adv Advanced Network & Services, Armonk, NY
austr University of Melbourne, Australia
austr2 University of Newcastle, Australia
batman National Center for Atmospheric Research, Boulder, CO
bnl Brookhaven National Lab, NY
bsdi Berkeley Software Design, Colorado Springs, CO
connix Caravela Software, Middlefield, CT
harv Harvard University, Cambridge, MA
inria INRIA, Sophia, France
korea Pohang Institute of Science and Technology, South Korea
lbl Lawrence Berkeley Lab, CA
lbli LBL computer connected via ISDN, CA
mid MIDnet, Lincoln, NE
mit Massachusetts Institute of Technology, Cambridge, MA
ncar National Center for Atmospheric Research, Boulder, CO
near NEARnet, Cambridge, Massachusetts
nrao National Radio Astronomy Observatory, Charlottesville, VA
oce Oce-van der Grinten, Venlo, The Netherlands
panix Public Access Networks Corporation, New York, NY
pubnix Pix Technologies Corp., Fairfax, VA
rain RAINet, Portland, Oregon
sandia Sandia National Lab, Livermore, CA
sdsc San Diego Supercomputer Center, CA
sintef1 University of Trondheim, Norway
sintef2 University of Trondheim, Norway
sri SRI International, Menlo Park, CA
ucl University College, London, U.K.
ucla University of California, Los Angeles
ucol University of Colorado, Boulder
ukc University of Kent, Canterbury, U.K.
umann University of Mannheim, Germany
umont University of Montreal, Canada
unij University of Nijmegen, The Netherlands
usc University of Southern California, Los Angeles
ustutt University of Stuttgart, Germany
wustl Washington University, St. Louis, MO
xor XOR Network Engineering, East Boulder, CO

Table 1: Sites participating in the study

measurement in real-time and repeat portions (or all) of the mea-
surement as necessary in order to resolve ambiguities.

5 The Raw Routing Data

5.1 Participating sites

The first routing experiment was conducted from November 8
through December 24, 1994. During this time, we attempted
6,991 traceroutes between 27 sites. We refer to this col-
lection of measurements as . The second experiment, ,
went from November 3 through December 21, 1995. It in-
cluded 37,097 attempted traceroutes between 33 sites. Both
datasets are available from the Internet Traffic Archive, http:
//town.hall.org/Archives/pub/ITA/. Table 1 lists the
sites participating in our study, giving the abbreviation we will use
to refer to the site, a brief description of the site, and its location.

5.2 Measurement failures

In the two experiments, between 5–8% of the traceroutes
failed outright (i.e., we were unable to contact the remote NPD,
execute traceroute and retrieve its output). Almost all of the
failures were due to an inability of npd control to contact the re-
mote NPD.

For our analysis, the effect of these contact failures will lead to
a bias towards underestimating Internet connectivity failures, be-
cause sometimes the failure to contact the remote daemon will re-
sult in losing an opportunity to observe a lack of connectivity be-
tween that site and another remote site ( 4.2).

When conducting the measurements, however, we somewhat
corrected for this underestimation by pairing each measurement of
the virtual path with a measurement of the virtual path

, increasing the likelihood of observing such failures. In
only 5% of the measurement failures was npd control also un-
able to contact the other host of the measurement pair.

6 Routing pathologies
We begin our analysis by classifying occurrences of routing
pathologies—those routes that exhibited either clear, sub-standard
performance, or out-and-out broken behavior.

6.1 Routing loops
In this section we discuss the pathology of a routing loop. For our
discussion we distinguish between three types of loops: a forward-
ing loop, in which packets forwarded by a router eventually return
to the router; an information loop, in which a router acts on con-
nectivity information derived from information it itself provided
earlier; and a traceroute loop, in which a traceroute mea-
surement reports the same sequence of routers multiple times. For
our study, all we can observe directly are traceroute loops, and
it is possible for a traceroute loop to reflect not a forwarding
loop but instead an upstream routing change that happens to add
enough upstream hops that the traceroute observes the same
sequence of routers as previously. Because of this potential ambi-
guity, we require a traceroute measurement to show the same
sequence of routers at least three times in order to be assured that
the observation is of a forwarding loop.

In general, routing algorithms are designed to avoid forwarding
loops, provided all of the routers in the network share a consistent
view of the present connectivity. Thus, loops are apt to form when
the network experiences a change in connectivity and that change is
not immediately propagated to all of the routers [Hu95]. One hopes
that forwarding loops resolve themselves quickly, as they represent
a complete connectivity failure.

While some researchers have downplayed the significance of
temporary forwarding loops [MRR80], others have noted that loops
can rapidly lead to congestion as a router is flooded with multiple
copies of each packet it forwards [ZG-LA92], and minimizing loops
is a major Internet design goal [Li89]. To this end, BGP is designed
to never allow the creation of inter-AS forwarding loops, which it
accomplishes by tagging all routing information with the AS path
over which it has traversed.

Persistent routing loops. For our analysis, we considered
any traceroute showing a loop unresolved by end of the
traceroute as a “persistent loop.” 10 traceroutes in

exhibited persistent routing loops. See [Pa96] for details.
In , 50 traceroutes showed persistent loops. Due to 's

higher sampling frequency, for some of these loops we can place
upper bounds on how long they persisted, by looking for surround-
ing measurements between the same hosts that do not show the

This technique is based on the observation that forwarding loops occur
only in the wake of a routing information loop.
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ABSTRACT
Some ISPs and governments (most notably the Great Fire-

wall of China) use DNS injection to block access to “un-

wanted” websites. The censorship tools inspect DNS queries

near the ISP’s boundary routers for sensitive domain key-

words and injecting forged DNS responses, blocking the users

from accessing censored sites, such as twitter.com and facebook.

com. Unfortunately this causes large scale collateral dam-

age, affecting communication beyond the censored networks

when outside DNS traffic traverses censored links. In this

paper, we analyze the causes of the collateral damages com-

prehensively and measure the Internet to identify the in-

jecting activities and their effect. We find 39 ASes in China

injecting forged replies even for transit DNS traffic, and 26%

of 43,000 measured open resolvers outside China, distributed

in 109 countries, may suffer some collateral damage. Differ-

ent from previous work, we find that most collateral dam-

age arises from resolvers querying TLD name servers who’s

transit passes through China rather than effects due to root

servers (F, I, J) located in China.Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General
General TermsMeasurement, Security
Keywords
DNS, packet injection, Internet measurement, Internet cen-

sorship, Great Firewall of China, collateral damage
1. INTRODUCTIONSince DNS is essential for effectively all communication, it

is a common target for censorship systems. The most popu-

lar approach involves packet injection: a censorship system

observes DNS requests and injects fake replies to block com-

munication. Yet censorship systems may affect more than

just the censored network.∗We use pseudonyms to protect the authors.

†Corresponding author.

As a concrete example, consider a query for www.epochtimes.

de from a US user, using a US-based DNS resolver. The US

resolver will need to contact one of the DNS TLD author-

ities for .de, located in Germany. If the path to the se-

lected TLD authority passes through China, then the Chi-

nese Great Firewall will see this query and inject a reply

which the US resolver will accept, cache, and return to the

user, preventing the user from contacting the proper web

server.
Packet injection’s popularity as a censorship mechanism

arises from its ease of implementation. The censor needs to

only monitor traffic and inject responses. Thus network op-

erators have used TCP packet injection to block Peer to Peer

traffic [4] or undesirable web content [3], and the Chinese

Great Firewall and others use DNS packet injection to block

entire sites. While some ISPs are content to block users in-

side their network from accessing “unwanted” websites using

DNS injection, they may not know that their DNS injecting

activities potentially affect users outside their network. In

the motivating example of contacting www.epochtimes.de

from the US, the collateral damage was due solely to the

DNS request passing through a censored network as tracer-

oute verified that the path for HTTP traffic did not pass

through a censored network.Although the DNS community has perceived such collat-

eral damage, they only found it happened when resolvers

outside contacted DNS authorities inside the censored coun-

try [1], with the most famous examples involving queries

from Chile that found themselves routed to the Chinese I-

root server [6].However, the range of the potential damage is actually

much more complicated. We find that even querying name

servers unrelated to censored countries, resolvers outside

could still suffer from collateral damage caused by DNS in-

jection activities from censored transit networks.

In this paper, we make a comprehensive study of the col-

lateral damage caused by DNS injection. Specifically, we try

to answer the following three questions:• How does this collateral damage occur?• Which ISPs are adopting DNS injection?• What names and resolvers are affected?

[Computer Communication Review 2011]



Collateral Damage

DNS injection censorship causes collateral damage, 
censoring outside its jurisdiction

Rank Region Affected Resolvers Affected Rate

1 IR 157 88.20%
2 MY 163 85.34%
3 KR 198 79.20%
4 HK 403 74.63%
5 TW 1146 66.13%
6 IN 250 60.10%
10 IT 392 37.23%
14 JP 1437 29.39%
16 RU 835 25.26%
18 US 3032 24.22%
20 CA 272 23.65%
25 DE 470 20.04%

Total 109 Affected Regions

Table 5: In different regions, the open resolvers af-
fected because of querying for blacklisted keywords.

DNS Level Affected Resolvers Affected Rate

Root 1 0.002%
TLD 11573 26.40%

Authoritative 99 0.23%

Table 6: Number of affected resolvers in different
level.

fected resolvers. The second one, .xn--3eb707e, shares the
same name infrastructure with the .kr ccTLD.
It seems strange that the number of affected resolvers

for .iq, .co, .travel, .no, .pl, .nz, .hk, .jp, .uk,
.fi, .ca are all around 90. We check the location of their
name servers and find that it is not a coincidence: UltraDNS
(AS 12008) hosts some authority servers for all these TLDs
except .hk.
Limited by space, we only present the detailed information

for the most affected TLD: .de. As shown in Figure 3, over
70% of the experimental resolvers from KR suffer collateral
damage for .de queries, such as www.epochtimes.de.
Similar to probing TLD servers, we finally constructed

queries like KEYWORD.NXDOMAIN.authority.tld (e.g., www.
twitter.com.abssdfds.ibm.com) to explore paths from the
resolvers to authoritative name servers for several domains.
We select 82 top popular domains from Alexa sites (out-

side of China). We see that queries for six domains could
potentially trigger censorship on 30–90 resolvers, as shown in
Figure 4. Although the numbers of affected domains and re-
solvers seem small comparing to the results of TLDs testing,
this may only represent the tip of the iceberg, considering
the over-zealous pattern matching adopt by censorship and
the huge number of domain names in the whole Internet.

4.4 Further Analysis on Measurement Results
Table 5 and Table 6 give the total number of resolvers

suffering from collateral damage because of paths to root,
TLDs and the top 82 domain names. 26.41% of the exper-
imental resolvers are polluted, and they are distributed in
109 regions. The most affected country is Iran, 88.20% of
its experimental resolvers suffer the collateral damage.
Unlike the worries presented by Mauricio [8], Table 6

shows that the primary damage arises from censored transit
paths to TLD servers. Our result partly confirms Mauricio
[8]’s claim that the operator of I-Root server, Netnod, “with-

drew their anycasted routes until their host (CNNIC) could
secure assurances that the tampering would not recur”. Be-
sides, since the roots themselves are highly anycasted, it is
unlikely that a path to a root needs to go through China.

To find out why the collateral damage happened, we con-
struct the topology of ASes neighboring CNNIC in Figure 5
using the data from the project of Internet Topology Col-
lection [10]. According to Figure 5, AS31529, which is the
AS of a .de TLD server (194.0.0.53), is a customer of CN-
NIC AS24151. Meanwhile, AS24151 is also customers of
other foreign ASes. As a result, traffic from foreign ASes
to .de TLD server may pass through China, and then the
collateral damage happens. We illustrate this with the fol-
lowing case. We choose a node from lookinglass [1], which
lies in the same AS (AS39737) in Romania as an affected
resolver (89.37.120.6) does, and review the AS paths to
the 6 TLD servers for .de from BGP data. Finally, we find
that the AS path from AS39737 to a .de TLD server (a.
nic.de,194.0.0.53) goes through a censoring AS (AS7497)
in China, which is the cause of the collateral damage on this
resolver. We show the AS path in Figure 5: 39737, 6939,
10026, 7497, 24151, 31529.
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(CN)
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 DENIC eG
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Figure 5: Topology of ASes neighboring CNNIC

5. DISCUSSION
The cause of the collateral damage presented in this paper

is the censorship activities by ISPs providing transit, not
just connectivity. We hope that this paper will raise the
awareness of the collateral damage caused by indiscriminate
DNS censorship.

To avoid the collateral damage while keeping the censor-
ship policies, one possibility would be for the ISPs to apply
more strict checks to avoid polluting transit queries. If ISPs
only censor the customers, not the transit, they may pre-
vent the collateral damage. However, because of the closed
nature of many censorship activities (such as the DNS fil-
ter in China), it is unclear to us if there are any technical
challenges for those ISPs to implement such policy or not.

If the censoring ISPs do not change their current practice
of DNS-injection, another possibility is for neighboring ISPs
to consider them invalid for transit: the neighbors should
prefer alternate paths and not advertise transit whenever
an alternate path exists. In particular, the TLD operators
should monitor their peering arrangements to check for cen-
sored paths.
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Collateral Damage

DNS injection censorship causes collateral damage, 
censoring outside its jurisdiction

Causes

• DNS lookup involves 
contacting multiple 
servers iteratively

• Each step may be 
anycasted to many 
potential servers

• Any intermediate server 
or transit path could 
cause injected 
censorship

Rank Region Affected Resolvers Affected Rate

1 IR 157 88.20%
2 MY 163 85.34%
3 KR 198 79.20%
4 HK 403 74.63%
5 TW 1146 66.13%
6 IN 250 60.10%
10 IT 392 37.23%
14 JP 1437 29.39%
16 RU 835 25.26%
18 US 3032 24.22%
20 CA 272 23.65%
25 DE 470 20.04%

Total 109 Affected Regions

Table 5: In different regions, the open resolvers af-
fected because of querying for blacklisted keywords.

DNS Level Affected Resolvers Affected Rate

Root 1 0.002%
TLD 11573 26.40%

Authoritative 99 0.23%

Table 6: Number of affected resolvers in different
level.

fected resolvers. The second one, .xn--3eb707e, shares the
same name infrastructure with the .kr ccTLD.
It seems strange that the number of affected resolvers

for .iq, .co, .travel, .no, .pl, .nz, .hk, .jp, .uk,
.fi, .ca are all around 90. We check the location of their
name servers and find that it is not a coincidence: UltraDNS
(AS 12008) hosts some authority servers for all these TLDs
except .hk.
Limited by space, we only present the detailed information

for the most affected TLD: .de. As shown in Figure 3, over
70% of the experimental resolvers from KR suffer collateral
damage for .de queries, such as www.epochtimes.de.
Similar to probing TLD servers, we finally constructed

queries like KEYWORD.NXDOMAIN.authority.tld (e.g., www.
twitter.com.abssdfds.ibm.com) to explore paths from the
resolvers to authoritative name servers for several domains.
We select 82 top popular domains from Alexa sites (out-

side of China). We see that queries for six domains could
potentially trigger censorship on 30–90 resolvers, as shown in
Figure 4. Although the numbers of affected domains and re-
solvers seem small comparing to the results of TLDs testing,
this may only represent the tip of the iceberg, considering
the over-zealous pattern matching adopt by censorship and
the huge number of domain names in the whole Internet.

4.4 Further Analysis on Measurement Results
Table 5 and Table 6 give the total number of resolvers

suffering from collateral damage because of paths to root,
TLDs and the top 82 domain names. 26.41% of the exper-
imental resolvers are polluted, and they are distributed in
109 regions. The most affected country is Iran, 88.20% of
its experimental resolvers suffer the collateral damage.
Unlike the worries presented by Mauricio [8], Table 6

shows that the primary damage arises from censored transit
paths to TLD servers. Our result partly confirms Mauricio
[8]’s claim that the operator of I-Root server, Netnod, “with-

drew their anycasted routes until their host (CNNIC) could
secure assurances that the tampering would not recur”. Be-
sides, since the roots themselves are highly anycasted, it is
unlikely that a path to a root needs to go through China.

To find out why the collateral damage happened, we con-
struct the topology of ASes neighboring CNNIC in Figure 5
using the data from the project of Internet Topology Col-
lection [10]. According to Figure 5, AS31529, which is the
AS of a .de TLD server (194.0.0.53), is a customer of CN-
NIC AS24151. Meanwhile, AS24151 is also customers of
other foreign ASes. As a result, traffic from foreign ASes
to .de TLD server may pass through China, and then the
collateral damage happens. We illustrate this with the fol-
lowing case. We choose a node from lookinglass [1], which
lies in the same AS (AS39737) in Romania as an affected
resolver (89.37.120.6) does, and review the AS paths to
the 6 TLD servers for .de from BGP data. Finally, we find
that the AS path from AS39737 to a .de TLD server (a.
nic.de,194.0.0.53) goes through a censoring AS (AS7497)
in China, which is the cause of the collateral damage on this
resolver. We show the AS path in Figure 5: 39737, 6939,
10026, 7497, 24151, 31529.

AS 24151
CNNIC CRITICAL-AP

(CN)

AS 31529
 DENIC eG

(DE)

AS 23596
EDNSKR1 NIDA

KR
AS 24136

 CNNIC-AP

AS3356 
(LEVEL3,US)

 AS3549 
(GBLX Global 
Crossing, US) AS4635 

HKIX-
RS1 HK

AS4641 
ASN-

CUHKNET 
HK

ASes in 
China...

AS4847
 CNIX-AP

AS7497 
CSTNET-AS-

AP(CN)

AS8763 DENIC-
AS DENIC eG

DE

AS9700 
KRNIC-AS-

KR 

AS 10026 
Pacnet 

Global (HK)

AS 6939
Hurricane 

Electric (US)

AS 39737
Net Vision 

Telcom SRL 
(RO)

AS 1280
 (ISC, US)

Figure 5: Topology of ASes neighboring CNNIC

5. DISCUSSION
The cause of the collateral damage presented in this paper

is the censorship activities by ISPs providing transit, not
just connectivity. We hope that this paper will raise the
awareness of the collateral damage caused by indiscriminate
DNS censorship.

To avoid the collateral damage while keeping the censor-
ship policies, one possibility would be for the ISPs to apply
more strict checks to avoid polluting transit queries. If ISPs
only censor the customers, not the transit, they may pre-
vent the collateral damage. However, because of the closed
nature of many censorship activities (such as the DNS fil-
ter in China), it is unclear to us if there are any technical
challenges for those ISPs to implement such policy or not.

If the censoring ISPs do not change their current practice
of DNS-injection, another possibility is for neighboring ISPs
to consider them invalid for transit: the neighbors should
prefer alternate paths and not advertise transit whenever
an alternate path exists. In particular, the TLD operators
should monitor their peering arrangements to check for cen-
sored paths.
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Vantage points

Need many vantage points to create global picture of 
collateral damage!

• How could we do this?

in [3], we find that the most common source of pollution
exists on the paths between the resolvers and the TLD au-
thorities, particularly the paths to .de and .kr authorities.
The rest of the paper is organized as follows. In § 2 we

give a brief introduction to DNS resolution and how packet
injection can disrupt the process. Then we analyze the cause
for the collateral damage caused by DNS injection in § 3. In
§ 4 we describe our experiment methodologies and present
the experiment results. We have a discussion in § 5 before
concluding in § 6.

2. BACKGROUND
The standard DNS resolution process [11, 12, 7] consists

of several pieces, including the stub resolver on the user’s
computer, the recursive resolver, the root servers (“.”), Top
Level Domain (TLD) authorities, and the site’s authority
name servers. A typical DNS query process that involves all
these servers is illustrated in Figure 1.
If an attacker (e.g. a hacker, an ISP, or a government) has

the ability of monitoring any of the steps in the DNS query
process, he can inject an additional DNS response(without
suppressing the legitimate one), replying with a forged re-
sponse which has the appropriate query question and ID but
with a bogus DNS answer, mapping the queried domain to
either an invalid IP address or an IP address controlled by
himself. In the absence of DNSSEC validation, the resolver
will generally accept the faked answer because it arrives ear-
lier than the real one, and, as a result, the access to the
sensitive site will be blocked or redirected.
The ease of this attack makes it naturally an effective

censorship mechanism. It is well known that the GFC uses
this mechanism. A past survey queried more than 800 DNS
resolvers in China and found that 99.88% of them were
affected by the GFC [9]. And [9] also found that GFC
sent tampered DNS responses based on keywords in the do-
main name. For example, it injects a faked reply for “twit-
ter.computer.com” because “twitter.com” is a blocked do-
main name.
Unfortunately, the censor appears to over-react to tran-

sit DNS queries as well. It inspects all of the transit DNS
queries and injects bogus responses, causing collateral dam-
age to non-censored networks. The collateral damage of
GFC was first discussed in a DNS operation mailing list
when a Chilean operator found that queries from Chile and
California to I.RootServers.NET sometimes experienced DNS
pollution [8]. In [3], Brown et al. analyzed this incident and
determined that this kind of pollution could affect many
countries because three root DNS server nodes (F, I, and J)
have anycast instances in China. They believed that after
Netnod withdrew the anycast routes for the Chinese I-root
name server from CNNIC, the collateral damage should dis-
appear. However, our work showed this was not the case.
We discovered quantities of collateral damage for TLD au-
thorities through dedicated measurement experiments.

3. CAUSES OF COLLATERAL DAMAGE
We assume that DNS censors use over-zealous pattern

matching DNS requests, like GFC. Although pattern match-
ing causes a lot of collateral damages(i.e., blocking “twit-
ter.computer.com” because of “twitter.com”), in this paper
we focus only on those because of transit DNS queries.
Collateral damage occurs when a DNS query from a recur-
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(Cache Server)Authoritative 

Name Server
ns.sensitive.com

TLD Server
ns.com

DNS injector
(ISP, Gov.; hacker)

4. www.sensitive.com?
User(Stub Resolver)

2. www.sensitive.com?3. www.sensitive.com?

1. www.sensitive.com?

Root Server
"."

Passive inspection without suppressing 
the legitimate DNS replies

Figure 1: DNS query process and DNS injection

sive resolver enters a censored network, causing the censor-
ship mechanism to react. Although intuition suggests that
this would be a rare occurrence, there exists several factors
which may cause the censor to receive and react to DNS
queries from outsiders.

Iterative Queries: A recursive resolver does not send
limited queries, such as asking the root for just the name
servers of the desired TLD. Instead, if it lacks cache entries
for the TLD authorities, it sends query with entire domain
name to a root server. Similarly, the resolver sends the query
with entire domain name to a TLD authority if there are no
cache entries for the domain’s authority.

This may be further complicated by “out-of-bailiwick” [2]
NS records. A fairly complicated but not uncommon example
is given below. Suppose the DNS authorities for example.
com are ns1.example.net In the absence of cached data, a
resolver will handle a query of www.example.com by first
querying a root server and later a .com TLD authority. The
reply from the .com TLD will now cause the resolver to
query for ns1.example.net before resuming the query for
www.example.com. Thus the resolver will query for www.
example.com three times: to a root server, to a .com TLD
server, and to ns1.example.net, and at least two queries
for ns1.example.net: to a root and to a .net TLD server.
Thus a simple “lookup” may generate numerous queries, and
the disruption of any by censorship would cause resolution
to fail.

Redundant Servers and Anycast: Most DNS deploy-
ments use multiple servers in multiple networks to increase
reliability [4], and the actual selection of particular author-
ities by a recursive resolver is a complex topic, with name
servers using various algorithms. Thus, with 13 different
roots and 13 servers for the global TLD .com, a resolver
may experience collateral damage if a path to any one of
these 26 IPs passes into a censored network.

Further complicating the picture is the use of anycast [13]
DNS authorities, where a single IP address may represent a
widely deployed system of servers. Two resolvers in different
networks may reach different physical servers, along very
different paths, even though they are attempting to contact
the same IP address.

Censored Transit and Dynamic Routing: The paths
from the resolver to the authorities is dynamic, routing through
a series of Autonomous Systems (AS). If one transit AS im-
plements censorship, then all traffic which passes through
that AS experiences censorship, even if both the source and
destination are in non-censored networks. Routing changes

ACM SIGCOMM Computer Communication Review 23 Volume 42, Number 3, July 2012

43,842 of these
in 173 countries

[Figure from Anon, CCR’11]



Results

26% of resolvers tested have at least some pollution!

Most commonly polluted: names in TLD .de:

AS Number AS Name Router IPs

4134 Chinanet 1952
4837 CNCGROUP China169 Backbone 489
4812 China Telecom (Group) 289
9394 CHINA RAILWAY Internet(CRNET) 78
9929 China Netcom Corp. 67
4808 CNCGROUP IP network China169 Beijing Province Network 55
9808 Guangdong Mobile Communication Co.Ltd. 38
17633 ASN for Shandong Provincial Net of CT 25
4538 China Education and Research Network Center 22
17816 China Unicom IP network China169 Guangdong province 19

Total 39 ASes

Table 3: Information of top 10 injecting ASes.
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Figure 3: Distribution of affected resolvers for TLD .de.

.NXNAME.authority.tld (e.g., www.twitter.com.abssdfds.
ibm.com) to explore paths from the resolvers to authorita-
tive name servers for several domains.
We selected the top 82 popular domains from alexa.com,

after excluding 18 Chinese sites. We see that queries for
six domains could potentially trigger censorship on 30–90
resolvers, as shown in Figure 4. Although the number of
affected domains and resolvers seem small comparing to the
results of TLDs testing, this may represent the tip of the
iceberg, considering the huge number of domain names of
the whole Internet.

4.4 Further Analysis onMeasurement Results
Table 5 gives the total number of resolvers suffering from

collateral damage for root, TLDs and the top 82 domain
names. 26.41% of experimental resolvers are polluted, dis-
tributed in 109 regions.
Unlike the worries presented by Mauricio [6], our mea-

surement shows that the primary damage source arises from
censored transit paths to TLD servers. According to Mauri-
cio [6], the operator of I-Root server, Netnod, “withdrew
their anycasted routes until their host (CNNIC) could se-
cure assurances that the tampering would not recur”. Our
result partly confirmed their action. Since the roots them-
selves are highly anycasted, its unlikely that a path to a root
needs to transit China.
In contrast, apparently a large amount of transit from the

United States to Germany passes through China, resulting
in the significant collateral damage to the .de ccTLD.

Rank Region Affected Resolver Affected Rate

1 IR 157 88.20%
2 MY 163 85.34%
3 KR 198 79.20%
4 HK 403 74.63%
5 TW 1146 66.13%
6 IN 250 60.10%
10 IT 392 37.23%
14 JP 1437 29.39%
16 RU 835 25.26%
18 US 3032 24.22%
20 CA 272 23.65%
25 DE 470 20.04%

Total 109 Affected Regions

Table 5: Collateral damage rate of different regions.

5. DISCUSSION
The cause of the collateral damage presented in this paper

is the censorship activities by ISPs providing transit, not just
connectivity. Although we’d hope otherwise, we believe it is
naive to expect these ISPs to stop or avoid to applying DNS-
injection based censorship activities, due to the significant
social and political factors these ISPs face.

One possibility would be for the ISPs to apply more strict
checks to avoid polluting transit queries. Although we do
not support broad censorship activities, we hope that this

[Figure from Anon, CCR’11]



Discussion

How could you counteract this censorship?

How could service providers offer protection?

How could an individual client protect itself?



Towards a Comprehensive Picture

Key points

• Centrally managed, consistent across nodes
• Pervasive (99.9% polluted)
• Deployed at edge of country
• At one node

- Load balancing based on (src, dst) IP across 360 
processes

- 2800 censored responses per sec

Towards a Comprehensive Picture of 
the Great Firewall’s DNS CensorshipAnonymous

FOCI 2014



Discussion

“Our results may overestimate the GFW injector 
locations due to the problem of false negatives”

• If packets are dropped, wouldn’t that cause us to miss a 
polluted response and underestimate GFW locations?

You can hack the Internet to infer surprising 
information!

• Indirect probes via King method
• Traceroutes to pointpoint censor locations
• TTL and IP ID tracking



Discussion

Even more vantage points are possible!

Opportunities and Challenges of Ad-based 

Measurements from the Edge of the Network 

Patricia Callejo, Conor Kelton, Narseo Vallina-Rodriguez, 

Rubén Cuevas, Oliver Gasser, Christian Kreibich, Florian 
Wohlfart, Ángel CuevasHotNets 2017



AdTag [HotNets’17]

Platform: “programmatic advertising”

• Advertisers bid for placement in client’s requested pages
• HTML5 iframe isolated from parent page
• Restricted in various ways (JavaScript making certain 

browser-supported API calls like WebSocket, WebRTC)
• …but allows connections to researcher’s chosen server

DSP Ad
Exchange

Bidding
process

Website N
<iframe>

</iframe>
AdTag

Website 2
<iframe>

</iframe>

AdTag

Website 1
<iframe>

</iframe>

AdTag

TEST DISTRIBUTION CHANNEL

Tests JS

Targets
Countries / Regions
Devices
Operating Systems

Test and
control
server

Figure 1: AdTag architecture, distribution channel and
client-server components for measurements.

on the browser poses several challenges which have not
been systematically studied so far.

In this section we discuss AdTag’s design space1. First,
we describe our test distribution channels through ad
networks. Then, we put our focus on understanding
aspects inherent to ad networks such as the cost of
launching campaigns, our ability to target specific user
groups and platforms, the available execution window,
and ethical aspects. For these, we use empirical data that
we obtained from a purposely-run advertising campaign
launched through a Demand Side Platform (DSP). We
also give background on the operation of such platforms.

3.1 Deploying Network Measurements
We deploy AdTag measurements using real advertising
campaigns configured through a Demand Side Platform
(DSP). Briefly explained, the current online advertising
ecosystem [3], typically called programmatic advertising,
is a complex one, composed by multiple intermediaries.
The ad spaces available in a publisher website are typi-
cally handled by ad networks or Supply Side Platforms
(SSPs), those intermediaries are in charge of selling the
ad spaces. From the buying side, the advertisers typically
rely on agencies or DSPs to manage their campaigns. A
DSP is an intermediary platform providing advertisers
unified access to multiple vendors (Ad Networks and
Ad Exchanges), each selling ad spaces from a pool of
websites and mobile apps. It also enables advertisers
to configure targeting parameters for their campaigns
(geographical location, device type, etc).

As a proof of concept, we run a 7-day campaign us-
ing 9 of the more than 20 ad networks provided by a
DSP.2 This campaign provides us with more than 3M
measurements from 2.5M unique IP addresses covering
185 di�erent countries. This rivals the number of sessions
initiated by the crowd-sourced Netalyzr platform over a
timespan of 6 years, underscoring the method’s broad

1The online advertising industry uses the term ad tag to refer to
a piece of code typically used to monitor ad behavior.
2By request of the DSP we cannot share its name.
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Figure 2: Distribution of user IPs around the world.

reach. AdTag leverages HTML5-based ads [11, 17] to
execute JavaScript-based active network measurements
from the edge of the network. JavaScript (JS) allows us
to embed di�erent pieces of code to conduct a wide range
of network measurements, which will be distributed at a
global scale through advertising campaigns as illustrated
in Figure 1. AdTag is constrained to the features and
APIs provided by end-user browsers. It is important to
remark that the DSP renders the ads in an iFrame, which
sandboxes the JS code. This prevents it from interacting
directly with the parent window, including via cookies.
Apart from those constraints, our DSP enables us to
perform all the measurements explained in this paper.
Note that others limitations may apply depending on
the DSP.

3.2 Targeting ISPs and Locations
Targeting measurements to specific ISPs and geographi-
cal locations allow researchers to precisely analyze and
penetrate particular providers. This ability is determined
by the accuracy of the targeting mechanisms provided by
the DSP. Most DSPs allow targeting campaigns based
on location, device type (e.g., desktop vs. mobile), and
even operating system. We use this feature to configure
the campaigns to the experiment’s needs and to target
specific ISPs.

We perform several experiments to analyze the fea-
sibility of targeting ISPs and platforms, and evaluate
the precision of the DSP’s target mechanisms. We use
MaxMind’s database [22] to geolocate client IP addresses.
While research has shown that the use of IP geolocation
databases can introduce biases [32], we believe them still
to be indicative of the overall deployment. Our global
ad campaign covers 185 countries, with the majority
of measurements coming from clients in the US (28%),
UK (8.8%), Brazil (6.8%), and Canada (5.1%). Fig-
ure 2 shows the overall geographical coverage obtained
with our global campaign, which covers 185 di�erent
countries.

When geolocating US-based IP addresses, we can see
in Table 2 that most of the impressions come from large
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AdTag [HotNets’17]

High bang for the buck

• $0.10 starting “CPM” (cost per mille) at this Demand 
Side Platform (ad broker)

Requires careful attention to ethical concerns

• E.g. may contact illicit sites without client knowing!
• May need to be even more conservative than an IRB

Project Nodes†/IPs* ASes Countries Time Deployment strategy

AdTag 2,500,000* 20,700 185 7 days Targeted ads
RIPE Atlas 9,300† 3,300 181 6 years Testbed / Dedicated node
Archipelago 181† 146 60 10 years Testbed / Dedicated node
Netalyzr 2,200,000* 14,500 196 6 years Crowdsourcing / Mobile app, browser applet
Luminati 1,300,000* 14,700 172 5 days P2P-based VPNs

Table 1: Comparison of a global AdTag campaign with previous studies in terms of network coverage, measurement
duration, and deployment strategy. (*: number of sessions; †: number of nodes)

and explore its broader feasibility for network measure-
ment. We discuss aspects and challenges inherent to the
distribution channel (i.e., ad networks), the execution
environment (i.e., the browser), ethical concerns, and
possible legal constraints. We demonstrate that AdTag
provides a viable and promising alternative platform for
conducting a wide range of network measurements at
scale, driven by web-based JavaScript APIs.

2 BACKGROUND
Existing edge-driven measurement techniques fall into
four broad categories that we survey in this section.
Table 1 summarizes our findings.

Dedicated testbeds: Several dedicated measurement
testbeds exist. RIPE Atlas [35], CAIDA’s Archipelago
(Ark) Measurements Infrastructure [5], the MONROE
Mobile Broadband measurements platform [25], BIS-
mark [2], and PlanetLab [31] are prominent examples.
RIPE Atlas, Ark, and BISmark require dedicated hard-
ware typically hosted by volunteers or academic insti-
tutions. As a result, these platforms typically possess
limited geographical and ISP coverage due to their high
deployment cost. Moreover, these platforms di�er widely
in openness and the types of tests one can execute.

Crowdsourcing: Researchers have developed several
user-friendly tools to help users to understand the be-
havior of their network. In exchange, the research teams
collect valuable, oftentimes anonymized, real-world data
about the access link. Examples include the ICSI Ne-
talyzr [19], DASU [37], MobiPerf [36], and Encore [4],
which embeds JavaScript code on popular landing pages,
unbeknownst to users. These tools are available as apps
for mobile devices, browser-based clients, command line
clients, or plugins for BitTorrent clients. As opposed to
measurements run on dedicated testbeds, measurement
campaigns following a crowd-sourcing strategy allow re-
searchers to maximize ISP and user coverage without nec-
essarily sacrificing data accuracy and detail. Commercial
products like Ookla’s SpeedTest [29], and measurement
campaigns run by regulators (e.g., FCC’s speedtest[10])
have also followed this model with great success. Un-
fortunately, the majority of these tools only provide a
snapshot of the network at a given time when the user

executes the tool. This limits their ability to run longi-
tudinally, and to measure behavior at a point in time
chosen by the researcher.
VPN-based studies: A number of research e�orts have
leveraged VPN services to penetrate ISPs all over the
world. One popular VPN service used by researchers
is Luminati [20], a commercial VPN service that pro-
vides vantage points in more than 20M residential and
enterprise IPs. Luminati has been used to detect tra�c
manipulations inflicted by in-path HTTP proxies [39]
and end-to-end violations in the Internet [6]. Further, Lu-
minati’s low-end monthly price is $500 for 40GB of tra�c.
However, recent studies have questioned the ethical, pri-
vacy and security aspects of such VPN services [16], and
it is unclear whether the egress points can also actively
manipulate user’s tra�c. Other projects like ICLab have
also used commercial VPN services to conduct censor-
ship analysis [33] at a global scale. Unfortunately, recent
studies have questioned the ISP coverage of these ser-
vices [43], which may bias the experimental results.
Targeted ads: Ads have rarely been used for academic
Internet measurements on a large scale. O’Neill et al.

leveraged Flash-based ads to identify the presence of
TLS proxies [28]. Since most modern browsers and ad
networks move to deprecate or disable Flash, [12] it no
longer o�ers a sustainable deployment mechanism. The
same holds true for Java applets. Geo� Huston used ad-
vertising campaigns for APNIC Labs’ IPv6 Measurement
System [15], achieving good coverage by downloading a
tracking pixel using JavaScript and Flash ads. A recent
paper by Corner et al. proposes advertisement as a plat-
form for large-scale network measurements. The authors
demonstrate its ability to improve geo-IP databases,
conduct bandwidth measurement and the identifiabil-
ity of mobile users [7]. It corroborates our proposal of
an advertisement-driven solution to edge measurement,
but their study is focused solely on mobile measure-
ments, namely device battery management and GeoIP
databases.

3 ADTAG
AdTag leverages ad networks for conducting network
measurements at a global scale, in a time- and cost-
e�ective manner. However, distributing complex network
measurements through ad networks and running them
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A word of caution

The most important difference between 
computer science and other scientific fields 
is that: We build what we measure. Hence, 
we are never quite sure whether the 
behavior we observe, the bounds we 
encounter, the principles we teach, are truly 
principles from which we can build a body 
of theory, or merely artifacts of our 
creations. ... this is a difference that should, 
to use the vernacular, ‘scare the bloody hell 
out of us!’

“

”– John Day



Announcements

Next time: Future ISP networks

Assignment 2 due Friday 11am


