
Software-Defined Data
Centers

Brighten Godfrey
CS 538 April 11, 2018

slides ©2017-2018 by Brighten Godfrey except graphics from cited papers

Multi-Tenant Data Centers:
The Challenges

Key Needs

Agility

Strength

Constitution

Dexterity

Charisma

Key Needs

Agility

Location independent addressing

Performance uniformity

Security

Network semantics

Agility

Agility: Use any server for any service at any time

• Better economy of scale through increased utilization
• Improved reliability

Service / tenant

• Customer renting space in a public cloud
• Application or service in a private cloud (internal

customer)

Lack of Agility in Traditional DCs

Tenants in “silos”:
VLAN associated
with a particular IP
prefix

Lack of Agility in Traditional DCs

Tenants in “silos”

Poor utilization

Lack of Agility in Traditional DCs

Tenants in “silos”

Poor utilization

Inability to expand

Lack of Agility in Traditional DCs

IP addresses locked
to topological
location!

10.0.6.0/2410.0.4.0/24

Key Needs

Agility

Location independent addressing

• Tenant’s IP addresses should be portable anywhere

Performance uniformity

Security

Network semantics

Lack of Agility in Traditional DCs

Nonuniform
performance

Full line rate

1:100 or w
orse

oversubscription

Key Needs

Agility

Location independent addressing

• Tenant’s IP addresses can be taken anywhere

Performance uniformity

• VMs receive same throughput regardless of placement

Security

Network semantics

Lack of Agility in Traditional DCs

Untrusted
environment

Key Needs

Agility

Location independent addressing

• Tenant’s IP addresses can be taken anywhere

Performance uniformity

• VMs receive same throughput regardless of placement

Security

• Micro-segmentation: isolation at tenant or app granularity

Network semantics

Lack of Agility in Traditional DCs

x 1000s of legacy
apps in a large
enterprise…in a
much messier
topology

Key Needs

Agility

Location independent addressing

• Tenant’s IP addresses can be taken anywhere

Performance uniformity

• VMs receive same throughput regardless of placement

Security

• Micro-segmentation: isolation at tenant granularity

Network semantics

• Layer 2 service discovery, multicast, broadcast, …

Network Virtualization
Case Study: VL2

Case Study

VL2: A Scalable and Flexible Data Center Network

Albert Greenberg James R. Hamilton Navendu Jain
Srikanth Kandula Changhoon Kim Parantap Lahiri

David A. Maltz Parveen Patel Sudipta Sengupta

Microsoft Research

Abstract

To be agile and cost effective, data centers should allow dynamic re-
source allocation across large server pools. In particular, the data
center network should enable any server to be assigned to any ser-
vice. Tomeet these goals, we presentVL, a practical network archi-
tecture that scales to support huge data centers with uniform high
capacity between servers, performance isolation between services,
andEthernet layer- semantics. VLuses () flat addressing to allow
service instances to be placed anywhere in the network, () Valiant
Load Balancing to spread traffic uniformly across network paths,
and () end-system based address resolution to scale to large server
pools, without introducing complexity to the network control plane.
VL’s design is driven by detailed measurements of traffic and fault
data from a large operational cloud service provider. VL’s imple-
mentation leverages proven network technologies, already available
at low cost in high-speed hardware implementations, to build a scal-
able and reliable network architecture. As a result, VL networks
can be deployed today, and we have built a working prototype. We
evaluate the merits of the VL design using measurement, analysis,
and experiments. Our VL prototype shuffles . TB of data among
 servers in  seconds – sustaining a rate that is  of the max-
imum possible.

Categories and Subject Descriptors: C.. [Computer-Communi-
cation Network]: Network Architecture and Design

General Terms: Design, Performance, Reliability

Keywords: Data center network, commoditization

1. INTRODUCTION
Cloud services are driving the creation of data centers that hold

tens to hundreds of thousands of servers and that concurrently sup-
port a large number of distinct services (e.g., search, email, map-
reduce computations, and utility computing). The motivations for
building such shared data centers are both economic and technical:
to leverage the economies of scale available to bulk deployments and
to benefit from the ability to dynamically reallocate servers among
services as workload changes or equipment fails [, ]. The cost is
also large – upwards of  million per month for a , server
data center — with the servers themselves comprising the largest
cost component. To be profitable, these data centers must achieve
high utilization, and key to this is the property of agility — the ca-
pacity to assign any server to any service.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

Agility promises improved risk management and cost savings.
Without agility, each service must pre-allocate enough servers to
meet difficult to predict demand spikes, or risk failure at the brink
of success. With agility, the data center operator can meet the fluc-
tuating demands of individual services from a large shared server
pool, resulting in higher server utilization and lower costs.

Unfortunately, the designs for today’s data center network pre-
vent agility in several ways. First, existing architectures do not
provide enough capacity between the servers they interconnect.
Conventional architectures rely on tree-like network configurations
built from high-cost hardware. Due to the cost of the equipment,
the capacity between different branches of the tree is typically over-
subscribed by factors of : or more, with paths through the highest
levels of the tree oversubscribedby factors of : to :. This lim-
its communication between servers to the point that it fragments the
server pool — congestion and computation hot-spots are prevalent
even when spare capacity is available elsewhere. Second, while data
centers host multiple services, the network does little to prevent a
traffic flood in one service from affecting the other services around
it—when one service experiences a trafficflood,it is common for all
those sharing the same network sub-tree to suffer collateral damage.
Third, the routing design in conventional networks achieves scale by
assigning servers topologically significant IP addresses and dividing
servers among VLANs. Such fragmentation of the address space
limits the utility of virtual machines, which cannot migrate out of
their original VLAN while keeping the same IP address. Further,
the fragmentation of address space creates an enormous configura-
tion burden when servers must be reassigned among services, and
the human involvement typically required in these reconfigurations
limits the speed of deployment.

To overcome these limitations in today’s design and achieve
agility, we arrange for the network to implement a familiar and
concrete model: give each service the illusion that all the servers
assigned to it, and only those servers, are connected by a single
non-interfering Ethernet switch—a Virtual Layer — andmaintain
this illusion even as the size of each service varies from  server to
,. Realizing this vision concretely translates into building a
network that meets the following three objectives:

• Uniform high capacity: The maximum rate of a server-to-server
traffic flow should be limited only by the available capacity on the
network-interface cards of the sending and receiving servers, and
assigning servers to a service should be independent of network
topology.

• Performance isolation: Traffic of one service should not be af-
fected by the traffic of any other service, just as if each service was
connected by a separate physical switch.

• Layer- semantics: Just as if the servers were on a LAN—where
any IP address can be connected to any port of an Ethernet switch
due to flat addressing—data-centermanagement software should
be able to easily assign any server to any service and configure

[ACM SIGCOMM 2009]

Influenced architecture of
Microsoft Azure

VL2 Æ Azure Clos Fabrics with 40G NICs

16

T2-1-1 T2-1-2
T2-1-8

T3-1 T3-2 T3-3 T3-4

Row Spine

T2-2-1 T2-2-2
T2-2-4

Data Center Spine

T1-1

T1-8
T1-7…T1-2

…

…Regional Spine

…

T1-1

T1-8
T1-7…T1-2

T1-1

T1-8
T1-7…T1-2

Rack
…

T0-1 T0-2
T0-20

Servers

…
T0-1 T0-2

T0-20

Servers

…
T0-1 T0-2

T0-20

Servers

Outcome of >10 years of history, with major

revisions every six months

Scale-out, active-active

L3

L2LB/FW

LB/FW LB/FW

LB/FW

Scale-up, active-passive

[From Albert Greenberg keynote at SIGCOMM 2015:
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf]

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf%5D

Motivating Environmental
Characteristics

Increasing internal traffic is a bottleneck

• Traffic volume between servers is 4x external traffic

Unpredictable, rapidly-changing traffic matrices (TMs)

 0

 0.01

 0.02

 0.03

 0.04

 1 10 100 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f
T

im
e

C
u

m
u

la
tiv

e

Number of Concurrent flows in/out of each Machine

PDF
CDF

Figure : Number of concurrent connections has two modes: ()
 flows per nodemore than  of the time and ()  flows per
node for at least  of the time.

Similar to Internet flow characteristics [],we find that there are
myriad small flows (mice). On the other hand, as compared with
Internet flows, the distribution is simpler and more uniform. The
reason is that in data centers, internal flows arise in an engineered
environment driven by careful design decisions (e.g., the -MB
chunk size is driven by the need to amortize disk-seek times over
read times) and by strong incentives to use storage and analytic tools
with well understood resilience and performance.

Number of Concurrent Flows: Figure  shows the probability
density function (as a fraction of time) for the number of concur-
rent flows going in and out of a machine, computed over all ,
monitored machines for a representative day’s worth of flow data.
There are two modes. More than  of the time, an average ma-
chine has about ten concurrent flows, but at least  of the time it
has greater than  concurrent flows. We almost never see more
than  concurrent flows.

The distributions of flow size and number of concurrent flows
both imply that VLB will perform well on this traffic. Since even big
flows are only  MB ( s of transmit time at  Gbps), randomiz-
ing at flow granularity (rather than packet) will not cause perpetual
congestion if there is unlucky placement of a few flows. Moreover,
adaptive routing schemes may be difficult to implement in the data
center, since any reactive traffic engineering will need to run at least
once a second if it wants to react to individual flows.

3.3 Traffic Matrix Analysis
Poor summarizability of traffic patterns: Next, we ask the

question: Is there regularity in the traffic that might be exploited
through careful measurement and traffic engineering? If traffic in the
DC were to follow a few simple patterns, then the network could be
easily optimized to be capacity-efficient for most traffic. To answer,
we examine how the Traffic Matrix(TM) of the , server cluster
changes over time. For computational tractability, we compute the
ToR-to-ToR TM— the entry TM(t)i,j is the number of bytes sent
from servers in ToR i to servers in ToR j during the  s beginning
at time t. We compute one TM for every  s interval, and servers
outside the cluster are treated as belonging to a single “ToR”.

Given the timeseries of TMs, we find clusters of similar TMs
using a technique due to Zhang et al. []. In short, the technique
recursively collapses the trafficmatrices that aremost similar to each
other into a cluster, where the distance (i.e., similarity) reflects how
much traffic needs to be shuffled to make one TM look like the
other. We then choose a representative TM for each cluster, such
that any routing that can deal with the representative TM performs
no worse on every TM in the cluster. Using a single representative
TM per cluster yields a fitting error (quantified by the distances be-
tween each representative TMs and the actual TMs they represent),
which will decrease as the number of clusters increases. Finally, if
there is a knee point (i.e., a small number of clusters that reduces
the fitting error considerably), the resulting set of clusters and their
representative TMs at that knee corresponds to a succinct number
of distinct traffic matrices that summarize all TMs in the set.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

In
d
e

x
o
f
th

e
 C

o
n

ta
in

in
g
 C

lu
st

e
r

Time in 100s intervals

F
re

q
u

e
n

cy

0 5 10 20

0
5

0
1

0
0

2
0

0

Run Length

F
re

q
u

e
n

cy

2.0 3.0 4.0

0
1

0
0

2
0

0
3

0
0

log(Time to Repeat)

(a) (b) (c)
Figure : Lack of short-term predictability: The cluster to which
a traffic matrix belongs, i.e., the type of traffic mix in the TM,
changes quickly and randomly.

Surprisingly, the number of representative traffic matrices in
our data center is quite large. On a timeseries of  TMs, indicat-
ing a day’s worth of traffic in the datacenter, even when approximat-
ing with 50 − 60 clusters, the fitting error remains high () and
only decreasesmoderately beyond that point.This indicates that the
variability in datacenter traffic is not amenable to concise summa-
rization and hence engineering routes for just a few traffic matrices
is unlikely to work well for the traffic encountered in practice.

Instability of traffic patterns: Next we ask how predictable is
the traffic in the next interval given the current traffic? Traffic pre-
dictability enhances the ability of an operator to engineer routing
as traffic demand changes. To analyze the predictability of traffic in
the network, we find the  best TM clusters using the technique
above and classify the traffic matrix for each  s interval to the
best fitting cluster. Figure (a) shows that the traffic pattern changes
nearly constantly, with no periodicity that could help predict the fu-
ture. Figure (b) shows the distribution of run lengths - how many
intervals does the network traffic pattern spend in one cluster be-
fore shifting to the next. The run length is  to the th percentile.
Figure (c) shows the time between intervals where the traffic maps
to the same cluster. But for the mode at s caused by transitions
within a run, there is no structure to when a traffic pattern will next
appear.

The lack of predictability stems from the use of randomness to
improve the performance of data-center applications. For exam-
ple, the distributed file system spreads data chunks randomly across
servers for load distribution and redundancy. The volatility implies
that it is unlikely that other routing strategies will outperform VLB.

3.4 Failure Characteristics
To design VL to tolerate the failures and churn found in data

centers, we collected failure logs for over a year from eight produc-
tion data centers that comprise hundreds of thousands of servers,
host over a hundred cloud services and serve millions of users. We
analyzed hardware and software failures of switches, routers, load
balancers, firewalls, links and servers using SNMP polling/traps,
syslogs, server alarms, and transaction monitoring frameworks. In
all, we looked at M error events from over K alarm tickets.

What is the pattern of networking equipment failures? We
define a failure as the event that occurs when a system or compo-
nent is unable to perform its required function for more than  s.
As expected, most failures are small in size (e.g.,  of network
device failures involve <  devices and  of network device fail-
ures involve <  devices) while large correlated failures are rare
(e.g., the largest correlated failure involved  switches). However,
downtimes can be significant:  of failures are resolved in min,
 in <  hr, . in <  day, but . last >  days.

What is the impact of networking equipment failure? As dis-
cussed in Section , conventional data center networks apply : re-

[Greenberg et al.]

Motivating Environmental
Characteristics

Increasing internal traffic is a bottleneck

• Traffic volume between servers is 4x external traffic

Unpredictable, rapidly-changing traffic matrices (TMs)

 0

 0.01

 0.02

 0.03

 0.04

 1 10 100 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f
T

im
e

C
u

m
u

la
tiv

e

Number of Concurrent flows in/out of each Machine

PDF
CDF

Figure : Number of concurrent connections has two modes: ()
 flows per nodemore than  of the time and ()  flows per
node for at least  of the time.

Similar to Internet flow characteristics [],we find that there are
myriad small flows (mice). On the other hand, as compared with
Internet flows, the distribution is simpler and more uniform. The
reason is that in data centers, internal flows arise in an engineered
environment driven by careful design decisions (e.g., the -MB
chunk size is driven by the need to amortize disk-seek times over
read times) and by strong incentives to use storage and analytic tools
with well understood resilience and performance.

Number of Concurrent Flows: Figure  shows the probability
density function (as a fraction of time) for the number of concur-
rent flows going in and out of a machine, computed over all ,
monitored machines for a representative day’s worth of flow data.
There are two modes. More than  of the time, an average ma-
chine has about ten concurrent flows, but at least  of the time it
has greater than  concurrent flows. We almost never see more
than  concurrent flows.

The distributions of flow size and number of concurrent flows
both imply that VLB will perform well on this traffic. Since even big
flows are only  MB ( s of transmit time at  Gbps), randomiz-
ing at flow granularity (rather than packet) will not cause perpetual
congestion if there is unlucky placement of a few flows. Moreover,
adaptive routing schemes may be difficult to implement in the data
center, since any reactive traffic engineering will need to run at least
once a second if it wants to react to individual flows.

3.3 Traffic Matrix Analysis
Poor summarizability of traffic patterns: Next, we ask the

question: Is there regularity in the traffic that might be exploited
through careful measurement and traffic engineering? If traffic in the
DC were to follow a few simple patterns, then the network could be
easily optimized to be capacity-efficient for most traffic. To answer,
we examine how the Traffic Matrix(TM) of the , server cluster
changes over time. For computational tractability, we compute the
ToR-to-ToR TM— the entry TM(t)i,j is the number of bytes sent
from servers in ToR i to servers in ToR j during the  s beginning
at time t. We compute one TM for every  s interval, and servers
outside the cluster are treated as belonging to a single “ToR”.

Given the timeseries of TMs, we find clusters of similar TMs
using a technique due to Zhang et al. []. In short, the technique
recursively collapses the trafficmatrices that aremost similar to each
other into a cluster, where the distance (i.e., similarity) reflects how
much traffic needs to be shuffled to make one TM look like the
other. We then choose a representative TM for each cluster, such
that any routing that can deal with the representative TM performs
no worse on every TM in the cluster. Using a single representative
TM per cluster yields a fitting error (quantified by the distances be-
tween each representative TMs and the actual TMs they represent),
which will decrease as the number of clusters increases. Finally, if
there is a knee point (i.e., a small number of clusters that reduces
the fitting error considerably), the resulting set of clusters and their
representative TMs at that knee corresponds to a succinct number
of distinct traffic matrices that summarize all TMs in the set.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

In
d
e
x

o
f
th

e
 C

o
n
ta

in
in

g
 C

lu
st

e
r

Time in 100s intervals

F
re

q
u

e
n

cy

0 5 10 20

0
5
0

1
0
0

2
0
0

Run Length

F
re

q
u

e
n

cy

2.0 3.0 4.0

0
1
0
0

2
0
0

3
0
0

log(Time to Repeat)

(a) (b) (c)
Figure : Lack of short-term predictability: The cluster to which
a traffic matrix belongs, i.e., the type of traffic mix in the TM,
changes quickly and randomly.

Surprisingly, the number of representative traffic matrices in
our data center is quite large. On a timeseries of  TMs, indicat-
ing a day’s worth of traffic in the datacenter, even when approximat-
ing with 50 − 60 clusters, the fitting error remains high () and
only decreasesmoderately beyond that point.This indicates that the
variability in datacenter traffic is not amenable to concise summa-
rization and hence engineering routes for just a few traffic matrices
is unlikely to work well for the traffic encountered in practice.

Instability of traffic patterns: Next we ask how predictable is
the traffic in the next interval given the current traffic? Traffic pre-
dictability enhances the ability of an operator to engineer routing
as traffic demand changes. To analyze the predictability of traffic in
the network, we find the  best TM clusters using the technique
above and classify the traffic matrix for each  s interval to the
best fitting cluster. Figure (a) shows that the traffic pattern changes
nearly constantly, with no periodicity that could help predict the fu-
ture. Figure (b) shows the distribution of run lengths - how many
intervals does the network traffic pattern spend in one cluster be-
fore shifting to the next. The run length is  to the th percentile.
Figure (c) shows the time between intervals where the traffic maps
to the same cluster. But for the mode at s caused by transitions
within a run, there is no structure to when a traffic pattern will next
appear.

The lack of predictability stems from the use of randomness to
improve the performance of data-center applications. For exam-
ple, the distributed file system spreads data chunks randomly across
servers for load distribution and redundancy. The volatility implies
that it is unlikely that other routing strategies will outperform VLB.

3.4 Failure Characteristics
To design VL to tolerate the failures and churn found in data

centers, we collected failure logs for over a year from eight produc-
tion data centers that comprise hundreds of thousands of servers,
host over a hundred cloud services and serve millions of users. We
analyzed hardware and software failures of switches, routers, load
balancers, firewalls, links and servers using SNMP polling/traps,
syslogs, server alarms, and transaction monitoring frameworks. In
all, we looked at M error events from over K alarm tickets.

What is the pattern of networking equipment failures? We
define a failure as the event that occurs when a system or compo-
nent is unable to perform its required function for more than  s.
As expected, most failures are small in size (e.g.,  of network
device failures involve <  devices and  of network device fail-
ures involve <  devices) while large correlated failures are rare
(e.g., the largest correlated failure involved  switches). However,
downtimes can be significant:  of failures are resolved in min,
 in <  hr, . in <  day, but . last >  days.

What is the impact of networking equipment failure? As dis-
cussed in Section , conventional data center networks apply : re-

[Greenberg et al.]

Motivating Environmental
Characteristics

Increasing internal traffic is a bottleneck

• Traffic volume between servers is 4x external traffic

Unpredictable, rapidly-changing traffic matrices (TMs)

Design result: Nonblocking fabric

• High throughput for any TM that respects server NIC
rates

 0

 0.01

 0.02

 0.03

 0.04

 1 10 100 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f
T

im
e

C
u

m
u

la
tiv

e

Number of Concurrent flows in/out of each Machine

PDF
CDF

Figure : Number of concurrent connections has two modes: ()
 flows per nodemore than  of the time and ()  flows per
node for at least  of the time.

Similar to Internet flow characteristics [],we find that there are
myriad small flows (mice). On the other hand, as compared with
Internet flows, the distribution is simpler and more uniform. The
reason is that in data centers, internal flows arise in an engineered
environment driven by careful design decisions (e.g., the -MB
chunk size is driven by the need to amortize disk-seek times over
read times) and by strong incentives to use storage and analytic tools
with well understood resilience and performance.

Number of Concurrent Flows: Figure  shows the probability
density function (as a fraction of time) for the number of concur-
rent flows going in and out of a machine, computed over all ,
monitored machines for a representative day’s worth of flow data.
There are two modes. More than  of the time, an average ma-
chine has about ten concurrent flows, but at least  of the time it
has greater than  concurrent flows. We almost never see more
than  concurrent flows.

The distributions of flow size and number of concurrent flows
both imply that VLB will perform well on this traffic. Since even big
flows are only  MB ( s of transmit time at  Gbps), randomiz-
ing at flow granularity (rather than packet) will not cause perpetual
congestion if there is unlucky placement of a few flows. Moreover,
adaptive routing schemes may be difficult to implement in the data
center, since any reactive traffic engineering will need to run at least
once a second if it wants to react to individual flows.

3.3 Traffic Matrix Analysis
Poor summarizability of traffic patterns: Next, we ask the

question: Is there regularity in the traffic that might be exploited
through careful measurement and traffic engineering? If traffic in the
DC were to follow a few simple patterns, then the network could be
easily optimized to be capacity-efficient for most traffic. To answer,
we examine how the Traffic Matrix(TM) of the , server cluster
changes over time. For computational tractability, we compute the
ToR-to-ToR TM— the entry TM(t)i,j is the number of bytes sent
from servers in ToR i to servers in ToR j during the  s beginning
at time t. We compute one TM for every  s interval, and servers
outside the cluster are treated as belonging to a single “ToR”.

Given the timeseries of TMs, we find clusters of similar TMs
using a technique due to Zhang et al. []. In short, the technique
recursively collapses the trafficmatrices that aremost similar to each
other into a cluster, where the distance (i.e., similarity) reflects how
much traffic needs to be shuffled to make one TM look like the
other. We then choose a representative TM for each cluster, such
that any routing that can deal with the representative TM performs
no worse on every TM in the cluster. Using a single representative
TM per cluster yields a fitting error (quantified by the distances be-
tween each representative TMs and the actual TMs they represent),
which will decrease as the number of clusters increases. Finally, if
there is a knee point (i.e., a small number of clusters that reduces
the fitting error considerably), the resulting set of clusters and their
representative TMs at that knee corresponds to a succinct number
of distinct traffic matrices that summarize all TMs in the set.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

In
d
e
x

o
f
th

e
 C

o
n
ta

in
in

g
 C

lu
st

e
r

Time in 100s intervals

F
re

q
u

e
n

cy

0 5 10 20

0
5
0

1
0
0

2
0
0

Run Length

F
re

q
u

e
n

cy

2.0 3.0 4.0

0
1
0
0

2
0
0

3
0
0

log(Time to Repeat)

(a) (b) (c)
Figure : Lack of short-term predictability: The cluster to which
a traffic matrix belongs, i.e., the type of traffic mix in the TM,
changes quickly and randomly.

Surprisingly, the number of representative traffic matrices in
our data center is quite large. On a timeseries of  TMs, indicat-
ing a day’s worth of traffic in the datacenter, even when approximat-
ing with 50 − 60 clusters, the fitting error remains high () and
only decreasesmoderately beyond that point.This indicates that the
variability in datacenter traffic is not amenable to concise summa-
rization and hence engineering routes for just a few traffic matrices
is unlikely to work well for the traffic encountered in practice.

Instability of traffic patterns: Next we ask how predictable is
the traffic in the next interval given the current traffic? Traffic pre-
dictability enhances the ability of an operator to engineer routing
as traffic demand changes. To analyze the predictability of traffic in
the network, we find the  best TM clusters using the technique
above and classify the traffic matrix for each  s interval to the
best fitting cluster. Figure (a) shows that the traffic pattern changes
nearly constantly, with no periodicity that could help predict the fu-
ture. Figure (b) shows the distribution of run lengths - how many
intervals does the network traffic pattern spend in one cluster be-
fore shifting to the next. The run length is  to the th percentile.
Figure (c) shows the time between intervals where the traffic maps
to the same cluster. But for the mode at s caused by transitions
within a run, there is no structure to when a traffic pattern will next
appear.

The lack of predictability stems from the use of randomness to
improve the performance of data-center applications. For exam-
ple, the distributed file system spreads data chunks randomly across
servers for load distribution and redundancy. The volatility implies
that it is unlikely that other routing strategies will outperform VLB.

3.4 Failure Characteristics
To design VL to tolerate the failures and churn found in data

centers, we collected failure logs for over a year from eight produc-
tion data centers that comprise hundreds of thousands of servers,
host over a hundred cloud services and serve millions of users. We
analyzed hardware and software failures of switches, routers, load
balancers, firewalls, links and servers using SNMP polling/traps,
syslogs, server alarms, and transaction monitoring frameworks. In
all, we looked at M error events from over K alarm tickets.

What is the pattern of networking equipment failures? We
define a failure as the event that occurs when a system or compo-
nent is unable to perform its required function for more than  s.
As expected, most failures are small in size (e.g.,  of network
device failures involve <  devices and  of network device fail-
ures involve <  devices) while large correlated failures are rare
(e.g., the largest correlated failure involved  switches). However,
downtimes can be significant:  of failures are resolved in min,
 in <  hr, . in <  day, but . last >  days.

What is the impact of networking equipment failure? As dis-
cussed in Section , conventional data center networks apply : re-

[Greenberg et al.]

Motivating Environmental
Characteristics

Failure characteristics

• Analyzed 300K alarm tickets, 36M error events
• 0.4% of failures were resolved in over one day
• 0.3% of failures eliminated all redundancy in a device group

(e.g. both uplinks)

Design result: Clos topology

• “Scale out” instead of “scale up”

VL2 physical topology

that server with whatever IP address the service expects. Virtual
machines should be able to migrate to any server while keeping
the same IP address, and the network configuration of each server
should be identical to what it would be if connected via a LAN.
Finally, features like link-local broadcast, on which many legacy
applications depend, should work.

In this paper we design, implement and evaluate VL, a net-
work architecture for data centers that meets these three objectives
and thereby provides agility. In creating VL, a goal was to investi-
gate whether we could create a network architecture that could be
deployed today, so we limit ourselves from making any changes to
the hardware of the switches or servers, and we require that legacy
applications work unmodified. However, the software and operat-
ing systems on data-center servers are already extensively modified
(e.g., to create hypervisors for virtualization or blob file-systems to
store data). Therefore, VL’s design explores a new split in the re-
sponsibilities between host and network — using a layer . shim
in servers’ network stack to work around limitations of the network
devices. No new switch software or APIs are needed.

VL consists of a network built from low-cost switch ASICs
arranged into a Clos topology [] that provides extensive path di-
versity between servers. Our measurements show data centers have
tremendous volatility in their workload, their traffic, and their fail-
ure patterns. To cope with this volatility, we adopt Valiant Load
Balancing (VLB) [, ] to spread traffic across all available paths
without any centralized coordination or traffic engineering. Using
VLB, each server independently picks a path at random through the
network for each of the flows it sends to other servers in the data
center. Common concerns with VLB, such as the extra latency and
the consumption of extra network capacity caused by path stretch,
are overcome by a combination of our environment (propagation
delay is very small inside a data center) and our topology (which
includes an extra layer of switches that packets bounce off of). Our
experiments verify that our choice of using VLB achieves both the
uniform capacity and performance isolation objectives.

The switches that make up the network operate as layer-
routers with routing tables calculated by OSPF, thereby enabling the
use of multiple paths (unlike Spanning Tree Protocol) while using a
well-trusted protocol. However, the IP addresses used by services
running in the data center cannot be tied to particular switches
in the network, or the agility to reassign servers between services
would be lost. Leveraging a trick used in many systems [], VL
assigns servers IP addresses that act as names alone, with no topo-
logical significance. When a server sends a packet, the shim-layer
on the server invokes a directory system to learn the actual location
of the destination and then tunnels the original packet there. The
shim-layer also helps eliminate the scalability problems created by
ARP in layer- networks, and the tunneling improves our ability to
implement VLB.These aspects of the design enable VL to provide
layer- semantics, while eliminating the fragmentation and waste of
server pool capacity that the binding between addresses and loca-
tions causes in the existing architecture.

Taken together, VL’s choices of topology, routing design, and
software architecture create a huge shared pool of network capacity
that each pair of servers can draw from when communicating. We
implement VLB by causing the traffic between any pair of servers
to bounce off a randomly chosen switch in the top level of the Clos
topology and leverage the features of layer- routers, such as Equal-
Cost MultiPath (ECMP), to spread the traffic along multiple sub-
paths for these two path segments. Further,we use anycast addresses
and an implementation of Paxos [] in a way that simplifies the
design of the Directory System and, when failures occur, provides
consistency properties that are on par with existing protocols.

•
•
•
•
•

Figure : A conventional network architecture for data centers
(adapted from figure by Cisco []).

The feasibility of our design rests on several questions that we
experimentally evaluate. First, the theory behind Valiant Load Bal-
ancing, which proves that the networkwill be hot-spot free, requires
that (a) randomization is performed at the granularity of small pack-
ets, and (b) the traffic sent into the network conforms to the hose
model []. For practical reasons, however, VL picks a different
path for each flow rather than packet (falling short of (a)), and it
also relies on TCP to police the offered traffic to the hose model
(falling short of (b), as TCP needs multiple RTTs to conform traf-
fic to the hose model). Nonetheless, our experiments show that for
data-center traffic, the VL design choices are sufficient to offer the
desired hot-spot free properties in real deployments. Second, the
directory system that provides the routing information needed to
reach servers in the data center must be able to handle heavy work-
loads at very low latency. We show that designing and implementing
such a directory system is achievable.

In the remainder of this paper we will make the following con-
tributions, in roughly this order.

• Wemake a first of its kind study of the traffic patterns in a produc-
tion data center, and find that there is tremendous volatility in the
traffic, cycling among - different patterns during a day and
spending less than  s in each pattern at the th percentile.

• We design, build, and deploy every component of VL in an -
server cluster. Using the cluster, we experimentally validate that
VL has the properties set out as objectives, such as uniform ca-
pacity and performance isolation. We also demonstrate the speed
of the network, such as its ability to shuffle . TB of data among
 servers in  s.

• We apply Valiant Load Balancing in a new context, the inter-
switch fabric of a data center, and show that flow-level traffic split-
ting achieves almost identical split ratios (within  of optimal
fairness index) on realistic data center traffic, and it smoothes uti-
lization while eliminating persistent congestion.

• We justify the design trade-offs made in VL by comparing the
cost of a VL network with that of an equivalent network based
on existing designs.

2. BACKGROUND
In this section, we first explain the dominant design pattern for

data-center architecture today []. We then discuss why this archi-
tecture is insufficient to serve large cloud-service data centers.

As shown in Figure , the network is a hierarchy reaching from
a layer of servers in racks at the bottom to a layer of core routers at
the top.There are typically  to  servers per rack, each singly con-
nected to a Top of Rack (ToR) switch with a Gbps link. ToRs con-
nect to two aggregation switches for redundancy, and these switches
aggregate further connecting to access routers. At the top of the hi-
erarchy, core routers carry traffic between access routers and man-

Traditional VL2

. . .

. . .

!"#

$%&

. . .

. . . .

'(()

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches

DI x Aggregate Switches

20(DADI/4) x Servers

InternetLink-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. The network is built with two separate address
families— topologically significant LocatorAddresses (LAs) and
flat Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we find that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) affected ten million users for about four hours. We found
the main causes of these downtimes are networkmisconfigurations,
firmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brieflydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center traffic
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) traffic spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding flow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) traffic spreading ratios are uniform, and (b) the
offered traffic patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.This strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: The data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-specific addresses (AAs),
from their locations, termed location-specific addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: The rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables fine-grained path control by adjusting the randomization used
in VLB. The agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. The directory system itself is
also realized on servers, rather than switches, and thus offers flexi-
bility, such as fine-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.These aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
offering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . This is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding traffic through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any traffic matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).

[Figures from Greenberg et al.]

Routing in VL2

Unpredictable traffic

• Difficult to adapt

Design result: “Valiant Load Balancing” (at least as
inspiration)

• Route traffic independent of current traffic matrix
• Spreads arbitrary traffic pattern so it’s uniform among top

layer switches

Routing Implementation

. . .

. . .

!"#

$%&

. . .

. . . .

'(()

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches

DI x Aggregate Switches

20(DADI/4) x Servers

InternetLink-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. The network is built with two separate address
families— topologically significant LocatorAddresses (LAs) and
flat Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we find that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) affected ten million users for about four hours. We found
the main causes of these downtimes are networkmisconfigurations,
firmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brieflydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center traffic
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) traffic spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding flow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) traffic spreading ratios are uniform, and (b) the
offered traffic patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.This strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: The data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-specific addresses (AAs),
from their locations, termed location-specific addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: The rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables fine-grained path control by adjusting the randomization used
in VLB. The agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. The directory system itself is
also realized on servers, rather than switches, and thus offers flexi-
bility, such as fine-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.These aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
offering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . This is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding traffic through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any traffic matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).

10.1.1.1 10.1.1.1 10.1.1.1

Routing Implementation

. . .

. . .

!"#

$%&

. . .

. . . .

'(()

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches

DI x Aggregate Switches

20(DADI/4) x Servers

InternetLink-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. The network is built with two separate address
families— topologically significant LocatorAddresses (LAs) and
flat Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we find that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) affected ten million users for about four hours. We found
the main causes of these downtimes are networkmisconfigurations,
firmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brieflydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center traffic
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) traffic spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding flow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) traffic spreading ratios are uniform, and (b) the
offered traffic patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.This strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: The data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-specific addresses (AAs),
from their locations, termed location-specific addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: The rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables fine-grained path control by adjusting the randomization used
in VLB. The agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. The directory system itself is
also realized on servers, rather than switches, and thus offers flexi-
bility, such as fine-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.These aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
offering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . This is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding traffic through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any traffic matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).

10.1.1.1 10.1.1.1 10.1.1.1

Routing Implementation

. . .

. . .

!"#

$%&

. . .

. . . .

'(()

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches

DI x Aggregate Switches

20(DADI/4) x Servers

InternetLink-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. The network is built with two separate address
families— topologically significant LocatorAddresses (LAs) and
flat Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we find that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) affected ten million users for about four hours. We found
the main causes of these downtimes are networkmisconfigurations,
firmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brieflydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center traffic
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) traffic spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding flow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) traffic spreading ratios are uniform, and (b) the
offered traffic patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.This strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: The data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-specific addresses (AAs),
from their locations, termed location-specific addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: The rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables fine-grained path control by adjusting the randomization used
in VLB. The agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. The directory system itself is
also realized on servers, rather than switches, and thus offers flexi-
bility, such as fine-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.These aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
offering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . This is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding traffic through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any traffic matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).

10.1.1.1 10.1.1.1 10.1.1.1

Similar effect to ECMP
to each rack

Smaller forwarding
tables at most switches

Virtualization

“All problems in computer science can be solved by
another level of indirection.”

– David Wheeler

• Application Addresses (AAs): Location independent
• Illusion of a single big Layer 2 switch connecting the app

Virtualization layer

App / Tenant layer

Physical network layer
• Locator Addresses (LAs): Tied to topology, used to route
• Layer 3 routing via OSPF

• Directory server: Maintain AA to LA mapping
• Server agent: Query server, wrap AAs in outer LA header

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Q: W
here is

AA 20.0.0.56?

A: LA 10.0.06

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Q: W
here is

AA 20.0.0.56?

A: LA 10.0.06

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Intermediate switch
decapsulates

Q: W
here is

AA 20.0.0.56?

A: LA 10.0.06

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Intermediate switch
decapsulates

Destination ToR
decapsulates again

Q: W
here is

AA 20.0.0.56?

A: LA 10.0.06

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Intermediate switch
decapsulates

Destination ToR
decapsulates again

Host agent delivers

Q: W
here is

AA 20.0.0.56?

A: LA 10.0.06

Did we achieve agility?

Location independent addressing

• AAs are location independent

L2 network semantics

• Agent intercepts and handles L2 broadcast, multicast

• Both of the above require “layer 2.5” shim agent running
on host; but, concept transfers to hypervisor-based virtual
switch

Did we achieve agility?

Performance uniformity

• Clos network is nonblocking (non-oversubscribed)
• Uniform capacity everywhere
• ECMP provides decent (but far from perfect) load balance
• But, performance isolation among tenants depends on TCP

backing off to rate destination can receive
• Leaves open the possibility of better load balancing

Security

• Directory system can allow/deny connections by choosing
whether to resolve an AA to a LA

• But, segmentation not explicitly enforced at hosts

Where’s the SDN?

Directory servers: Logically centralized control

• Orchestrate application locations
• Control communication policy

Host agents: dynamic “programming” of data path

VL2 Enduring Take-Aways

Scale-out nonblocking Clos network

ECMP for traffic-oblivious routing

Separation of virtual and physical addresses

Centralized control plane

Network Virtualization
Case Study: NVP

Case Study: NVP

This paper is included in the Proceedings of the
11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).

ISBN 978-1-931971-09-6

Open access to the Proceedings of the
11th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’14)

is sponsored by USENIX

Network Virtualization in Multi-tenant Datacenters
Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda, Bryan

Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, Ethan Jackson, Andrew
Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff,

and Rajiv Ramanathan, VMware; Scott Shenker, International Computer Science Institute
and the University of California, Berkeley; Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan

Wendlandt, Alexander Yip, and Ronghua Zhang, VMware

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen

NVP Approach to Virtualization

L3 L3

L2

L2

L2

L2

L2

L2

L2

L2

1. Service: Arbitrary network topology

NVP Approach to Virtualization

L3 L3

L2

L2

L2

L2

L2

L2

L2

L2

1. Service: Arbitrary network topology

NVP Approach to Virtualization

L2

L2

Service: Arbitrary network topology

Physical Network:
Any standard layer 3 network

L3 L3

L2

L2

L2

L2

L2

L2

Network Hypervisor

Virtual network service

L3L2 L2

[Figure: Koponen et al.]

Virtual network service

L3L2 L2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

[Figure: Koponen et al.]

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical
Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Packet
abstraction

Control abstraction
(sequence of OpenFlow flow tables)

Physical L3 Network
server

server

server

server
server

L3L2 L2

Network Hypervisor
Controllers

Tenant control
abstraction

tunnel

(GRE,

 VXLAN)

Open
vSwitch

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Open
vSwitch

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Open
vSwitch

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Tenant VM
Tenant VM

Tenant VM

Challenge: Performance

Large amount of state to compute

• Full virtual network state at every host with a tenant VM!
• O(n2) tunnels for tenant with n VMs
• Solution 1: Automated incremental state computation with

nlog declarative language
• Solution 2: Logical controller computes single set of

universal flows for a tenant, translated more locally by
“physical controllers”

Challenge: Performance

Pipeline processing in virtual switch can be slow

• Solution: Send first packet of a flow through the full
pipeline; thereafter, put an exact-match packet entry in the
kernel

Tunneling interferes with TCP Segmentation Offload
(TSO)

• NIC can’t see TCP outer header
• Solution: STT tunnels adds “fake” outer TCP header

Discussion

Where’s the SDN?

• API to data plane
• centralized controller
• control abstractions

Why was micro-segmentation a “killer app” for SDN?

• Needed to automate control of a dynamic, virtualized
environment, not suited to manual solutions

How does it compare to wide-area control in B4?

Industry Impact

Multiple vendors with software-defined data center
“micro-segmentation” products

• VMware’s NSX
- VMware claims more than 2,400 customers, $1B/yr sales

• Cisco’s ACI
• Startups vArmour, Illumio

Next time

• Programmable switches

