
Cloud Workloads &
Performance

Brighten Godfrey
CS 538 April 9 2018

Most slides thanks to Ankit Singla

slides ©2010-2018 by Brighten Godfrey unless otherwise noted

Applications and
network traffic

[Image: NASA/Goddard/UMBC]

How a Web search works

How a Web search works

How a Web search works

Extremely short response deadlines for each server — 10ms

Scatter-gather traffic pattern

“Up to 150 stages, degree of 40, path lengths of 10 or more”

Request

Response
Image source: Talk on “Speeding up Distributed Request-Response Workflows”

by Virajith Jalaparti at ACM SIGCOMM’13

Scatter

Gather

Other Web application traffic

One popular page loaded ⇒ average of 521 distinct memcache fetches

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 385

Scaling Memcache at Facebook

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li,

Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,

Venkateshwaran Venkataramani

{rajeshn,hans}@fb.com, {sgrimm, marc}@facebook.com, {herman, hcli, rm, mpal, dpeek, ps, dstaff, ttung, veeve}@fb.com

Facebook Inc.

Abstract: Memcached is a well known, simple, in-

memory caching solution. This paper describes how

Facebook leverages memcached as a building block to

construct and scale a distributed key-value store that

supports the world’s largest social network. Our system

handles billions of requests per second and holds tril-

lions of items to deliver a rich experience for over a bil-

lion users around the world.

1 Introduction

Popular and engaging social networking sites present

significant infrastructure challenges. Hundreds of mil-

lions of people use these networks every day and im-

pose computational, network, and I/O demands that tra-

ditional web architectures struggle to satisfy. A social

network’s infrastructure needs to (1) allow near real-

time communication, (2) aggregate content on-the-fly

from multiple sources, (3) be able to access and update

very popular shared content, and (4) scale to process

millions of user requests per second.

We describe how we improved the open source ver-

sion of memcached [14] and used it as a building block to

construct a distributed key-value store for the largest so-

cial network in the world. We discuss our journey scal-

ing from a single cluster of servers to multiple geograph-

ically distributed clusters. To the best of our knowledge,

this system is the largest memcached installation in the

world, processing over a billion requests per second and

storing trillions of items.

This paper is the latest in a series of works that have

recognized the flexibility and utility of distributed key-

value stores [1, 2, 5, 6, 12, 14, 34, 36]. This paper fo-

cuses on memcached—an open-source implementation

of an in-memory hash table—as it provides low latency

access to a shared storage pool at low cost. These quali-

ties enable us to build data-intensive features that would

otherwise be impractical. For example, a feature that

issues hundreds of database queries per page request

would likely never leave the prototype stage because it

would be too slow and expensive. In our application,

however, web pages routinely fetch thousands of key-

value pairs from memcached servers.

One of our goals is to present the important themes

that emerge at different scales of our deployment. While

qualities like performance, efficiency, fault-tolerance,

and consistency are important at all scales, our experi-

ence indicates that at specific sizes some qualities re-

quire more effort to achieve than others. For exam-

ple, maintaining data consistency can be easier at small

scales if replication is minimal compared to larger ones

where replication is often necessary. Additionally, the

importance of finding an optimal communication sched-

ule increases as the number of servers increase and net-

working becomes the bottleneck.

This paper includes four main contributions: (1)

We describe the evolution of Facebook’s memcached-

based architecture. (2) We identify enhancements to

memcached that improve performance and increase

memory efficiency. (3) We highlight mechanisms that

improve our ability to operate our system at scale. (4)

We characterize the production workloads imposed on

our system.

2 Overview
The following properties greatly influence our design.

First, users consume an order of magnitude more con-

tent than they create. This behavior results in a workload

dominated by fetching data and suggests that caching

can have significant advantages. Second, our read op-

erations fetch data from a variety of sources such as

MySQL databases, HDFS installations, and backend

services. This heterogeneity requires a flexible caching

strategy able to store data from disparate sources.

Memcached provides a simple set of operations (set,

get, and delete) that makes it attractive as an elemen-

tal component in a large-scale distributed system. The

open-source version we started with provides a single-

machine in-memory hash table. In this paper, we discuss

how we took this basic building block, made it more ef-

ficient, and used it to build a distributed key-value store

that can process billions of requests per second. Hence-

USENIX NSDI, 2013

95th percentile: 1740 distinct memcache fetches

Facebook service architecture

386 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

database

web
server

memcache

1. get k 2. SELECT ...

3. set (k,v)

database

web
server

memcache

2. delete k

1. UPDATE ...

Figure 1: Memcache as a demand-filled look-aside
cache. The left half illustrates the read path for a web
server on a cache miss. The right half illustrates the
write path.

forth, we use ‘memcached’ to refer to the source code
or a running binary and ‘memcache’ to describe the dis-
tributed system.
Query cache: We rely on memcache to lighten the read
load on our databases. In particular, we use memcache
as a demand-filled look-aside cache as shown in Fig-
ure 1. When a web server needs data, it first requests
the value from memcache by providing a string key. If
the item addressed by that key is not cached, the web
server retrieves the data from the database or other back-
end service and populates the cache with the key-value
pair. For write requests, the web server issues SQL state-
ments to the database and then sends a delete request to
memcache that invalidates any stale data. We choose to
delete cached data instead of updating it because deletes
are idempotent. Memcache is not the authoritative source
of the data and is therefore allowed to evict cached data.

While there are several ways to address excessive
read traffic on MySQL databases, we chose to use
memcache. It was the best choice given limited engi-
neering resources and time. Additionally, separating our
caching layer from our persistence layer allows us to ad-
just each layer independently as our workload changes.
Generic cache: We also leverage memcache as a more
general key-value store. For example, engineers use
memcache to store pre-computed results from sophisti-
cated machine learning algorithms which can then be
used by a variety of other applications. It takes little ef-
fort for new services to leverage the existing marcher
infrastructure without the burden of tuning, optimizing,
provisioning, and maintaining a large server fleet.

As is, memcached provides no server-to-server co-
ordination; it is an in-memory hash table running on
a single server. In the remainder of this paper we de-
scribe how we built a distributed key-value store based
on memcached capable of operating under Facebook’s
workload. Our system provides a suite of configu-
ration, aggregation, and routing services to organize
memcached instances into a distributed system.

!
!
!
!
!
!

!
!
!
!
!
!

"#$%&'(%)!
*+,-&.#-!

!
!
!
!
!
!

!"#$%"&'"&$

(")*+*,"$

/&$#01.!*+,-&.#!230-&.#4!

!
!
!
!
!
!

!
!
!
!
!
!

"#$%&'(%)!
*+,-&.#-!

!
!
!
!
!
!

!"#$%"&'"&$

(")*+*,"$

/&$#01.!*+,-&.#!2/+05.4!

6.17$%!230-&.#4! 6.17$%!2/+05.4!

Figure 2: Overall architecture
We structure our paper to emphasize the themes that

emerge at three different deployment scales. Our read-
heavy workload and wide fan-out is the primary con-
cern when we have one cluster of servers. As it becomes
necessary to scale to multiple frontend clusters, we ad-
dress data replication between these clusters. Finally, we
describe mechanisms to provide a consistent user ex-
perience as we spread clusters around the world. Op-
erational complexity and fault tolerance is important at
all scales. We present salient data that supports our de-
sign decisions and refer the reader to work by Atikoglu
et al. [8] for a more detailed analysis of our workload. At
a high-level, Figure 2 illustrates this final architecture in
which we organize co-located clusters into a region and
designate a master region that provides a data stream to
keep non-master regions up-to-date.

While evolving our system we prioritize two ma-
jor design goals. (1) Any change must impact a user-
facing or operational issue. Optimizations that have lim-
ited scope are rarely considered. (2) We treat the prob-
ability of reading transient stale data as a parameter to
be tuned, similar to responsiveness. We are willing to
expose slightly stale data in exchange for insulating a
backend storage service from excessive load.

3 In a Cluster: Latency and Load
We now consider the challenges of scaling to thousands
of servers within a cluster. At this scale, most of our
efforts focus on reducing either the latency of fetching
cached data or the load imposed due to a cache miss.

3.1 Reducing Latency
Whether a request for data results in a cache hit or miss,
the latency of memcache’s response is a critical factor
in the response time of a user’s request. A single user
web request can often result in hundreds of individual

[from Nishtala et al., Scaling Memcache at Facebook, NSDI 2013]

Memcached: service characteristics

O(billions) scale

Wide “fan-out”

• 100s of memcached servers
per request

• Causes all-to-all traffic from
web to memcached servers

394 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

We implemented an adaptive allocator that period-
ically re-balances slab assignments to match the cur-
rent workload. It identifies slab classes as needing more
memory if they are currently evicting items and if the
next item to be evicted was used at least 20% more re-
cently than the average of the least recently used items in
other slab classes. If such a class is found, then the slab
holding the least recently used item is freed and trans-
ferred to the needy class. Note that the open-source com-
munity has independently implemented a similar allo-
cator that balances the eviction rates across slab classes
while our algorithm focuses on balancing the age of the
oldest items among classes. Balancing age provides a
better approximation to a single global Least Recently
Used (LRU) eviction policy for the entire server rather
than adjusting eviction rates which can be heavily influ-
enced by access patterns.

6.3 The Transient Item Cache

While memcached supports expiration times, entries
may live in memory well after they have expired.
Memcached lazily evicts such entries by checking ex-
piration times when serving a get request for that item
or when they reach the end of the LRU. Although effi-
cient for the common case, this scheme allows short-
lived keys that see a single burst of activity to waste
memory until they reach the end of the LRU.

We therefore introduce a hybrid scheme that relies on
lazy eviction for most keys and proactively evicts short-
lived keys when they expire. We place short-lived items
into a circular buffer of linked lists (indexed by sec-
onds until expiration) – called the Transient Item Cache
– based on the expiration time of the item. Every sec-
ond, all of the items in the bucket at the head of the
buffer are evicted and the head advances by one. When
we added a short expiration time to a heavily used set of
keys whose items have short useful lifespans; the pro-
portion of memcache pool used by this key family was
reduced from 6% to 0.3% without affecting the hit rate.

6.4 Software Upgrades

Frequent software changes may be needed for upgrades,
bug fixes, temporary diagnostics, or performance test-
ing. A memcached server can reach 90% of its peak hit
rate within a few hours. Consequently, it can take us over
12 hours to upgrade a set of memcached servers as the re-
sulting database load needs to be managed carefully. We
modified memcached to store its cached values and main
data structures in System V shared memory regions so
that the data can remain live across a software upgrade
and thereby minimize disruption.

distinct memcached servers
pe

rce
nt

ile
 o

f r
eq

ue
sts

20 100 200 300 400 500 600

0
20

40
60

80
10

0

All requests
A popular data intensive page

Figure 9: Cumulative distribution of the number of dis-
tinct memcached servers accessed

7 Memcache Workload
We now characterize the memcache workload using data
from servers that are running in production.

7.1 Measurements at the Web Server
We record all memcache operations for a small percent-
age of user requests and discuss the fan-out, response
size, and latency characteristics of our workload.
Fanout: Figure 9 shows the distribution of distinct
memcached servers a web server may need to contact
when responding to a page request. As shown, 56%
of all page requests contact fewer than 20 memcached
servers. By volume, user requests tend to ask for small
amounts of cached data. There is, however, a long tail to
this distribution. The figure also depicts the distribution
for one of our more popular pages that better exhibits
the all-to-all communication pattern. Most requests of
this type will access over 100 distinct servers; accessing
several hundred memcached servers is not rare.
Response size: Figure 10 shows the response sizes from
memcache requests. The difference between the median
(135 bytes) and the mean (954 bytes) implies that there
is a very large variation in the sizes of the cached items.
In addition there appear to be three distinct peaks at ap-
proximately 200 bytes and 600 bytes. Larger items tend
to store lists of data while smaller items tend to store
single pieces of content.
Latency: We measure the round-trip latency to request
data from memcache, which includes the cost of rout-
ing the request and receiving the reply, network transfer
time, and the cost of deserialization and decompression.
Over 7 days the median request latency is 333 microsec-
onds while the 75th and 95th percentiles (p75 and p95)
are 475µs and 1.135ms respectively. Our median end-
to-end latency from an idle web server is 178µs while
the p75 and p95 are 219µs and 374µs, respectively. The

(from web server for single web request)

[from Nishtala et al., Scaling Memcache at
Facebook, NSDI 2013]

Memcached: service characteristics

O(billions) scale

App workflows have wide “fan-out”

• 100s of memcached servers per request
• Causes all-to-all traffic from web to memcached servers

App workflows need multiple rounds per request

• Service tasks according to the DAG of dependencies
• Example of needing multiple rounds?

Memcached: service characteristics

O(billions) scale

App workflows have wide “fan-out”

• 100s of memcached servers per request
• Causes all-to-all traffic from web to memcached servers

App workflows need multiple rounds per request

• Service tasks according to the DAG of dependencies
• Example of needing multiple rounds?

Implications

• Need extreme performance
• Exceptional conditions become the common case

Memcached: scaling to billions

A cornucopia of systems optimizations

• Aggregate queries across threads, compression, batching
requests in one packet, custom malloc, use UDP, client
flow control to avoid incast, …

• One master region handles writes, others read-only

Keep memcache servers simple

• Only talk to web clients
• Web clients handle complexity (e.g., installing cached

values, carrying tokens, error recovery)

Pr[stale] is tunable, not a correctness problem

Interesting observations

Warmup takes hours!

• Bring up new cluster fast by moving content from already-
warm memcache cluster

• memcached servers store cached values semi-persistently
- in shared memory region
- doesn’t die when memcached process is killed or

upgraded!

Intriguing questions

• What would happen if you shut off Facebook and turned it
back on again?

• What if you shut off the Internet and turned it back on
again?

Big data analytics

Hadoop

Spark

Dryad

Database joins

 …

What does data center traffic look like?

It depends … on applications, scale, network design, …

Traffic characteristics: growing volume

acenter deployments, the number of required protocols
can be substantially reduced.

Inspired by the community’s ability to scale out com-
puting with parallel arrays of commodity servers, we
sought a similar approach for networking. This paper
describes our experience with building five generations
of custom data center network hardware and software
leveraging commodity hardware components, while ad-
dressing the control and management requirements in-
troduced by our approach. We used the following prin-
ciples in constructing our networks:

Clos topologies: To support graceful fault tol-
erance, increase the scale/bisection of our datacenter
networks, and accommodate lower radix switches, we
adopted Clos topologies [2, 9, 15] for our datacenters.
Clos topologies can scale to nearly arbitrary size by
adding stages to the topology, principally limited by
failure domain considerations and control plane scala-
bility. They also have substantial in-built path diversity
and redundancy, so the failure of any individual ele-
ment can result in relatively small capacity reduction.
However, they introduce substantial challenges as well,
including managing the fiber fanout and more complex
routing across multiple equal-cost paths.

Merchant silicon: Rather than use commercial
switches targeting small-volume, large feature sets, and
high reliability, we targeted general-purpose merchant
switch silicon, commodity priced, o↵ the shelf, switch-
ing components. To keep pace with server bandwidth
demands which scale with cores per server and Moore’s
Law, we emphasized bandwidth density and frequent re-
fresh cycles. Regularly upgrading network fabrics with
the latest generation of commodity switch silicon allows
us to deliver exponential growth in bandwidth capacity
in a cost-e↵ective manner.

Centralized control protocols: Control and man-
agement becomes substantially more complex with Clos
topologies because we dramatically increase the num-
ber of discrete switching elements. Existing routing
and management protocols were not well-suited to such
an environment. To control this complexity, we ob-
served that individual datacenter switches played a pre-
determined forwarding role based on the cluster plan.
We took this observation to one extreme by collecting
and distributing dynamically changing link state infor-
mation from a central, dynamically-elected, point in the
network. Individual switches could then calculate for-
warding tables based on current link state relative to a
statically configured topology.

Overall, our software architecture more closely resem-
bles control in large-scale storage and compute plat-
forms than traditional networking protocols. Network
protocols typically use soft state based on pair-wise
message exchange, emphasizing local autonomy. We
were able to use the distinguishing characteristics and
needs of our datacenter deployments to simplify control
and management protocols, anticipating many of the
tenets of modern Software Defined Networking deploy-

Figure 1: Aggregate server tra�c in our datacenter fleet.

Figure 2: A traditional 2Tbps four-post cluster (2004). Top
of Rack (ToR) switches serving 40 1G-connected servers
were connected via 1G links to four 512 1G port Cluster
Routers (CRs) connected with 10G sidelinks.

ments [13]. The datacenter networks described in this
paper represent some of the largest in the world, are in
deployment at dozens of sites across the planet, and sup-
port thousands of internal and external services, includ-
ing external use through Google Cloud Platform. Our
cluster network architecture found substantial reuse for
inter-cluster networking in the same campus and even
WAN deployments [19] at Google.

2. BACKGROUND AND RELATED
WORK

The tremendous growth rate of our infrastructure
served as key motivation for our work in datacenter
networking. Figure 1 shows aggregate server commu-
nication rates since 2008. Tra�c has increased 50x in
this time period, roughly doubling every year. A combi-
nation of remote storage access [7, 14], large-scale data
processing [10,18], and interactive web services [4] drive
our bandwidth demands.

In 2004, we deployed traditional cluster networks sim-
ilar to [5]. Figure 2 depicts this “four-post” cluster ar-
chitecture. We employed the highest density Ethernet
switches available, 512 ports of 1GE, to build the spine
of the network (CRs or cluster routers). Each Top of
Rack (ToR) switch connected to all four of the cluster
routers for both scale and fault tolerance.

With up to 40 servers per ToR, this approach sup-
ported 20k servers per cluster. However, high band-

184

“Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s
Datacenter Network”, Arjun Singh et al. @ Google, ACM SIGCOMM’15

Facebook: “machine to machine” traffic is several
orders of magnitude larger than what goes out to

the Internet

Traffic characteristics: rack locality
Figure 4: Per-second traffic locality by system type over a two-minute span: Hadoop (top left), Web server (top right), cache
follower (bottom left) and leader (bottom right) (Note the differing y axes)

inter-datacenter traffic is present in larger quantities. Fron-
tend cluster traffic, including Web servers and the atten-
dant cache followers, stays largely within the cluster: 68%
of Web server traffic during the capture plotted here stays
within the cluster, 80% of which is destined to cache sys-
tems; the Multifeed systems and the SLB servers get 8%
each. While miscellaneous background traffic is present, the
volume of such traffic is relatively inconsequential.

Cache systems, depending on type, see markedly different
localities, though along with Web servers the intra-rack lo-
cality is minimal. Frontend cache followers primarily send
traffic in the form of responses to Web servers (88%), and
thus see high intra-cluster traffic—mostly servicing cache
reads. Due to load balancing (see Section 5.2), this traffic
is spread quite widely; during this two-minute interval the
cache follower communicates with over 75% of the hosts in
the cluster, including over 90% of the Web servers. Cache
leaders maintain coherency across clusters and the backing
databases, engaging primarily in intra- and inter-datacenter
traffic—a necessary consequence of the cache being a "sin-
gle geographically distributed instance." [15]

The stability of these traffic patterns bears special men-
tion. While Facebook traffic is affected by the diurnal traffic
pattern noted by Benson et al. [12], the relative proportions
of the locality do not change—only the total amount of traf-
fic. Over short enough periods of time, the graph looks es-
sentially flat and unchanging. In order to further investigate
the cause and particulars of this stability, we turn our atten-
tion to the traffic matrix itself.

Locality All Hadoop FE Svc. Cache DB
Rack 12.9 13.3 2.7 12.1 0.2 0

Cluster 57.5 80.9 81.3 56.3 13.0 30.7
DC 11.9 3.3 7.3 15.7 40.7 34.5

Inter-DC 17.7 2.5 8.6 15.9 16.1 34.8
Percentage 23.7 21.5 18.0 10.2 5.2

Table 3: Different clusters have different localities; last row
shows each cluster’s contribution to total network traffic

4.3 Traffic matrix
In light of the surprising lack of rack locality and high

degree of traffic stability, we examine traffic from the more
long-term and zoomed-out perspective provided by Fbflow.

Table 3 shows the locality of traffic generated by all of
Facebook’s machines during a 24-hour period in January
2015 as reported by Fbflow. Facebook’s traffic patterns re-
main stable day-over-day—unlike the datacenter studied by
Delimitrou et al. [17]. The clear majority of traffic is intra-
cluster but not intra-rack (i.e., the 12.9% of traffic that stays
within a rack is not counted in the 57.5% of traffic labeled as
intra-cluster). Moreover, more traffic crosses between data-
centers than stays within a rack.

Table 3 further breaks down the locality of traffic gener-
ated by the top-five cluster types which, together, account for
78.6% of the traffic in Facebook’s network. Hadoop clusters
generate the most traffic (23.7% of all traffic), and are sig-
nificantly more rack-local than others, but even its traffic is
far from the 40–80% rack-local reported in the literature [12,

Figure 3: Mix of jobs in an example cluster with 12 blocks
of servers (left). Fraction of tra�c in each block destined
for remote blocks (right).

width applications had to fit under a single ToR to
avoid the heavily oversubscribed ToR uplinks. Deploy-
ing large clusters was important to our services because
there were many a�liated applications that benefited
from high bandwidth communication. Consider large-
scale data processing to produce and continuously re-
fresh a search index, web search, and serving ads as
a�liated applications. Larger clusters also substan-
tially improve bin-packing e�ciency for job scheduling
by reducing stranding from cases where a job cannot
be scheduled in any one cluster despite the aggregate
availability of su�cient resources across multiple small
clusters.

Maximum cluster scale is important for a more sub-
tle reason. Power is distributed hierarchically at the
granularity of the building, multi-Megawatt power gen-
erators, and physical datacenter rows. Each level of hi-
erarchy represents a unit of failure and maintenance.
For availability, cluster scheduling purposely spreads
jobs across multiple rows. Similarly, the required re-
dundancy in storage systems is in part determined by
the fraction of a cluster that may simultaneously fail as
a result of a power event. Hence, larger clusters lead to
lower storage overhead and more e�cient job scheduling
while meeting diversity requirements.

Running storage across a cluster requires both rack
and power diversity to avoid correlated failures. Hence,
cluster data should be spread across the cluster’s failure
domains for resilience. However, such spreading natu-
rally eliminates locality and drives the need for uni-
form bandwidth across the cluster. Consequently, stor-
age placement and job scheduling have little locality in
our cluster tra�c, as shown in Figure 3. For a rep-
resentative cluster with 12 blocks (groups of racks) of
servers, we show the fraction of tra�c destined for re-
mote blocks. If tra�c were spread uniformly across the
cluster, we would expect 11/12 of the tra�c (92%) to
be destined for other blocks. Figure 3 shows approxi-
mately this distribution for the median block, with only
moderate deviation.

While our traditional cluster network architecture
largely met our scale needs, it fell short in terms of
overall performance and cost. Bandwidth per host was
severely limited to an average of 100Mbps. Packet drops
associated with incast [8] and outcast [21] were severe

Figure 4: A generic 3 tier Clos architecture with edge
switches (ToRs), aggregation blocks and spine blocks. All
generations of Clos fabrics deployed in our datacenters fol-
low variants of this architecture.

pain points. Increasing bandwidth per server would
have substantially increased cost per server and reduced
cluster scale.
We realized that existing commercial solutions could

not meet our scale, management, and cost requirements.
Hence, we decided to build our own custom data center
network hardware and software. We started with the
key insight that we could scale cluster fabrics to near
arbitrary size by leveraging Clos topologies (Figure 4)
and the then-emerging (ca. 2003) merchant switching
silicon industry [12]. Table 1 summarizes a number of
the top-level challenges we faced in constructing and
managing building-scale network fabrics. The following
sections explain these challenges and the rationale for
our approach in detail.
For brevity, we omit detailed discussion of related

work in this paper. However, our topological approach,
reliance on merchant silicon, and load balancing across
multipath are substantially similar to contemporaneous
research [2,15]. In addition to outlining the evolution of
our network, we further describe inter cluster network-
ing, network management issues, and detail our control
protocols. Our centralized control protocols running on
switch embedded processors are also related to subse-
quent substantial e↵orts in Software Defined Network-
ing (SDN) [13]. Based on our experience in the dat-
acenter, we later applied SDN to our Wide Area Net-
work [19]. For the WAN, more CPU intensive tra�c
engineering and BGP routing protocols led us to move
control protocols onto external servers with more plen-
tiful CPU from the embedded CPU controllers we were
able to utilize for our initial datacenter deployments.
Recent work on alternate network topologies such as

HyperX [1], Dcell [17], BCube [16] and Jellyfish [22]
deliver more e�cient bandwidth for uniform random
communication patterns. However, to date, we have
found that the benefits of these topologies do not make
up for the cabling, management, and routing challenges
and complexity.

3. NETWORK EVOLUTION

3.1 Firehose 1.0
Table 2 summarizes the multiple generations of our

185

“Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network”

Arjun Singh et al., ACM SIGCOMM’15

Google

“Inside the Social Network’s (Datacenter) Network”
Arjun Roy et al., ACM SIGCOMM’15

Facebook

Traffic characteristics: rack locality

“Network Traffic Characteristics of Data Centers in the Wild”
Theophilus Benson et al., ACM IMC’10

 0
 2

0
 4

0
 6

0
 8

0
 1

0
0

E
D

U
1

E
D

U
2

E
D

U
3

P
R

V
1

P
R

V
2

C
L

D
1

C
L

D
2

C
L

D
3

C
L

D
4

C
L

D
5

P
e

rc
e

n
t

o
f

T
ra

ff
ic

Data Centers

Intra-Rack Extra-Rack

Figure 8: The ratio of Extra-Rack to Intra-Rack traffic in the
data centers.

Next, we focus on the enterprise and university data centers.
With the exception of EDU1, these appear to be both very diffe-
rent from the cloud data centers and qualitatively similar to each
other: at least 50% of the server-originated traffic in the data cen-
ters leaves the racks, compared with under 25% for the cloud data
centers. These data centers run user-facing applications, such as
Web services and file servers. While this application mix is simi-
lar to CLD1–3 discussed above, the Intra/Extra rack usage patterns
are quite different. A possible reason for the difference is that the
placement of dependent services in enterprise and campus data cen-
ters may not be as optimized as the cloud data centers.

6.2 Link Utilizations vs Layer
Next, we examine the impact of the Extra-Rack traffic on the

links within the interconnect of the various data centers. We ex-
amine link utilization as a function of location in the data center
topology. Recall that all 10 data centers employed 2-Tiered or 3-
Tiered tree-like networks.
In performing this study, we studied several hundred 5-minute

intervals at random for each data center and examined the link uti-
lizations as reported by SNMP. In Figure 9, we present the utiliza-
tion for links across different layers in the data centers for one such
representative interval.
In general, we find that utilizations within the core/aggregation

layers are higher than those at the edge; this observation holds
across all classes of data centers. These findings support observa-
tions made by others [3], where the focus was on cloud data centers.
A key point to note, not raised by prior work [3], is that across

the various data centers, there are differences in the tail of the dis-
tributions for all layers–in some data centers, such as CLD4, there
is a greater prevalence of high utilization links (i.e., utilization 70%
or greater) especially in the core layer, while in others there are no
high utilization links in any layer (e.g., EDU1). Next, we examine
these high utilization links in greater depth.

6.3 Hot-spot Links
In this section, we study the hot-spot links—those with 70%

or higher utilization—unearthed in various data centers, focusing
on the persistence and prevalence of hot-spots. More specifically,
we aim to answer the following questions: (1) Do some links fre-
quently appear as hot-spots? How does this result vary across lay-
ers and data centers? (2) How does the set of hot-spot links in
a layer change over time? (3) Do hot-spot links experience high
packet loss?

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
D

F

Edge Link Utilization

EDU1
EDU3
PRV1
PRV2
CLD1
CLD2
CLD3
CLD4
CLD5

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
D

F

Agg Link Utilization

PRV2
CLD1
CLD2
CLD3
CLD4
CLD5

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
D

F

Core Link Utilization

EDU1
EDU3
PRV1
PRV2
CLD1
CLD2
CLD3
CLD4
CLD5

Figure 9: CDF of link utilizations (percentage) in each layer.

6.3.1 Persistence and Prevalence
In Figure 10, we present the distribution of the percentage of

time intervals that a link is a hot-spot. We note from Figures 10(a)
and (b) that very few links in either the edge or aggregation lay-
ers are hot-spots, and this observations holds across all data centers
and data center types. Specifically, only 3% of the links in these
two layers appear as a hot-spot for more than 0.1% of time inter-
vals. When edge links are congested, they tend to be congested
continuously, as in CLD2, where a very small fraction of the edge
links appear as hot-spots in 90% of the time intervals.
In contrast, we find that the data centers differ significantly in

their core layers (Figure 10(c)). Our data centers cluster into 3 hot-
spot classes: (1) Low Persistence-Low Prevalence: This class of
data centers comprises those where the hot-spots are not localized
to any set of links. This includes PRV2, EDU1, EDU2, EDU3,
CLD1, and CLD3, where any given core link is a hot-spot for no
more than 10% of the time intervals; (2) High Persistence-Low
Prevalence: The second group of data centers is characterized by
hot-spots being localized to a small number of core links. This in-
cludes PRV1 and CLD2 where 3% and 8% of the core links, respec-
tively, each appear as hot-spots in> 50% of the time intervals; and
(3) High Persistence-High Prevalence: Finally, in the last group
containing CLD4 and CLD5, a significant fraction of the core links

275

Rack-local traffic

Traffic characteristics: concurrent flows

“Web servers and cache hosts have
100s to 1000s of concurrent

connections”
“Inside the Social Network’s (Datacenter) Network”

Arjun Roy et al., ACM SIGCOMM’15

Facebook
“Hadoop nodes have approximately

25 concurrent connections on
average.”

“The Nature of Datacenter Traffic: Measurements & Analysis”
Srikanth Kandula et al. (Microsoft Research), ACM IMC’09

1500 server cluster @ ?? “median numbers of correspondents for a
server are two (other) servers within its
rack and four servers outside the rack”

Traffic characteristics: flow arrival rate

“median inter-arrival times of
approximately 2ms” at a server“Inside the Social Network’s (Datacenter) Network”

Arjun Roy et al., ACM SIGCOMM’15

Facebook

“The Nature of Datacenter Traffic: Measurements & Analysis”
Srikanth Kandula et al. (Microsoft Research), ACM IMC’09

1500 server cluster @ ??
< 0.1x Facebook’s rate

Traffic characteristics: flow sizes

Hadoop: median flow <1KB
<5% exceed 1MB or 100sec

Caching: most flows are long-lived

… but bursty internally

Heavy-hitters ≈ median flow, not persistent

> 80% of the flows last <10sec
> 50% bytes are in flows lasting less <25sec

“Inside the Social Network’s (Datacenter) Network”
Arjun Roy et al., ACM SIGCOMM’15

Facebook

“The Nature of Datacenter Traffic: Measurements & Analysis”
Srikanth Kandula et al. (Microsoft Research), ACM IMC’09

1500 server cluster @ ??

What does data center traffic look like?

It depends … on applications, scale, network design, …

… and right now, not a whole lot of data is available.

Implications for networking

Data center internal traffic is BIG1

Tight deadlines for network I/O2

Congestion and TCP incast3

Need for isolation across applications4

Centralized control at the flow level may be difficult5

Implications for networking

Data center internal traffic is BIG1

acenter deployments, the number of required protocols
can be substantially reduced.

Inspired by the community’s ability to scale out com-
puting with parallel arrays of commodity servers, we
sought a similar approach for networking. This paper
describes our experience with building five generations
of custom data center network hardware and software
leveraging commodity hardware components, while ad-
dressing the control and management requirements in-
troduced by our approach. We used the following prin-
ciples in constructing our networks:

Clos topologies: To support graceful fault tol-
erance, increase the scale/bisection of our datacenter
networks, and accommodate lower radix switches, we
adopted Clos topologies [2, 9, 15] for our datacenters.
Clos topologies can scale to nearly arbitrary size by
adding stages to the topology, principally limited by
failure domain considerations and control plane scala-
bility. They also have substantial in-built path diversity
and redundancy, so the failure of any individual ele-
ment can result in relatively small capacity reduction.
However, they introduce substantial challenges as well,
including managing the fiber fanout and more complex
routing across multiple equal-cost paths.

Merchant silicon: Rather than use commercial
switches targeting small-volume, large feature sets, and
high reliability, we targeted general-purpose merchant
switch silicon, commodity priced, o↵ the shelf, switch-
ing components. To keep pace with server bandwidth
demands which scale with cores per server and Moore’s
Law, we emphasized bandwidth density and frequent re-
fresh cycles. Regularly upgrading network fabrics with
the latest generation of commodity switch silicon allows
us to deliver exponential growth in bandwidth capacity
in a cost-e↵ective manner.

Centralized control protocols: Control and man-
agement becomes substantially more complex with Clos
topologies because we dramatically increase the num-
ber of discrete switching elements. Existing routing
and management protocols were not well-suited to such
an environment. To control this complexity, we ob-
served that individual datacenter switches played a pre-
determined forwarding role based on the cluster plan.
We took this observation to one extreme by collecting
and distributing dynamically changing link state infor-
mation from a central, dynamically-elected, point in the
network. Individual switches could then calculate for-
warding tables based on current link state relative to a
statically configured topology.

Overall, our software architecture more closely resem-
bles control in large-scale storage and compute plat-
forms than traditional networking protocols. Network
protocols typically use soft state based on pair-wise
message exchange, emphasizing local autonomy. We
were able to use the distinguishing characteristics and
needs of our datacenter deployments to simplify control
and management protocols, anticipating many of the
tenets of modern Software Defined Networking deploy-

Figure 1: Aggregate server tra�c in our datacenter fleet.

Figure 2: A traditional 2Tbps four-post cluster (2004). Top
of Rack (ToR) switches serving 40 1G-connected servers
were connected via 1G links to four 512 1G port Cluster
Routers (CRs) connected with 10G sidelinks.

ments [13]. The datacenter networks described in this
paper represent some of the largest in the world, are in
deployment at dozens of sites across the planet, and sup-
port thousands of internal and external services, includ-
ing external use through Google Cloud Platform. Our
cluster network architecture found substantial reuse for
inter-cluster networking in the same campus and even
WAN deployments [19] at Google.

2. BACKGROUND AND RELATED
WORK

The tremendous growth rate of our infrastructure
served as key motivation for our work in datacenter
networking. Figure 1 shows aggregate server commu-
nication rates since 2008. Tra�c has increased 50x in
this time period, roughly doubling every year. A combi-
nation of remote storage access [7, 14], large-scale data
processing [10,18], and interactive web services [4] drive
our bandwidth demands.

In 2004, we deployed traditional cluster networks sim-
ilar to [5]. Figure 2 depicts this “four-post” cluster ar-
chitecture. We employed the highest density Ethernet
switches available, 512 ports of 1GE, to build the spine
of the network (CRs or cluster routers). Each Top of
Rack (ToR) switch connected to all four of the cluster
routers for both scale and fault tolerance.

With up to 40 servers per ToR, this approach sup-
ported 20k servers per cluster. However, high band-

184

“Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s
Datacenter Network”, Arjun Singh et al. @ Google, ACM SIGCOMM’15

Facebook: “machine to machine” traffic is several
orders of magnitude larger than what goes out to

the Internet

Implications for networking

Tight deadlines for network I/O2

Implications for networking

Tight deadlines for network I/O2

Suppose: server response-time is 10ms for 99% of requests; 1s for 1%

#Servers Requests 1s or slower

1 1%

100 63%

Need to reduce variability and tolerate some variation

Implications for networking

Congestion and TCP incast3

Figures from CMU PDL INCAST project:
http://www.pdl.cmu.edu/Incast/

http://www.pdl.cmu.edu/Incast/

Implications for networking

Applications with different objectives sharing the network

Need for isolation across applications4

Implications for networking

Distributed control, perhaps with some centralized tinkering

Centralized control at the flow level may be difficult5

NDP

Key ideas:
• Get the most out of our nonblocking network

• Send at line rate! Not even an RTT for
connection setup!

• Spread packets across all paths, round-robin

• Recover from loss quickly
• Packet trimming and prioritization of control

packets
• Result: super fast notification of loss

• Avoid loss as quickly as possible
• Receiver-driven pacing

Re-architecting datacenter
networks and stacks for low

latency and high performanceHandley, Raiciu, Agache, Voinescu,
Moore, Antichi, WójcikSIGCOMM 2017

Datacenter networks for low latency and high performance. SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5

C
D

F
(%

)

Flow completion time (ms)

NDP
DCTCP
DCQCN
MPTCP

Figure 15: FCT for 90KB flows with ran-
dom background load, 432 node FatTree.

Figure 16: Incast performance vs number
of senders, 432-node FatTree.

Figure 17: Effects of IW and switch
buffer sizes on permutation throughput.

Aggrega&on)
Switch)

Host%1% Host%2%

Tor)
Switch)

Incast'traffic'

Long'flow'

Figure 18: Experimental
setup to measure collat-
eral damage of incast on
nearby flows.

Next, we test an incast traffic pattern where a frontend fans out
work to many backend servers and then receives their replies; such
use cases are common in web-search applications, among others.
Simultaneous arrival of responses causes tremendous buffer pressure
for the switch port leading to the frontend, resulting in synchronized
losses. We vary the number of backend servers while keeping the
response size constant (450KB) and measure the flow completion
times. In general, the last flow completion time is the metric of
interest, but in Fig. 16 we also show the completion time of the
fastest flow to highlight the “fairness” of the different schemes.

Even if we use aggressively small timers of Vasudevan et al.[38],
MPTCP (and any tail-loss TCP variant) is crippled by synchronized
losses leading to large and unpredictable FCTs. DCTCP uses ECN
to get early feedback, as well as large shared buffer switches to
absorb initial bursts, so it does significantly better than traditional
TCP over tail drop switches. DCTCP is, on average, just 5% slower
than the theoretical optimal. DCQCN and NDP do even better, with
a completion time just 1% slower than optimal.

Next, note the spread in flow completion times for the different
protocols. DCTCP has a wide range (as high as seven times) between
its fastest and slowest flow. NDP has a very balanced allocation,
with the slowest flow taking at most 20% longer to finish than the
fastest one; this is a direct consequence of the NDP switch. Finally,
DCQCN has a very tight allocation up until 350KB response size,
when it operates in ECN-marking regime (with a smaller threshold
than DCTCP). Beyond that, lossless operation kicks in and severely
skews flow completion times.

We also enabled prioritization in NDP for a single incast sender:
its pulls will be placed at the head of the pull queue of the receiver.
Prioritization is very effective: the preferred flow’s completion time
is just 1ms with 100 incast senders, and 3.5ms with 432.

6.1.1 Side effects of Incast Traffic
How does incast affect nearby traffic? We run two separate experi-
ments, each involving a large incast. In the first experiment the incast
is long-lived and runs alongside a permutation traffic matrix. The

Figure 19: Collateral damage caused by 64-flow incast with
DCTCP (top), DCQCN (center), NDP (bottom).

metric of interest here is total network utilization: NDP reaches 92%
and DCTCP 40% utilization, the same as the permutation running
alone. With DCQCN, however, the network suffers congestion col-
lapse: utilization drops to 17% as the incast triggers PFC, severely
affecting the throughput of most flows in the datacenter.

In our second experiment, shown in Fig. 18, we run one long-lived
flow to host 1, then start a short-lived 64-to-1 incast traffic pattern to
host 2, with each incast flow sending 900KB. Both hosts are on the
same ToR switch. The results are shown in Fig. 19. With DCTCP,
the incast causes loss both at the ToR switch, and at the aggregation
switch port leading to the ToR. Both the long flow and the incast
flows take some time to recover. The burst above 10Gb/s at t=0.17
appears when retransmissions arrive, allowing already received data
to finally be released in-order to the application.

With DCQCN, loss is prevented, and the incast flows finish
quickly (note the different x-axis), but PFC causes the upstream
switches to be paused repeatedly, impacting the long flow. This sort
of collateral damage due to pausing is the primary downside of PFC.

With NDP, incast causes trimming during the first RTT. The long
flow suffers a small dip in throughput of less than 1ms due to this
initial burst. After the first RTT, the receiver paces the remaining
incast packets and the long flow recovers to get full throughput again.

39

NDP Discussion

How do we deal with out-of-order arrival before the
connection has even started?

Could end-host buffers overflow with control packets?

Why is source routing better than per-packet random
forwarding?

Zero-RTT setup and the security problem

Next time

Software-defined data centers: handling multi-tenancy

Assignment 2 released

