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Applications and
network traffic
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How a Web search works
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How a Web search works
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Extremely short response deadlines for each server — |0ms



“Up to 150 stages, degree of 40, path lengths of |10 or more™
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Image source: Talk on “Speeding up Distributed Request-Response Workflows”
by Virajith Jalaparti at ACM SIGCOMM’13



Other Web application traffic

USENIX NSDI, 2013

Scaling Memcache at Facebook

imm, Marc Kwiatkowski, Herman Lee, Harry C. LI,
aab, David Stafford, Tony Tung,

Venkateshwaran Venkataraman!
{herman, hcli, rm, mpal, dpeek, ps, dstaff, ttung, veeve }@fb.com

One
popular page loaded = average of 521 distinct memcache fetche
| S
95th percentile: 1740 distinct memcache fetches



Facebook service architecture
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[from Nishtala et al, Scaling Memcache at Facebook, NSDI 201 3]



Memcached: service characteristics

O(billions) scale
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[from Nishtala et al., Scaling Memcache at
Facebook, NSDI 201 3]



Memcached: service characteristics

O(billions) scale

App workflows have wide “fan-out”

® |00s of memcached servers per request
® (Causes all-to-all traffic from web to memcached servers

App workflows need multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?



O(billions) scale

App workflows have wide “fan-out”

® |00s of memcached servers per request
o (Causes traffic from web to memcached servers

App workflows need multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?

Implications

® Need extreme performance
® Exceptional conditions become the common case



A cornucopia of systems optimizations

® Aggregate queries across threads, compression, batching
requests in one packet, custom malloc, use UDP, client
flow control to avoid incast, ...

® One master region handles writes, others read-only

Keep memcache servers simple

e Only talk to web clients
® Web clients handle complexity (e.g., installing cached
values, carrying tokens, error recovery)

Pr[stale] is tunable, not a correctness problem



Warmup takes hours!

® Bring up new cluster fast by moving content from already-
warm memcache cluster
® memcached servers store cached values semi-persistently
- in shared memory region
- doesn’t die when memcached process is killed or
upgraded!

Intriguing questions

® What would happen if you shut off Facebook and turned it
back on again?

® What if you shut off the Internet and turned it back on
again!



Big data analytics

Hadoop
Spark
Dryad

Database joins




What does data center traffic look like?

It depends ... on applications, scale, network design, ...



Traffic characteristics: growing volume

Facebook: “machine to machine” traffic is several
orders of magnitude larger than what goes out to
the Internet

p-

Jul ‘08  Jun ‘09 May ‘10 Apr ‘11 Mar ‘12 Feb ‘13 Dec‘13 Nov ‘14

“Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s
Datacenter Network”, Arjun Singh et al. @ Google, ACM SIGCOMM’|5



Traffic characteristics: rack locality

Facebook

“Inside the Social Network’s (Datacenter) Network”
Arjun Roy et al., ACM SIGCOMM’I5

Google

“Jupiter Rising:A Decade of Clos Topologies and

Centralized Control in Google’s Datacenter Network”
Arjun Singh et al., ACM SIGCOMM’I5

Locality Hadoop | FE | Sve. | Cache | DB
Rack 12.9 13.3 2.7 | 12.1 0.2 0
Cluster | 37.5 80.9 81.3 | 56.3 13.0 30.7

DC 11.9 7.3 15.7 40.7 34.5
Inter-DC 8.6 | 159 16.1 34.8
Percentage 21.5 | 18.0 10.2 5.2

Job Category

B/w ('Vn)

Storage 49.3
Search Serving 26.2
Mail 7.4
Ad Stats 3.8
Rest of tratfic 13.3

% traffic leaving the

block to other block;

Blocks of servers




Traffic characteristics: rack locality
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“Network Traffic Characteristics of Data Centers in the Wild”
Theophilus Benson et al., ACM IMC’10



Traffic characteristics: concurrent flows

“Web servers and cache hosts have

Facebook I100s to 1000s of concurrent
onnections”
“Inside the Social Network’s (Datacenter) Network” “Hadoop no(?es have approx:mately
Arjun Roy et al, ACM SIGCOMMIS 25 concurrent connections on
average.”
1500 server cluster ?? “median numbers of correspondents for a

rver are two (other) servers within its
“The Nature of Datacenter Traffic: Measurements & Analysis” SErve € ( ) . N
Srikanth Kandula et al. (Microsoft Research), ACM IMC’09 rack and four servers outside the rack



Traffic characteristics: flow arrival rate

Facebook

“Inside the Social Network’s (Datacenter) Network™
Arjun Roy et al., ACM SIGCOMM’I5

1500 server cluster @ 2?

“The Nature of Datacenter Traffic: Measurements & Analysis”

Srikanth Kandula et al. (Microsoft Research), ACM IMC’09

“median inter-arrival times of
approximately 2ms” at a server

< 0.lx Faceboolk’s rate



Traffic characteristics: flow sizes

Facebook

“Inside the Social Network’s (Datacenter) Network™
Arjun Roy et al., ACM SIGCOMM’I5

1500 server cluster 144

“The Nature of Datacenter Traffic: Measurements & Analysis”

Srikanth Kandula et al. (Microsoft Research), ACM IMC’09

Hadoop: median flow <IKB
<5% exceed IMB or 100sec

Caching: most flows are long-lived

... but bursty internally

Heavy-hitters = median flow, not persistent

> 80% of the flows last <|0sec

> 50% bytes are in flows lasting less <25sec



What does data center traffic look like?

It depends ... on applications, scale, network design, ...

... and right now, not a whole lot of data is available.



Implications for networking

a Data center internal traffic is BIG

Q Tight deadlines for network |/O

e Congestion and TCP incast

9 Need for isolation across applications

e Centralized control at the flow level may be difficult



Implications for networking

0 Data center internal traffic is BIG

fic o

Facebook: “machi'ne éo machiﬁe” trffic IS several
orders of magnitude larger than what goes out to
he Inernet
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“Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s
Datacenter Network”, Arjun Singh et al. @ Google, ACM SIGCOMM’|5



Implications for networking

Q Tight deadlines for network 1/O
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Implications for networking

a Tight deadlines for network 1/O

Suppose: server response-time is 10ms for 99% of requests; |s for 1%

#Servers Requests |s or slower

| | %
100 63%

Need to reduce variability and tolerate some variation



Implications for networking

e Congestion and TCP incast

Data Block Num Servers vs Goodput
(Fixed Block = 1MB, buffer = 64KB (est.), Switch = S50)
1000
900
800
@ 700
Client < 800
s 5 500
— § 400
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0 | | ‘
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Unit (SRU) Number of Servers

200ms RTOmin ==

Figures from CMU PDL INCAST project:
http://www.pdl.cmu.edu/Incast/



http://www.pdl.cmu.edu/Incast/

Implications for networking

9 Need for isolation across applications

Applications with different objectives sharing the network



Implications for networking

C .
e entralized control at the flow level may be difficult

Traffic characteristics: flow S1zes

Hadoop: median flow <|KB
<5% exceed |MB or |00sec

Facebook
Caching: most flows are long-lived

“Inside the Social Network’s (Datacenter) Network”
Arjun Roy et al, ACM SIGCOMM'I5 but bursty internally

Heavy-hitters = median flow, not persistent

1500 server cluster @ > 80% of the flows last <l0sec
ments & Analysis” > 50% bytes are in flows lasting less <?25sec

“The Nature of Datacenter Traffic: Measure
i Srikanth Kandula et al. (Microsoft Research), ACM IMC'09

Distribu
ted control, perhaps with some centralized tinkering




Key ideas: —
\
- Get the most out of our nonblocking network 00 [T -
- Send at line rate! Not even an RTT for _8r i
connection setup! = 60 - -
. L 50 -
» Spread packets across all paths, round-robin o 40 - DCTCP -
30 - DCQCN -
20 - / MPTCP -
+ Recover from loss quickly 10 =—— ' ' ——
L . 0 05 1 15 2 25
* Packet trimming and prioritization of control
Flow completion time (ms)
packets
* Result: super fast notification of loss Figure 15: FCT for 90KB flows with ran-

dom background load, 432 node FatTree.

- Avoid loss as quickly as possible
* Receiver-driven pacing



How do we deal with out-of-order arrival before the
connection has even started?

Could end-host buffers overflow with control packets!?

Why is source routing better than per-packet random
forwarding!?

Zero-RTT setup and the security problem



Software-defined data centers: handling multi-tenancy

Assighment 2 released



