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Cloud Computing

Computing as a utility

• Purchase however much you need, whenever you need it
• Service ranges from access to raw (virtual) machines, to 

higher level: distributed storage, web services

Implications

• Reduces barrier to entry to building large service
- No need for up-front capital investment
- No need to plan ahead

• May reduce cost
• Compute and storage becomes more centralized



The physical cloud: Data centers

Facebook data center, North Carolina

National Petascale Computing Facility, 
UIUC







[Data Center v1.0, Open Compute Project]



Key advantage: economy of scale

One technician for each 15,000 servers [Facebook]

Facility / power infrastructure operated in bulk

• Power usage efficiency (PuE) ~ 1.8 in average DCs
• Pushed down to ~ 1.1 in large cloud DCs

Ability to custom-design equipment

• Servers, switches, NICs…

Statistical multiplexing

• Must provision for peak load
• Many users sharing a resource are unlikely to have their 

peaks all at the same time



Key advantage: economy of scale

Statistical multiplexing

• Must provision for peak load
• Many users sharing a resource are unlikely to have their 

peaks all at the same time
• Just as in packet switching

Circuit switching

Time

Packet switching:
multiplexed

Time



Challenges for Cloud Computing

Challenges

• Confidentiality of data and computation
• Isolation of resources
• Integration with existing systems
• Robustness
• Latency
• Bandwidth
• Programmability
• ...

Opportunities

• New systems and architectures
• Optimizations matter



Costs in a data center

Servers are expensive!

The Cost of a Cloud:
Research Problems in Data Center Networks

Albert Greenberg, James Hamilton, David A. Maltz, Parveen Patel
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Abstract
The data centers used to create cloud services represent a signifi-
cant investment in capital outlay and ongoing costs. Accordingly,
we first examine the costs of cloud service data centers today. The
cost breakdown reveals the importance of optimizing work com-
pleted per dollar invested. Unfortunately, the resources inside the
data centers often operate at low utilization due to resource strand-
ing and fragmentation. To attack this first problem, we propose (1)
increasing network agility, and (2) providing appropriate incentives
to shape resource consumption. Second, we note that cloud service
providers are building out geo-distributed networks of data centers.
Geo-diversity lowers latency to users and increases reliability in the
presence of an outage taking out an entire site. However, without
appropriate design and management, these geo-diverse data center
networks can raise the cost of providing service. Moreover, leverag-
ing geo-diversity requires services be designed to benefit from it. To
attack this problem, we propose (1) joint optimization of network
and data center resources, and (2) new systems and mechanisms for
geo-distributing state.
Categories and Subject Descriptors: C.2.1 Network Architecture
General Terms: Design, Economics
Keywords: Cloud-service data centers, costs, network challenges

1. INTRODUCTION
In recent years, large investments have been made in mas-

sive data centers supporting cloud services, by companies such as
eBay, Facebook, Google, Microsoft, and Yahoo!. In this paper, we
attempt to demystify the structure of these data centers, and to iden-
tify areas of opportunity for R&D impact in data center networks
and systems. We start our investigation with the question:

Where does the cost go in today’s cloud service data centers?

To quantify data center costs, we consider a data center hous-
ing on the order of 50,000 servers that would be built based on
currently well-understood techniques, using good quality, highly
available equipment. Table 1 provides a rough guide to associated
costs. Costs are amortized, i.e., one time purchases are amortized
over reasonable lifetimes, assuming a 5% cost of money. By amor-
tizing, we obtain a common cost run rate metric that we can apply
to both one time purchases (e.g., for servers) and ongoing expenses
(e.g., for power). We discuss each row in detail in Section 2.

Details may vary somewhat by site or by moment in time,
but these are the major costs. While networking is not the largest
cost category, this paper will argue that networking and systems
innovation is the key to reducing costs and getting the most out of
each dollar invested.

Amortized Cost Component Sub-Components
⇠45% Servers CPU, memory, storage systems
⇠25% Infrastructure Power distribution and cooling
⇠15% Power draw Electrical utility costs
⇠15% Network Links, transit, equipment

Table 1: Guide to where costs go in the data center.

1.1 Cloud Service Data Centers are Different
It is natural to ask why existing solutions for the enterprise

data center do not work for cloud service data centers.
First and foremost, the leading cost in the enterprise is opera-

tional staff. In the data center, such costs are so small (under 5% due
to automation), that we safely omit them from Table 1. In a well-run
enterprise, a typical ratio of IT staff members to servers is 1:100.
Automation is partial [25], and human error is the cause of a large
fraction of performance impacting problems [21]. In cloud service
data centers, automation is a mandatory requirement of scale, and
it is accordingly a foundational principle of design [20]. In a well
run data center, a typical ratio of staff members to servers is 1:1000.
Automated, recovery-oriented computing techniques cope success-
fully with the vast majority of problems that arise [20, 12].

There are additional differences between the enterprise and
the cloud service data center environments including:

Large economies of scale. The size of cloud scale data cen-
ters (some now approaching 100,000 severs) presents an opportu-
nity to leverage economies of scale not present in the enterprise
data centers, though the up front costs are high.

Scale Out. Enterprises often optimize for physical space and
number of devices, consolidating workload onto a small number of
high-price “scale-up” hardware devices and servers. Cloud service
data centers “scale-out” — distributing workload over large num-
bers of low cost servers and hardware.

That said, enterprises are also moving toward the cloud. Thus,
we expect innovation in cloud service data centers to benefit the
enterprise, through outsourcing of computing and storage to cloud
service providers [1, 8, 3], and/or adapting and scaling down tech-
nologies and business models from cloud service providers.

1.2 Types of Cloud Service Data Centers
Many cloud service data centers today may be termed mega

data centers, having on the order of tens of thousands or more
servers drawing tens of Mega-Watts of power at peak. Massive
data analysis applications (e.g., computing the web search index)
are a natural fit for a mega data center, where some problems re-
quire huge amounts of fast RAM, others require massive num-
bers of CPU cycles, and still others require massive disk I/O band-
width. These problems typically call for extensive communication

[Greenberg, CCR Jan. 2009]



A key goal: Agility

Agility: Use any server for any service at any time

• Increase utilization of servers
• Reduce costs, increase reliability

What we need [Greenberg, ICDCS’09]

• Rapid installation of service’s code
- Solution: virtual machines

• Access to data from anywhere
- Solution: distributed filesystems

• Ability to communicate between servers quickly, 
regardless of where they are in the data center

Datacenter Networks

Are In My Way

Principals of Amazon

James Hamilton, 2010.10.28

e: James@amazon.com

blog: perspectives.mvdirona.com

With Albert Greenberg, Srikanth Kandula, Dave Maltz, Parveen Patel, Sudipta 

Sengupta, Changhoon Kim, Jagwinder Brar, Justin Pietsch, Tyson Lamoreaux, 

Dhiren Dedhia, Alan Judge, Dave O'Meara, & Mike Marr



A server rack

A rack of servers

A top-of-rack switch



Lots of racks

How to network
 the racks?

Facebook: machine-machine traffic “doubling at an 
interval of less than a year”



“Big switch” approach

…

Big crossbar



Alternative: tree network



Alternative: tree network



$$ $$
Alternative: tree network

Congestion



Traditional data center network

3. AGILITY
We define agility inside a single data center to mean that any

server can be dynamically assigned to any service anywhere in
the data center, while maintaining proper security and performance
isolation between services. Unfortunately, conventional data center
network designs work against agility - by their nature fragmenting
both network and server capacity, and limiting the dynamic grow-
ing and shrinking of server pools. In this section, we first look at
the network within the data center as it exists today and then dis-
cuss some desirable properties for a better solution.

3.1 Networking in Current Data Centers
Multiple applications run inside a single data center, typically

with each application hosted on its own set of (potentially virtual)
server machines. A single data center network supports two types
of traffic: (a) traffic flowing between external end systems and inter-
nal servers, and (b) traffic flowing between internal servers. A given
application typically involves both of these traffic types. In Search
applications, for example, internal traffic dominates – building and
synchronizing instances of the index. In Video download applica-
tions, external traffic dominates.

To support external requests from the Internet, an application
is associated with one or more publicly visible and routable IP
addresses to which clients in the Internet send their requests and
from which they receive replies. Inside the data center, requests are
spread among a pool of front-end servers that process the requests.
This spreading is typically performed by a specialized hardware
load balancer [23]. Using conventional load-balancer terminology,
the IP address to which requests are sent is called a virtual IP ad-
dress (VIP) and the IP addresses of the servers over which the re-
quests are spread are known as direct IP addresses (DIPs).

and Design
Figure 2: The conventional network architecture for data cen-
ters (adapted from figure by Cisco [15]).

Figure 2 shows the conventional architecture for a data center,
taken from a recommended source [15]. Requests arriving from the
Internet are IP (layer 3) routed through border and access routers
to a layer 2 domain based on the destination VIP address. The
VIP is configured onto the two load balancers connected to the top
switches, and complex mechanisms are used to ensure that if one
load balancer fails, the other picks up the traffic [24]. For each VIP,
the load balancers are configured with a list of DIPs, internal IP
addresses over which they spread incoming requests.

As shown in the figure, all the servers that connect into a pair
of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer-2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few

hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems that
inhibit agility:

Static Network Assignment: To support internal traffic within
the data center, individual applications are mapped to specific phys-
ical switches and routers, relying heavily on VLANs and layer-3
based VLAN spanning [19] to cover the servers dedicated to the
application. While the extensive use of VLANs and direct phys-
ical mapping of services to switches and routers provides a de-
gree of performance and security isolation, these practices lead to
two problems that ossify the assignment and work against agility:
(a) VLANs are often policy-overloaded, integrating traffic manage-
ment, security, and performance isolation, and (b) VLAN spanning,
and use of large server pools in general, concentrates traffic on links
high in the tree, where links and routers are highly overbooked.

Fragmentation of resources: Popular load balancing tech-
niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [23]. This constraint means that if an application grows
and requires more front-end servers, it cannot use available servers
in other layer 2 domains - ultimately resulting in fragmentation and
under-utilization of resources. Load balancing via Source NAT (or
full-NAT) does allow servers to be spread across layer 2 domains,
but then the servers never see the client IP, which is often unac-
ceptable because servers use the client IP for everything from data
mining and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that communication between servers in dif-
ferent layer 2 domains must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to marketplace factors. As a result, these links are typically
oversubscribed by factors of 10:1 to 80:1 (i.e., the capacity of the
links between access routers and border routers is significantly less
than the sum of the output capacity of the servers connected to the
access routers). The result is that the bandwidth available between
servers in different parts of the DC can be quite limited. Manag-
ing the scarce bandwidth could be viewed as a global optimization
problem – servers from all applications must be placed with great
care to ensure the sum of their traffic does not saturate any of the
network links. Unfortunately, achieving this level of coordination
between (changing) applications is untenable in practice.

Proprietary hardware that scales up, not out: Conventional
load balancers are used in pairs in a 1+1 resiliency configuration.
When the load becomes too great for the load balancers, operators
replace the existing load balancers with a new pair having more
capacity, which is an unscalable and expensive strategy.

3.2 Design Objectives
In order to achieve agility within a data center, we argue the

network should have the following properties:
Location-independent Addressing: Services should use loca-

tion-independent addresses that decouple the server’s location in
the DC from its address. This enables any server to become part of
any server pool while simplifying configuration management.

UniformBandwidth and Latency: If the available bandwidth
between two servers is not dependent on where they are located,
then the servers for a given service can be distributed arbitrarily in
the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]



The need for performance

March 
2011

May
2012[Facebook, via Wired]



Modern Data Center Networks



Fat trees in data centers

Argued for nonblocking bandwidth

• Servers limited only by their 
network card’s speed, regardless of 
communication pattern between servers 

• Also known as full throughput in the “hose model”
- Maximum rate input from each “hose” (host)
- Maximum rate output to each “hose”
- Subject to those constraints, any traffic pattern is OK

Design

• Employed large number of commodity switches rather 
than “big iron”

• Arranged in Clos topology, and specifically a “fat tree”

A Scalable, Commodity Data 
Center Network ArchitectureMohammad Al-Fares, Alexander Loukissas, Amin VahdatSIGCOMM 2008



Fat tree network

[Al-Fares,  
Loukissas, Vahdat, 
SIGCOMM ’08]
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Figure 3: Simple fat-tree topology. Using the two-level routing tables described in Section 3.3, packets from source 10.0.1.2 to
destination 10.2.0.3 would take the dashed path.

Prefix
10.2.0.0/24
10.2.1.0/24
0.0.0.0/0

Output port
0
1

Suffix
0.0.0.2/8
0.0.0.3/8

Output port
2
3

Figure 4: Two-level table example. This is the table at switch
10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
nation IP address 10.3.0.3 is forwarded on port 3.

than one first-level prefix. Whereas entries in the primary table are
left-handed (i.e., /m prefix masks of the form 1m032−m), entries
in the secondary tables are right-handed (i.e. /m suffix masks of
the form 032−m1m). If the longest-matching prefix search yields
a non-terminating prefix, then the longest-matching suffix in the
secondary table is found and used.

This two-level structure will slightly increase the routing table
lookup latency, but the parallel nature of prefix search in hardware
should ensure only a marginal penalty (see below). This is helped
by the fact that these tables are meant to be very small. As shown
below, the routing table of any pod switch will contain no more
than k/2 prefixes and k/2 suffixes.

3.4 Two-Level Lookup Implementation
We now describe how the two-level lookup can be implemented

in hardware using Content-Addressable Memory (CAM) [9].
CAMs are used in search-intensive applications and are faster
than algorithmic approaches [15, 29] for finding a match against
a bit pattern. A CAM can perform parallel searches among all
its entries in a single clock cycle. Lookup engines use a special
kind of CAM, called Ternary CAM (TCAM). A TCAM can store
don’t care bits in addition to matching 0’s and 1’s in particular
positions, making it suitable for storing variable length prefixes,
such as the ones found in routing tables. On the downside, CAMs
have rather low storage density, they are very power hungry, and

Next hop
10.2.0.1
10.2.1.1
10.4.1.1
10.4.1.2

Address
00
01
10
11

Output port
0
1
2
3

RAM

Encoder

10.2.0.X
10.2.1.X
X.X.X.2
X.X.X.3

TCAM

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routing tables can
be implemented in a TCAM of a relatively modest size (k entries
each 32 bits wide).

Figure 5 shows our proposed implementation of the two-level
lookup engine. A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP address of the next
hop and the output port. We store left-handed (prefix) entries in
numerically smaller addresses and right-handed (suffix) entries in
larger addresses. We encode the output of the CAM so that the
entry with the numerically smallest matching address is output.
This satisfies the semantics of our specific application of two-level
lookup: when the destination IP address of a packet matches both a
left-handed and a right-handed entry, then the left-handed entry is
chosen. For example, using the routing table in Figure 5, a packet
with destination IP address 10.2.0.3 matches the left-handed entry
10.2.0.X and the right-handed entry X.X.X.3. The packet is
correctly forwarded on port 0. However, a packet with destination
IP address 10.3.1.2 matches only the right-handed entry X.X.X.2
and is forwarded on port 2.

3.5 Routing Algorithm
The first two levels of switches in a fat-tree act as filtering traf-

fic diffusers; the lower- and upper-layer switches in any given pod
have terminating prefixes to the subnets in that pod. Hence, if a
host sends a packet to another host in the same pod but on a dif-
ferent subnet, then all upper-level switches in that pod will have a
terminating prefix pointing to the destination subnet’s switch.

For all other outgoing inter-pod traffic, the pod switches have
a default /0 prefix with a secondary table matching host IDs (the

67
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ABSTRACT
Today’s data centers may contain tens of thousands of computers
with significant aggregate bandwidth requirements. The network
architecture typically consists of a tree of routing and switching
elements with progressively more specialized and expensive equip-
ment moving up the network hierarchy. Unfortunately, even when
deploying the highest-end IP switches/routers, resulting topologies
may only support 50% of the aggregate bandwidth available at the
edge of the network, while still incurring tremendous cost. Non-
uniform bandwidth among data center nodes complicates applica-
tion design and limits overall system performance.

In this paper, we show how to leverage largely commodity Eth-
ernet switches to support the full aggregate bandwidth of clusters
consisting of tens of thousands of elements. Similar to how clusters
of commodity computers have largely replaced more specialized
SMPs and MPPs, we argue that appropriately architected and inter-
connected commodity switches may deliver more performance at
less cost than available from today’s higher-end solutions. Our ap-
proach requires no modifications to the end host network interface,
operating system, or applications; critically, it is fully backward
compatible with Ethernet, IP, and TCP.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topology;
C.2.2 [Network Protocols]: Routing protocols

General Terms
Design, Performance, Management, Reliability

Keywords
Data center topology, equal-cost routing

1. INTRODUCTION
Growing expertise with clusters of commodity PCs have enabled

a number of institutions to harness petaflops of computation power
and petabytes of storage in a cost-efficient manner. Clusters con-
sisting of tens of thousands of PCs are not unheard of in the largest

Permission to make digital or hard copies of all or part of this work for
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institutions and thousand-node clusters are increasingly common
in universities, research labs, and companies. Important applica-
tions classes include scientific computing, financial analysis, data
analysis and warehousing, and large-scale network services.

Today, the principle bottleneck in large-scale clusters is often
inter-node communication bandwidth. Many applications must ex-
change information with remote nodes to proceed with their local
computation. For example, MapReduce [12] must perform signif-
icant data shuffling to transport the output of its map phase before
proceeding with its reduce phase. Applications running on cluster-
based file systems [18, 28, 13, 26] often require remote-node ac-
cess before proceeding with their I/O operations. A query to a
web search engine often requires parallel communication with ev-
ery node in the cluster hosting the inverted index to return the most
relevant results [7]. Even between logically distinct clusters, there
are often significant communication requirements, e.g., when up-
dating the inverted index for individual clusters performing search
from the site responsible for building the index. Internet services
increasingly employ service oriented architectures [13], where the
retrieval of a single web page can require coordination and commu-
nication with literally hundreds of individual sub-services running
on remote nodes. Finally, the significant communication require-
ments of parallel scientific applications are well known [27, 8].

There are two high-level choices for building the communication
fabric for large-scale clusters. One option leverages specialized
hardware and communication protocols, such as InfiniBand [2] or
Myrinet [6]. While these solutions can scale to clusters of thou-
sands of nodes with high bandwidth, they do not leverage com-
modity parts (and are hence more expensive) and are not natively
compatible with TCP/IP applications. The second choice lever-
ages commodity Ethernet switches and routers to interconnect clus-
ter machines. This approach supports a familiar management in-
frastructure along with unmodified applications, operating systems,
and hardware. Unfortunately, aggregate cluster bandwidth scales
poorly with cluster size, and achieving the highest levels of band-
width incurs non-linear cost increases with cluster size.

For compatibility and cost reasons, most cluster communication
systems follow the second approach. However, communication
bandwidth in large clusters may become oversubscribed by a sig-
nificant factor depending on the communication patterns. That is,
two nodes connected to the same physical switch may be able to
communicate at full bandwidth (e.g., 1Gbps) but moving between
switches, potentially across multiple levels in a hierarchy, may
limit available bandwidth severely. Addressing these bottlenecks
requires non-commodity solutions, e.g., large 10Gbps switches and
routers. Further, typical single path routing along trees of intercon-
nected switches means that overall cluster bandwidth is limited by
the bandwidth available at the root of the communication hierarchy.
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may only support 50% of the aggregate bandwidth available at the
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uniform bandwidth among data center nodes complicates applica-
tion design and limits overall system performance.

In this paper, we show how to leverage largely commodity Eth-
ernet switches to support the full aggregate bandwidth of clusters
consisting of tens of thousands of elements. Similar to how clusters
of commodity computers have largely replaced more specialized
SMPs and MPPs, we argue that appropriately architected and inter-
connected commodity switches may deliver more performance at
less cost than available from today’s higher-end solutions. Our ap-
proach requires no modifications to the end host network interface,
operating system, or applications; critically, it is fully backward
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institutions and thousand-node clusters are increasingly common
in universities, research labs, and companies. Important applica-
tions classes include scientific computing, financial analysis, data
analysis and warehousing, and large-scale network services.

Today, the principle bottleneck in large-scale clusters is often
inter-node communication bandwidth. Many applications must ex-
change information with remote nodes to proceed with their local
computation. For example, MapReduce [12] must perform signif-
icant data shuffling to transport the output of its map phase before
proceeding with its reduce phase. Applications running on cluster-
based file systems [18, 28, 13, 26] often require remote-node ac-
cess before proceeding with their I/O operations. A query to a
web search engine often requires parallel communication with ev-
ery node in the cluster hosting the inverted index to return the most
relevant results [7]. Even between logically distinct clusters, there
are often significant communication requirements, e.g., when up-
dating the inverted index for individual clusters performing search
from the site responsible for building the index. Internet services
increasingly employ service oriented architectures [13], where the
retrieval of a single web page can require coordination and commu-
nication with literally hundreds of individual sub-services running
on remote nodes. Finally, the significant communication require-
ments of parallel scientific applications are well known [27, 8].

There are two high-level choices for building the communication
fabric for large-scale clusters. One option leverages specialized
hardware and communication protocols, such as InfiniBand [2] or
Myrinet [6]. While these solutions can scale to clusters of thou-
sands of nodes with high bandwidth, they do not leverage com-
modity parts (and are hence more expensive) and are not natively
compatible with TCP/IP applications. The second choice lever-
ages commodity Ethernet switches and routers to interconnect clus-
ter machines. This approach supports a familiar management in-
frastructure along with unmodified applications, operating systems,
and hardware. Unfortunately, aggregate cluster bandwidth scales
poorly with cluster size, and achieving the highest levels of band-
width incurs non-linear cost increases with cluster size.

For compatibility and cost reasons, most cluster communication
systems follow the second approach. However, communication
bandwidth in large clusters may become oversubscribed by a sig-
nificant factor depending on the communication patterns. That is,
two nodes connected to the same physical switch may be able to
communicate at full bandwidth (e.g., 1Gbps) but moving between
switches, potentially across multiple levels in a hierarchy, may
limit available bandwidth severely. Addressing these bottlenecks
requires non-commodity solutions, e.g., large 10Gbps switches and
routers. Further, typical single path routing along trees of intercon-
nected switches means that overall cluster bandwidth is limited by
the bandwidth available at the root of the communication hierarchy.
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of commodity computers have largely replaced more specialized
SMPs and MPPs, we argue that appropriately architected and inter-
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institutions and thousand-node clusters are increasingly common
in universities, research labs, and companies. Important applica-
tions classes include scientific computing, financial analysis, data
analysis and warehousing, and large-scale network services.

Today, the principle bottleneck in large-scale clusters is often
inter-node communication bandwidth. Many applications must ex-
change information with remote nodes to proceed with their local
computation. For example, MapReduce [12] must perform signif-
icant data shuffling to transport the output of its map phase before
proceeding with its reduce phase. Applications running on cluster-
based file systems [18, 28, 13, 26] often require remote-node ac-
cess before proceeding with their I/O operations. A query to a
web search engine often requires parallel communication with ev-
ery node in the cluster hosting the inverted index to return the most
relevant results [7]. Even between logically distinct clusters, there
are often significant communication requirements, e.g., when up-
dating the inverted index for individual clusters performing search
from the site responsible for building the index. Internet services
increasingly employ service oriented architectures [13], where the
retrieval of a single web page can require coordination and commu-
nication with literally hundreds of individual sub-services running
on remote nodes. Finally, the significant communication require-
ments of parallel scientific applications are well known [27, 8].

There are two high-level choices for building the communication
fabric for large-scale clusters. One option leverages specialized
hardware and communication protocols, such as InfiniBand [2] or
Myrinet [6]. While these solutions can scale to clusters of thou-
sands of nodes with high bandwidth, they do not leverage com-
modity parts (and are hence more expensive) and are not natively
compatible with TCP/IP applications. The second choice lever-
ages commodity Ethernet switches and routers to interconnect clus-
ter machines. This approach supports a familiar management in-
frastructure along with unmodified applications, operating systems,
and hardware. Unfortunately, aggregate cluster bandwidth scales
poorly with cluster size, and achieving the highest levels of band-
width incurs non-linear cost increases with cluster size.

For compatibility and cost reasons, most cluster communication
systems follow the second approach. However, communication
bandwidth in large clusters may become oversubscribed by a sig-
nificant factor depending on the communication patterns. That is,
two nodes connected to the same physical switch may be able to
communicate at full bandwidth (e.g., 1Gbps) but moving between
switches, potentially across multiple levels in a hierarchy, may
limit available bandwidth severely. Addressing these bottlenecks
requires non-commodity solutions, e.g., large 10Gbps switches and
routers. Further, typical single path routing along trees of intercon-
nected switches means that overall cluster bandwidth is limited by
the bandwidth available at the root of the communication hierarchy.
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institutions and thousand-node clusters are increasingly common
in universities, research labs, and companies. Important applica-
tions classes include scientific computing, financial analysis, data
analysis and warehousing, and large-scale network services.

Today, the principle bottleneck in large-scale clusters is often
inter-node communication bandwidth. Many applications must ex-
change information with remote nodes to proceed with their local
computation. For example, MapReduce [12] must perform signif-
icant data shuffling to transport the output of its map phase before
proceeding with its reduce phase. Applications running on cluster-
based file systems [18, 28, 13, 26] often require remote-node ac-
cess before proceeding with their I/O operations. A query to a
web search engine often requires parallel communication with ev-
ery node in the cluster hosting the inverted index to return the most
relevant results [7]. Even between logically distinct clusters, there
are often significant communication requirements, e.g., when up-
dating the inverted index for individual clusters performing search
from the site responsible for building the index. Internet services
increasingly employ service oriented architectures [13], where the
retrieval of a single web page can require coordination and commu-
nication with literally hundreds of individual sub-services running
on remote nodes. Finally, the significant communication require-
ments of parallel scientific applications are well known [27, 8].

There are two high-level choices for building the communication
fabric for large-scale clusters. One option leverages specialized
hardware and communication protocols, such as InfiniBand [2] or
Myrinet [6]. While these solutions can scale to clusters of thou-
sands of nodes with high bandwidth, they do not leverage com-
modity parts (and are hence more expensive) and are not natively
compatible with TCP/IP applications. The second choice lever-
ages commodity Ethernet switches and routers to interconnect clus-
ter machines. This approach supports a familiar management in-
frastructure along with unmodified applications, operating systems,
and hardware. Unfortunately, aggregate cluster bandwidth scales
poorly with cluster size, and achieving the highest levels of band-
width incurs non-linear cost increases with cluster size.

For compatibility and cost reasons, most cluster communication
systems follow the second approach. However, communication
bandwidth in large clusters may become oversubscribed by a sig-
nificant factor depending on the communication patterns. That is,
two nodes connected to the same physical switch may be able to
communicate at full bandwidth (e.g., 1Gbps) but moving between
switches, potentially across multiple levels in a hierarchy, may
limit available bandwidth severely. Addressing these bottlenecks
requires non-commodity solutions, e.g., large 10Gbps switches and
routers. Further, typical single path routing along trees of intercon-
nected switches means that overall cluster bandwidth is limited by
the bandwidth available at the root of the communication hierarchy.
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Figure 8: Firehose 1.1 deployed as a bag-on-the-side Clos
fabric.

Figure 9: A 128x10G port Watchtower chassis (top left).
The internal non-blocking topology over eight linecards
(bottom left). Four chassis housed in two racks cabled with
fiber (right).

cific intra-cluster tra�c would use the uplinks to Fire-
hose 1.1. Since our four-post cluster employed 1G links,
we only needed to reserve four 1GE ToR ports. We built
a Big Red Button fail-safe to configure the ToRs to avoid
Firehose uplinks in case of catastrophic failure.

3.3 Watchtower: Global Deployment
Our deployment experience with Firehose 1.1 was

largely positive. We showed that services could en-
joy substantially more bandwidth than with traditional
architectures, all with lower cost per unit bandwidth.
Firehose 1.1 went into production with a handful of clus-
ters and remained operational until recently. The main
drawback to Firehose 1.1 was the deployment challenges
with the external copper cabling.
We used these experiences to design Watchtower, our

third-generation cluster fabric. The key idea was to
leverage the next-generation merchant silicon switch
chips, 16x10G, to build a traditional switch chassis with
a backplane. Figure 9 shows the half rack Watchtower

Figure 10: Reducing deployment complexity by bundling
cables. Stages 1, 2 and 3 in the fabric are labeled S1, S2 and
S3, respectively.

# Individual cables 15872
# S2-S3 bundles (16-way) 512
Normalized cost of fiber/m in 16-way bundle 55%
# S2-ToR bundles (8-way) 960
Normalized cost of fiber/m in 8-way bundle 60%
# Total cable bundles 1472
Normalized cost of fiber/m with bundling
(capex + opex)

57%

Table 3: Benefits of cable bundling in Watchtower.

chassis along with its internal topology and cabling.
Watchtower consists of eight line cards, each with three
switch chips. Two chips on each linecard have half their
ports externally facing, for a total of 16x10GE SFP+
ports. All three chips also connect to a backplane for
port to port connectivity. Watchtower deployment, as
seen in Figure 9 was substantially easier than the earlier
Firehose deployments. The larger bandwidth density
of the switching silicon also allowed us to build larger
fabrics with more bandwidth to individual servers, a
necessity as servers were employing an ever-increasing
number of cores.
Fiber bundling further reduced the cabling complex-

ity of Watchtower clusters. Figure 10 shows a Watch-
tower fabric deployment without any cable bundling.
Individual fibers of varying length need to be pulled
from each chassis location, leading to significant deploy-
ment overhead. The bottom figure shows how bundling
can substantially reduce complexity. We deploy two
chassis in each rack and co-locate two racks. We can
then pull cable bundles to the midpoint of the co-located
racks, where each bundle is split to each rack and then
further to each chassis.
Finally, manufacturing fiber in bundles is more cost

e↵ective than individual strands. Cable bundling
helped reduce fiber cost (capex + opex) by nearly 40%
and expedited bringup of Watchtower fabric by multi-
ple weeks. Table 3 summarizes the bundling and cost
savings.

188

Jupiter Rising: A Decade of Clos Topologies and

Centralized Control in Google’s Datacenter Network

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon,
Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala, Jeff Provost,
Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat

Google, Inc.
jupiter-sigcomm@google.com

ABSTRACT
We present our approach for overcoming the cost, oper-
ational complexity, and limited scale endemic to dat-
acenter networks a decade ago. Three themes unify
the five generations of datacenter networks detailed in
this paper. First, multi-stage Clos topologies built from
commodity switch silicon can support cost-e↵ective de-
ployment of building-scale networks. Second, much of
the general, but complex, decentralized network rout-
ing and management protocols supporting arbitrary
deployment scenarios were overkill for single-operator,
pre-planned datacenter networks. We built a central-
ized control mechanism based on a global configura-
tion pushed to all datacenter switches. Third, modu-
lar hardware design coupled with simple, robust soft-
ware allowed our design to also support inter-cluster
and wide-area networks. Our datacenter networks run
at dozens of sites across the planet, scaling in capacity
by 100x over ten years to more than 1Pbps of bisection
bandwidth.

CCS Concepts
•Networks ! Data center networks;

Keywords
Datacenter Networks; Clos topology; Merchant Silicon;
Centralized control and management

1. INTRODUCTION
Datacenter networks are critical to delivering web ser-

vices, modern storage infrastructure, and are a key en-
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abler for cloud computing. Bandwidth demands in the
datacenter are doubling every 12-15 months (Figure 1),
even faster than the wide area Internet. A number of re-
cent trends drive this growth. Dataset sizes are continu-
ing to explode with more photo/video content, logs, and
the proliferation of Internet-connected sensors. As a re-
sult, network-intensive data processing pipelines must
operate over ever-larger datasets. Next, Web services
can deliver higher quality results by accessing more data
on the critical path of individual requests. Finally, con-
stellations of co-resident applications often share sub-
stantial data with one another in the same cluster; con-
sider index generation, web search, and serving ads.
Ten years ago, we found the cost and operational

complexity associated with traditional datacenter net-
work architectures to be prohibitive. Maximum net-
work scale was limited by the cost and capacity of the
highest end switches available at any point in time [24].
These switches were engineering marvels, typically re-
cycled from products targeting wide area deployments.
WAN switches were di↵erentiated with hardware sup-
port/o✏oad for a range of protocols (e.g., IP multi-
cast) or by pushing the envelope of chip memory (e.g.,
Internet-scale routing tables, o↵ chip DRAM for deep
bu↵ers, etc.). Network control and management pro-
tocols targeted autonomous individual switches rather
than pre-configured and largely static datacenter fab-
rics. Most of these features were not useful for datacen-
ters, increased cost, complexity, delayed time to market,
and made network management more di�cult.
Datacenter switches were also built as complex chas-

sis targeting the highest levels of availability. In a
WAN Internet deployment, losing a single switch/router
can have substantial impact on applications. Because
WAN links are so expensive, it makes sense to invest in
high availability. However, more plentiful and cheaper
datacenter bandwidth makes it prudent to trade cost
for somewhat reduced intermittent capacity. Finally,
switches operating in a multi-vendor WAN environment
with arbitrary end hosts require support for many pro-
tocols to ensure interoperability. In single-operator dat-
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Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. The network is built with two separate address
families— topologically significant LocatorAddresses (LAs) and
flat Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we find that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) affected ten million users for about four hours. We found
the main causes of these downtimes are networkmisconfigurations,
firmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brieflydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center traffic
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) traffic spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding flow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) traffic spreading ratios are uniform, and (b) the
offered traffic patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.This strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: The data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-specific addresses (AAs),
from their locations, termed location-specific addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: The rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables fine-grained path control by adjusting the randomization used
in VLB. The agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. The directory system itself is
also realized on servers, rather than switches, and thus offers flexi-
bility, such as fine-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.These aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
offering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . This is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding traffic through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any traffic matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).
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VL2

[Greenberg, Hamilton, Jain, Kandula, Kim, Lahiri, Maltz, 
Patel, Sengupta, SIGCOMM 2009]

Key features

• High bandwidth network
- Another folded Clos network
- Slightly different than fat tree (e.g., uses faster 10 

Gbps links at higher layers)
• Randomized (Valiant) load balancing

- Makes better use of network resources
• Flat addressing

- Ethernet-style (layer 2) addresses to forward data, 
rather than IP addresses

- Separates names from locations



Many other proposed topologies



Leaf-spine for smaller networks

Rack Rack Rack Rack

Spines

Complete bipartite graph,
often ~40 Gbps links today

Leafs

Leaf-to-host links,
often 10 Gbps

Outside of the hyper scale cloud providers, this 2-tier 
design is typically scalable enough and is now common.
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Traditional data center network

3. AGILITY
We define agility inside a single data center to mean that any

server can be dynamically assigned to any service anywhere in
the data center, while maintaining proper security and performance
isolation between services. Unfortunately, conventional data center
network designs work against agility - by their nature fragmenting
both network and server capacity, and limiting the dynamic grow-
ing and shrinking of server pools. In this section, we first look at
the network within the data center as it exists today and then dis-
cuss some desirable properties for a better solution.

3.1 Networking in Current Data Centers
Multiple applications run inside a single data center, typically

with each application hosted on its own set of (potentially virtual)
server machines. A single data center network supports two types
of traffic: (a) traffic flowing between external end systems and inter-
nal servers, and (b) traffic flowing between internal servers. A given
application typically involves both of these traffic types. In Search
applications, for example, internal traffic dominates – building and
synchronizing instances of the index. In Video download applica-
tions, external traffic dominates.

To support external requests from the Internet, an application
is associated with one or more publicly visible and routable IP
addresses to which clients in the Internet send their requests and
from which they receive replies. Inside the data center, requests are
spread among a pool of front-end servers that process the requests.
This spreading is typically performed by a specialized hardware
load balancer [23]. Using conventional load-balancer terminology,
the IP address to which requests are sent is called a virtual IP ad-
dress (VIP) and the IP addresses of the servers over which the re-
quests are spread are known as direct IP addresses (DIPs).

and Design
Figure 2: The conventional network architecture for data cen-
ters (adapted from figure by Cisco [15]).

Figure 2 shows the conventional architecture for a data center,
taken from a recommended source [15]. Requests arriving from the
Internet are IP (layer 3) routed through border and access routers
to a layer 2 domain based on the destination VIP address. The
VIP is configured onto the two load balancers connected to the top
switches, and complex mechanisms are used to ensure that if one
load balancer fails, the other picks up the traffic [24]. For each VIP,
the load balancers are configured with a list of DIPs, internal IP
addresses over which they spread incoming requests.

As shown in the figure, all the servers that connect into a pair
of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer-2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few

hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems that
inhibit agility:

Static Network Assignment: To support internal traffic within
the data center, individual applications are mapped to specific phys-
ical switches and routers, relying heavily on VLANs and layer-3
based VLAN spanning [19] to cover the servers dedicated to the
application. While the extensive use of VLANs and direct phys-
ical mapping of services to switches and routers provides a de-
gree of performance and security isolation, these practices lead to
two problems that ossify the assignment and work against agility:
(a) VLANs are often policy-overloaded, integrating traffic manage-
ment, security, and performance isolation, and (b) VLAN spanning,
and use of large server pools in general, concentrates traffic on links
high in the tree, where links and routers are highly overbooked.

Fragmentation of resources: Popular load balancing tech-
niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [23]. This constraint means that if an application grows
and requires more front-end servers, it cannot use available servers
in other layer 2 domains - ultimately resulting in fragmentation and
under-utilization of resources. Load balancing via Source NAT (or
full-NAT) does allow servers to be spread across layer 2 domains,
but then the servers never see the client IP, which is often unac-
ceptable because servers use the client IP for everything from data
mining and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that communication between servers in dif-
ferent layer 2 domains must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to marketplace factors. As a result, these links are typically
oversubscribed by factors of 10:1 to 80:1 (i.e., the capacity of the
links between access routers and border routers is significantly less
than the sum of the output capacity of the servers connected to the
access routers). The result is that the bandwidth available between
servers in different parts of the DC can be quite limited. Manag-
ing the scarce bandwidth could be viewed as a global optimization
problem – servers from all applications must be placed with great
care to ensure the sum of their traffic does not saturate any of the
network links. Unfortunately, achieving this level of coordination
between (changing) applications is untenable in practice.

Proprietary hardware that scales up, not out: Conventional
load balancers are used in pairs in a 1+1 resiliency configuration.
When the load becomes too great for the load balancers, operators
replace the existing load balancers with a new pair having more
capacity, which is an unscalable and expensive strategy.

3.2 Design Objectives
In order to achieve agility within a data center, we argue the

network should have the following properties:
Location-independent Addressing: Services should use loca-

tion-independent addresses that decouple the server’s location in
the DC from its address. This enables any server to become part of
any server pool while simplifying configuration management.

UniformBandwidth and Latency: If the available bandwidth
between two servers is not dependent on where they are located,
then the servers for a given service can be distributed arbitrarily in
the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]
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ABSTRACT
Today’s data centers may contain tens of thousands of computers
with significant aggregate bandwidth requirements. The network
architecture typically consists of a tree of routing and switching
elements with progressively more specialized and expensive equip-
ment moving up the network hierarchy. Unfortunately, even when
deploying the highest-end IP switches/routers, resulting topologies
may only support 50% of the aggregate bandwidth available at the
edge of the network, while still incurring tremendous cost. Non-
uniform bandwidth among data center nodes complicates applica-
tion design and limits overall system performance.

In this paper, we show how to leverage largely commodity Eth-
ernet switches to support the full aggregate bandwidth of clusters
consisting of tens of thousands of elements. Similar to how clusters
of commodity computers have largely replaced more specialized
SMPs and MPPs, we argue that appropriately architected and inter-
connected commodity switches may deliver more performance at
less cost than available from today’s higher-end solutions. Our ap-
proach requires no modifications to the end host network interface,
operating system, or applications; critically, it is fully backward
compatible with Ethernet, IP, and TCP.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topology;
C.2.2 [Network Protocols]: Routing protocols

General Terms
Design, Performance, Management, Reliability

Keywords
Data center topology, equal-cost routing

1. INTRODUCTION
Growing expertise with clusters of commodity PCs have enabled

a number of institutions to harness petaflops of computation power
and petabytes of storage in a cost-efficient manner. Clusters con-
sisting of tens of thousands of PCs are not unheard of in the largest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

institutions and thousand-node clusters are increasingly common
in universities, research labs, and companies. Important applica-
tions classes include scientific computing, financial analysis, data
analysis and warehousing, and large-scale network services.

Today, the principle bottleneck in large-scale clusters is often
inter-node communication bandwidth. Many applications must ex-
change information with remote nodes to proceed with their local
computation. For example, MapReduce [12] must perform signif-
icant data shuffling to transport the output of its map phase before
proceeding with its reduce phase. Applications running on cluster-
based file systems [18, 28, 13, 26] often require remote-node ac-
cess before proceeding with their I/O operations. A query to a
web search engine often requires parallel communication with ev-
ery node in the cluster hosting the inverted index to return the most
relevant results [7]. Even between logically distinct clusters, there
are often significant communication requirements, e.g., when up-
dating the inverted index for individual clusters performing search
from the site responsible for building the index. Internet services
increasingly employ service oriented architectures [13], where the
retrieval of a single web page can require coordination and commu-
nication with literally hundreds of individual sub-services running
on remote nodes. Finally, the significant communication require-
ments of parallel scientific applications are well known [27, 8].

There are two high-level choices for building the communication
fabric for large-scale clusters. One option leverages specialized
hardware and communication protocols, such as InfiniBand [2] or
Myrinet [6]. While these solutions can scale to clusters of thou-
sands of nodes with high bandwidth, they do not leverage com-
modity parts (and are hence more expensive) and are not natively
compatible with TCP/IP applications. The second choice lever-
ages commodity Ethernet switches and routers to interconnect clus-
ter machines. This approach supports a familiar management in-
frastructure along with unmodified applications, operating systems,
and hardware. Unfortunately, aggregate cluster bandwidth scales
poorly with cluster size, and achieving the highest levels of band-
width incurs non-linear cost increases with cluster size.

For compatibility and cost reasons, most cluster communication
systems follow the second approach. However, communication
bandwidth in large clusters may become oversubscribed by a sig-
nificant factor depending on the communication patterns. That is,
two nodes connected to the same physical switch may be able to
communicate at full bandwidth (e.g., 1Gbps) but moving between
switches, potentially across multiple levels in a hierarchy, may
limit available bandwidth severely. Addressing these bottlenecks
requires non-commodity solutions, e.g., large 10Gbps switches and
routers. Further, typical single path routing along trees of intercon-
nected switches means that overall cluster bandwidth is limited by
the bandwidth available at the root of the communication hierarchy.
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ABSTRACT
Dynamic load balancing is a popular recent technique that

protects ISP networks from sudden congestion caused by

load spikes or link failures. Dynamic load balancing pro-

tocols, however, require schemes for splitting traffic across

multiple paths at a fine granularity. Current splitting

schemes present a tussle between slicing granularity and

packet reordering. Splitting traffic at the granularity of

packets quickly and accurately assigns the desired traffic

share to each path, but can reorder packets within a TCP

flow, confusing TCP congestion control. Splitting traffic at

the granularity of a flow avoids packet reordering but may

overshoot the desired shares by up to 60% in dynamic envi-

ronments, resulting in low end-to-end network goodput.

Contrary to popular belief, we show that one can sys-

tematically split a single flow across multiple paths without

causing packet reordering. We propose FLARE, a new traf-

fic splitting algorithm that operates on bursts of packets,

carefully chosen to avoid reordering. Using a combination of

analysis and trace-driven simulations, we show that FLARE

attains accuracy and responsiveness comparable to packet

switching without reordering packets. FLARE is simple and

can be implemented with a few KB of router state.

Categories and Subject
Descriptors

C.2.2 [Communication Networks]: Network Protocols

General Terms
Algorithms, Design, Performance, Theory

Keywords
FLARE, Packet Reordering, Traffic Splitting

1. INTRODUCTION
Load balancing is common in ISP networks. It is a key

component of traffic engineering, link bundling, and equal

cost multi-path routing [8, 28, 14, 6, 29]. Recent trends in

load balancing point toward dynamic protocols. These pro-

tocols map the traffic of an ingress-egress router pair onto

multiple paths and adapt the share of each path in real-

time to avoid hot-spots and cope with failures [18, 30, 12].

Protocols like TeXCP [18], COPE [30], and MATE [12] have

demonstrated the value of such approaches in reducing costs

and increasing network robustness.

Dynamic load balancing needs schemes that split traffic

across multiple paths at a fine granularity. Current traf-

fic splitting schemes, however, exhibit a tussle between the

granularity at which they partition the traffic and their

ability to avoid packet reordering. Packet-based splitting

quickly assigns the desired load share to each path. When

paths differ in delay, however, splitting at packet granular-

ity can reorder a large number of packets. TCP confuses

this reordering as a sign of congestion, resulting in degraded

performance. Even some UDP-based applications such as

VoIP [20] are sensitive to packet reordering. Flow-based

splitting, on the other hand, pins each flow to a specific

path and avoids packet reordering. But, flows differ widely

in their sizes and rates, and once assigned, a flow persists on

the path throughout its lifetime [34, 22, 26]. Consequently,

flow-based splitting may assign inaccurate amounts of traf-

fic to each path or fail to quickly re-balance the load in the

face of changing demands. This inability to quickly react to

traffic spikes congests links and reduces network goodput.

This paper shows that one can obtain the accuracy and re-

sponsiveness of packet-based splitting and still avoid packet

reordering. We introduce FLARE,1 a new traffic splitting

algorithm. FLARE exploits a simple observation. Consider

load balancing traffic over a set of parallel paths (Fig. 1).

If the time between two successive packets is larger than

the maximum delay difference between the parallel paths,

one can route the second packet —and subsequent pack-

ets from this flow— on any available path with no threat

of reordering. Thus, instead of switching packets or flows,

FLARE switches packet bursts, called flowlets. By defini-

tion, flowlets are spaced by a minimum interval δ, chosen to

be larger than the delay difference between the parallel paths

under consideration. FLARE measures the delay on these

paths and sets the flowlet timeout, δ, to their maximum de-

lay difference. The small size of flowlets lets FLARE split

traffic dynamically and accurately, while the constraint im-

posed on their spacing ensures that no packets are reordered.

This paper makes the following contributions.

(a) It introduces FLARE, showing that it is possible to sys-

tematically slice a TCP flow across multiple paths without

causing packet reordering.

(b) It formally analyses the traffic splitting problem. Our

analysis shows that deviation from the desired traffic split

is always smaller with flowlets than with flows, and depends

on the number of flowlets per time unit and the coefficient

of variation (standard deviation/mean) of flowlet sizes.

(c) It evaluates FLARE using extensive simulations run on

863 traces from tier-1 and regional providers, and reveals

the following findings.

• FLARE’s bandwidth allocation is highly accurate. It is al-

ways within a few percent of the desired shares, for both

static and dynamic splits. In contrast, splitting schemes

that pin a flow to a path like flow-based, S-Hash and BIN-

based overshoot the desired bandwidth allocation by an

average of 20%-60%, in dynamic environments, which re-

duces the overall goodput under high load. Packet-based

splitting, on the other hand, causes 1%-3% extra 3 dupli-

cate TCP acks, and thus hurts end-to-end goodput.

• FLARE is remarkably robust to errors in estimating the

1Flowlet Aware Routing Engine

ACM SIGCOMM Computer Communication Review 53
Volume 37, Number 2, April 2007

ACM SIGCOMM, 2007
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CONGA: Distributed Congestion-Aware Load Balancing

for Datacenters
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ABSTRACT
We present the design, implementation, and evaluation of CONGA,

a network-based distributed congestion-aware load balancing mech-

anism for datacenters. CONGA exploits recent trends including

the use of regular Clos topologies and overlays for network vir-

tualization. It splits TCP flows into flowlets, estimates real-time

congestion on fabric paths, and allocates flowlets to paths based

on feedback from remote switches. This enables CONGA to effi-

ciently balance load and seamlessly handle asymmetry, without re-

quiring any TCP modifications. CONGA has been implemented in

custom ASICs as part of a new datacenter fabric. In testbed exper-

iments, CONGA has 5⇥ better flow completion times than ECMP

even with a single link failure and achieves 2–8⇥ better through-

put than MPTCP in Incast scenarios. Further, the Price of Anar-

chy for CONGA is provably small in Leaf-Spine topologies; hence

CONGA is nearly as effective as a centralized scheduler while be-

ing able to react to congestion in microseconds. Our main thesis

is that datacenter fabric load balancing is best done in the network,

and requires global schemes such as CONGA to handle asymmetry.

Categories and Subject Descriptors: C.2.1 [Computer-Communication

Networks]: Network Architecture and Design

Keywords: Datacenter fabric; Load balancing; Distributed

1. INTRODUCTION
Datacenter networks being deployed by cloud providers as well

as enterprises must provide large bisection bandwidth to support

an ever increasing array of applications, ranging from financial ser-

vices to big-data analytics. They also must provide agility, enabling

any application to be deployed at any server, in order to realize

operational efficiency and reduce costs. Seminal papers such as

VL2 [18] and Portland [1] showed how to achieve this with Clos

topologies, Equal Cost MultiPath (ECMP) load balancing, and the

decoupling of endpoint addresses from their location. These de-

sign principles are followed by next generation overlay technolo-

gies that accomplish the same goals using standard encapsulations

such as VXLAN [35] and NVGRE [45].

However, it is well known [2, 41, 9, 27, 44, 10] that ECMP can

balance load poorly. First, because ECMP randomly hashes flows

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.

http://dx.doi.org/10.1145/2619239.2626316 .

to paths, hash collisions can cause significant imbalance if there are

a few large flows. More importantly, ECMP uses a purely local de-

cision to split traffic among equal cost paths without knowledge of

potential downstream congestion on each path. Thus ECMP fares

poorly with asymmetry caused by link failures that occur frequently

and are disruptive in datacenters [17, 34]. For instance, the recent

study by Gill et al. [17] shows that failures can reduce delivered

traffic by up to 40% despite built-in redundancy.

Broadly speaking, the prior work on addressing ECMP’s short-

comings can be classified as either centralized scheduling (e.g.,

Hedera [2]), local switch mechanisms (e.g., Flare [27]), or host-

based transport protocols (e.g., MPTCP [41]). These approaches

all have important drawbacks. Centralized schemes are too slow

for the traffic volatility in datacenters [28, 8] and local congestion-

aware mechanisms are suboptimal and can perform even worse

than ECMP with asymmetry (§2.4). Host-based methods such as

MPTCP are challenging to deploy because network operators often

do not control the end-host stack (e.g., in a public cloud) and even

when they do, some high performance applications (such as low

latency storage systems [39, 7]) bypass the kernel and implement

their own transport. Further, host-based load balancing adds more

complexity to an already complex transport layer burdened by new

requirements such as low latency and burst tolerance [4] in data-

centers. As our experiments with MPTCP show, this can make for

brittle performance (§5).

Thus from a philosophical standpoint it is worth asking: Can

load balancing be done in the network without adding to the com-

plexity of the transport layer? Can such a network-based approach

compute globally optimal allocations, and yet be implementable in

a realizable and distributed fashion to allow rapid reaction in mi-

croseconds? Can such a mechanism be deployed today using stan-

dard encapsulation formats? We seek to answer these questions

in this paper with a new scheme called CONGA (for Congestion

Aware Balancing). CONGA has been implemented in custom ASICs

for a major new datacenter fabric product line. While we report on

lab experiments using working hardware together with simulations

and mathematical analysis, customer trials are scheduled in a few

months as of the time of this writing.

Figure 1 surveys the design space for load balancing and places

CONGA in context by following the thick red lines through the de-

sign tree. At the highest level, CONGA is a distributed scheme to

allow rapid round-trip timescale reaction to congestion to cope with

bursty datacenter traffic [28, 8]. CONGA is implemented within the

network to avoid the deployment issues of host-based methods and

additional complexity in the transport layer. To deal with asymme-

try, unlike earlier proposals such as Flare [27] and LocalFlow [44]

that only use local information, CONGA uses global congestion

information, a design choice justified in detail in §

2.4.
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