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Every component can fail

® Data plane (e.g. physical equipment failures)

o (Control plane (e.g. software bug)

® Management plane (e.g. human error updating configs)
“The presence of persistent loops of durations on the
order of hours is quite surprising, and suggests a lack of
good tools for diagnosing network problems.” — Paxson

Diverse ways problems can manifest

downtime

congestion, quality of service degradation
“grey” failures

“This app is slow; what’s wrong?”




What is the management plane!? [Naen.ﬁ%

Unified system vs. custom architecture [David]

Software bugs will increase. Simulate? [Ashwini]

® See: CrystalNet (SOSP’17)
What'’s the frequency of failures? [Liia]

Surprising that failures evenly distributed [Shivam]




103 types of failures: Hard to focus!

® Though, knowing the frequency might help...

High rate of change (58 MOps/wk was typical)

Sequence of multiple software bugs often the culprit

® c.g. failover timer too slow => split brain in OFCs =>
OFC software bug causing inconsistent state
® Not as unlikely as you might think!

Need for more than monitoring

® root cause analysis
® automated response




Highly Available Routing



Reliability problems in Internet routing

® Basic issue: controlling a distributed system =>
inconsistent state across routers => |loops, black holes
® Also in link state, distance vector

Problem: control plane is slow...

e Control plane routing does eventually converge!
® But may take |00s of milliseconds (milliseconds possible
after careful tuning of protocol timers & algorithms™)

...and data plane is fast

® Sending 50 byte packet at 40 Gbps = |0 nanoseconds

*“Toward Millisecond IGP Convergence”, Cengiz Alaettinoglu,Van Jacobson, Haobo Yu, in NANOG 20, October 2000



Reliability in the data plane

Fast path (data plane) needs failure reaction!

Rest of this lecture: building a solution



Technigues in practice

Equal Cost Multipath (ECMP)

e Control plane produces not one next-hop, but many
® Next hops must be closer to destination (so no loops)
® Data plane sends packet to any next-hop that’s working



How many next-hops in ECMP?
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Equal Cost Multipath (ECMP)

Control plane produces not one next-hop, but many
Next hops must be closer to destination (so no loops)
Data plane sends packet to any next-hop that’s working
Defeated by even a single link failure in some cases

MPLS Fast Re-Route link protection

e Explicit backup path for each failure case (link or node
failure)




MPLS FRR Link Protection




Equal Cost Multipath (ECMP)

Control plane produces not one next-hop, but many
Next hops must be closer to destination (so no loops)
Data plane sends packet to any next-hop that’s working
Defeated by even a single link failure

MPLS Fast Re-Route link protection

Explicit backup path for each link
Protects against single failure scenario
(shared risk link group)

® Uses more FIB entries
Not shortest alternate path




DOOMED!! ... ?

Holy Grail:“Ideal connectivity”

® Data plane always correctly forwards packets towards
destination, even with arbitrary link failures

s it possible!?

® Yes!

o BGP OSPERIP ISIS, ..., all have loops & black holes during
convergence, ultimately causing packet loss

e But that is not fundamentally necessary!

5 minutes in small group:

Devise a correct solution




Ideal connectivity

5 minutes in small group:
Devise a correct solution

|. Every packet is eventually forwarded to destination
correctly

® Assume: arbitrary failures, but a path exists
® Assume: no congestion or physical layer problems

2. Simple technique implementable in data plane

® Feel free to play with packet header formats, protocols,
etc.



Achieving 1deal connectivity



Ideal connectivity: correct, but... | [

The random walk

e |[f failure encountered, set a “random walk” bit in packet

® Whenever packet has random walk bit, send to random
neighbor

e Slightly silly solution
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® |ink state routing + link failure info carried inside packet

® Router recomputes shortest paths on the fly given new
information inside packet

Key points

® Separate two functions: long-term topology distribution,
handling transient changes

® Trick: carry topology updates in packet

® Demonstrates feasibility of ideal connectivity
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® Router recomputes shortest paths on the fly given new
information inside packet

Difficult for data plane.
Key points Can we do better?

® Separate two functions: long-term topology distribution,
handling transient changes

® Trick: carry topology updates in packet

® Demonstrates feasibility of ideal connectivity
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Link reversal algorithms

For each destination: begin with a directed acyclic
graph (DAG) where destination is the sole sink

® dest.
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At each node:

® |[f ever all links point inward,
- Reverse all links

® dest.
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Link reversal algorithms

At each node:

® |[f ever all links point inward,
- Reverse all links

Whew! Done!

In the end, only one link

flipped!



Proof

Define stable node: no more reversals
Destination is always stable
If node x reverses adjacent to stable node y, then x also
becomes stable
® Thus the stable set eventually expands to include all
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Let’s return to the beginning before convergence...
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Guaranteed to converge

Proof

Define stable node: no more reversals
Destination is always stable
If node x reverses adjacent to stable node y, then x also
becomes stable
® Thus the stable set eventually expands to include all
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Guaranteed to converge

Proof

Define stable node: no more reversals
Destination is always stable
If node x reverses adjacent to stable node y, then x also
becomes stable
® Thus the stable set eventually expands to include all
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Guaranteed to converge

Proof

Define stable node: no more reversals
Destination is always stable
If node x reverses adjacent to stable node y, then x also
becomes stable
® Thus the stable set eventuallexpands to include all

Whew! Done!




No: Protocol not yet suitable for the data plane

To reverse links, we assumed:

® router can create new control messages (‘‘reverse this
link™) in the fast path
® these control messages arrive instantly and reliably
® router has perfect information about distributed state!
- link reversal state depends on if the other end has
reversed it

Back where we started?




N
Key architectural point T ——

® Make connectivity the job of the data plane
e Optimality (e.g. shortest paths) is still the job of the
control plane

Problem

® [R requires sending control messages & distributed
agreement on link direction — too slow for the data
plane




Key algorithmic idea

® Allow stale info about link directions

® Fach node can unilaterally reverse; notify neighbors later!

® Notification piggybacked on data packets using one-bit
version number

Properties

® Strangely, this works...
e All events triggered by pkt arrival; no extra pkts created
® Simple bit manipulation operations




Stretch: DDC vs. MPLS

No guarantees on stretch, but empirically it’s good
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Figure 3: CDF of steady state stretch for

MPLS FRR and DDC 1n AS2914.



Networks are messy and opaque

® Empirically, unreliability is common

® End-to-end measurements provide a view “inside the
black box”

Highly reliable routing is possible

® requires failure response in the data plane
® single-failure protection practical, with backup paths
® surprisingly, ideal connectivity is achievable

But even that is just one of many components!




Two key goals

® Benchmark: Demonstrate concrete progress
® Feedback & discussion with your peers

Content

What problem are you solving?

Why has past work not addressed the problem?
What is your approach for solving it?

What are your preliminary results & progress!?

Logistics

® |0 minutes total: 6:40 min presentation + 4 min discuss
® PechaKucha format; 20 slides x 20 seconds, auto-advance




