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Network reliability in context

Every component can fail

• Data plane (e.g. physical equipment failures)
• Control plane (e.g. software bug)
• Management plane (e.g. human error updating configs)

- “The presence of persistent loops of durations on the 
order of hours is quite surprising, and suggests a lack of 
good tools for diagnosing network problems.” – Paxson

Diverse ways problems can manifest

• downtime
• congestion, quality of service degradation
• “grey” failures
• “This app is slow; what’s wrong?”



“Evolve or Die” discussion

What is the management plane? [Nathan]

Unified system vs. custom architecture [David]

Software bugs will increase. Simulate? [Ashwini]

• See: CrystalNet (SOSP’17)

What’s the frequency of failures? [Liia]

Surprising that failures evenly distributed [Shivam]

Evolve or Die: High-Availability Design 

Principles Drawn from Google’s 
Network Infrastructure

Govindan, Minei, Kallahalla, Koley, Vahdat
SIGCOMM 2016



“Evolve or Die”: My thoughts

103 types of failures: Hard to focus!

• Though, knowing the frequency might help…

High rate of change (58 MOps/wk was typical)

Sequence of multiple software bugs often the culprit

• e.g. failover timer too slow => split brain in OFCs => 
OFC software bug causing inconsistent state

• Not as unlikely as you might think!

Need for more than monitoring

• root cause analysis
• automated response



Highly Available Routing



Control & data speeds don’t match

Reliability problems in Internet routing

• Basic issue: controlling a distributed system => 
inconsistent state across routers => loops, black holes

• Also in link state, distance vector

Problem: control plane is slow...

• Control plane routing does eventually converge!
• But may take 100s of milliseconds (milliseconds possible 

after careful tuning of protocol timers & algorithms*)

...and data plane is fast

• Sending 50 byte packet at 40 Gbps = 10 nanoseconds
* “Toward Millisecond IGP Convergence”, Cengiz Alaettinoglu, Van Jacobson, Haobo Yu, in NANOG 20, October 2000



Reliability in the data plane

Fast path (data plane) needs failure reaction!

Rest of this lecture: building a solution



Techniques in practice

Equal Cost Multipath (ECMP)

• Control plane produces not one next-hop, but many
• Next hops must be closer to destination (so no loops)
• Data plane sends packet to any next-hop that’s working



this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.
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provenance (§4.1.2) because while it doesn’t prove to
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To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:
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Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.
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provenance (§4.1.2) because while it doesn’t prove to
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3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
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implementation is entirely stateless and, thus, is itself
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when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.
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Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
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Techniques in practice

Equal Cost Multipath (ECMP)

• Control plane produces not one next-hop, but many
• Next hops must be closer to destination (so no loops)
• Data plane sends packet to any next-hop that’s working
• Defeated by even a single link failure in some cases

MPLS Fast Re-Route link protection

• Explicit backup path for each failure case (link or node 
failure)



MPLS FRR Link Protection
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Techniques in practice

Equal Cost Multipath (ECMP)

• Control plane produces not one next-hop, but many
• Next hops must be closer to destination (so no loops)
• Data plane sends packet to any next-hop that’s working
• Defeated by even a single link failure

MPLS Fast Re-Route link protection

• Explicit backup path for each link
• Protects against single failure scenario 

(shared risk link group)
• Uses more FIB entries
• Not shortest alternate path

X



DOOMED!! .... ?

Holy Grail: “Ideal connectivity”

• Data plane always correctly forwards packets towards 
destination, even with arbitrary link failures

Is it possible?

• Yes!
• BGP, OSPF, RIP, ISIS, ..., all have loops & black holes during 

convergence, ultimately causing packet loss
• But that is not fundamentally necessary!

5 minutes in small group:
Devise a correct solution



Ideal connectivity

1. Every packet is eventually forwarded to destination 
correctly

• Assume: arbitrary failures, but a path exists
• Assume: no congestion or physical layer problems

2. Simple technique implementable in data plane

• Feel free to play with packet header formats, protocols, 
etc.

5 minutes in small group:
Devise a correct solution



Achieving ideal connectivity



Ideal connectivity: correct, but...

The random walk

• If failure encountered, set a “random walk” bit in packet
• Whenever packet has random walk bit, send to random 

neighbor
• Slightly silly solution



Failure-carrying packets (FCP)

Approach

• Link state routing + link failure info carried inside packet
• Router recomputes shortest paths on the fly given new 

information inside packet

Key points

• Separate two functions: long-term topology distribution, 
handling transient changes

• Trick: carry topology updates in packet
• Demonstrates feasibility of ideal connectivity

Achieving convergence-free routing 

using failure-carrying packets
Lakshminarayanan, Caesar, Rangan, 

Anderson, Shenker, StoicaSIGCOMM 2007



Failure-carrying packets (FCP)

Approach

• Link state routing + link failure info carried inside packet
• Router recomputes shortest paths on the fly given new 

information inside packet

Key points

• Separate two functions: long-term topology distribution, 
handling transient changes

• Trick: carry topology updates in packet
• Demonstrates feasibility of ideal connectivity

Difficult for data plane.
Can we do better?

Achieving convergence-free routing 

using failure-carrying packets
Lakshminarayanan, Caesar, Rangan, 

Anderson, Shenker, StoicaSIGCOMM 2007



Distributed algorithms for 

generating loop-free routes 

in networks with frequently 

changing topology

Gafni and Bertsekas

IEEE Trans. on 

Communications, 1981
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Link reversal algorithms

dest.

For each destination: begin with a directed acyclic 
graph (DAG) where destination is the sole sink



At each node:

• If ever all links point inward,
- Reverse all links

Link reversal algorithms
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At each node:

• If ever all links point inward,
- Reverse all links

Link reversal algorithms
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Whew! Done!
In the end, only one link 
flipped!



Proof

• Define stable node: no more reversals
• Destination is always stable
• If node x reverses adjacent to stable node y, then x also 

becomes stable
• Thus the stable set eventually expands to include all

Guaranteed to converge

dest.

X

X

Let’s return to the beginning before convergence...
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Done!! ... please?

No: Protocol not yet suitable for the data plane

To reverse links, we assumed:

• router can create new control messages (“reverse this 
link”) in the fast path

• these control messages arrive instantly and reliably
• router has perfect information about distributed state!

- link reversal state depends on if the other end has 
reversed it

Back where we started?



DDC: LR in the data plane

Key architectural point

• Make connectivity the job of the data plane
• Optimality (e.g. shortest paths) is still the job of the 

control plane

Problem

• LR requires sending control messages & distributed 
agreement on link direction – too slow for the data 
plane

Data-Driven ConnectivityLiu, Panda, Singla, Godfrey, 
Schapira, ShenkerNSDI 2013



DDC: LR in the data plane

Key algorithmic idea

• Allow stale info about link directions
• Each node can unilaterally reverse; notify neighbors later!
• Notification piggybacked on data packets using one-bit 

version number

Properties

• Strangely, this works...
• All events triggered by pkt arrival; no extra pkts created
• Simple bit manipulation operations



Stretch: DDC vs. MPLS

Figure 1: Median and 99th percentile stretch
for AS1239.

Figure 2: Median and 99th percentile stretch
for a FatTree
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Figure 3: CDF of steady state stretch for
MPLS FRR and DDC in AS2914.

length of the path the packet takes. Subsequent packets
use different paths as DDC routed around the failures.

Figures 1 and 2 show stretch for a series of such packets,
either with 1 or 10 links failed. We tested a wider range
of link failures, but these graphs are representative of the
results. As expected, the initial stretch is dependent on
the number of links failed, for instance the 99th percentile
stretch for AS1239 with 10 link failures is 14. However,
paths used rapidly converge to near-optimal.

We compare DDC’s steady-state stretch with that of
MPLS link protection [25]. Link protection, as commonly
deployed in wide-area networks, assigns a backup path
around a single link, oblivious of the destination6. We
use the stretch-optimal strategy for link protection: the
backup path for a link is the shortest path connecting its
two ends. Figure 3 shows this comparison for AS2914.
Clearly, path elongation is lower for DDC. We also note
that link protection does not support multiple failures.

4.2.2 Packet Latency
In addition to path lengths, DDC may also impact packet
latency by increasing queuing at certain links as it moves
packets away from failures. While end-to-end congestion
control will eventually relieve such queuing, we measure
the temporary effect by comparing the time taken to de-
liver a packet before and after a failure.

To measure packet latencies, we used 10 random source
nodes sending 1GB of data each to a set of randomly
chosen destinations. The flows were rate limited (since
we were using UDP) to ensure that no link was used at
anything higher than 50% of its capacity, with the majority
of links being utilized at a much lower capacity. For
experiments with AS topologies, we set the propagation
delay to 10ms, to match the order of magnitude for a
wide area network, while for datacenter topologies, we
adjusted propagation delay such that RTTs were ⇠250µs,
in line with previously reported measurements [5, 36].

For each source destination pair we measure baseline
latency as an average over 100 packets. We then measure

6Protecting links in this manner is the standard method used in wide-
area networks, for instance [6], states “High Scalability Solution—The
Fast Reroute feature uses the highest degree of scalability by supporting
the mapping of all primary tunnels that traverse a link onto a single
backup tunnel. This capability bounds the growth of backup tunnels
to the number of links in the backbone rather than the number of TE
tunnels that run across the backbone.”

the latency after failing a set of links. Figure 4 shows
the results for AS2914, and indicates that over 80% of
packets encounter no increase in latency, and independent
of the number of failures, over 96% of packets encounter
only a modest increase in latency. Similarly, Figure 5
shows the same result for a Fat Tree topology, and shows
that over 95% of the packets see no increased latency. In
the 2 failure case, over 99% of packets are unaffected.

4.2.3 TCP Throughput and FIB Update Delay
Ideally, switches would execute DDC’s small state up-
dates at line rate. However, this may not always be fea-
sible, so we measure the effects of delayed state updates.
Specifically, we measure the effect of additional delay in
FIB updates on TCP throughput in wide-area networks.

We simulated a set of WAN topologies with 1 Gbps
links (for ease of simulation). For each test we picked
a set of 10 source-destination pairs, and started 10 GB
flows between them. Half-a-second into the TCP transfer,
we failed between 1 and 5 links (the half-a-second dura-
tion was picked so as to allow TCP congestion windows
to converge to their steady state), and measured overall
TCP throughput. Our results are shown in Figure 6, and
indicate that FIB delay has no impact on TCP throughput.

4.3 Macrobenchmarks
We also simulated DDC’s operation in a datacenter, us-
ing a fat-tree topology with 8-port switches. To model
failures, we used data on the time it takes for datacen-
ter networks to react to link failures from Gill et al [11].
Since most existing datacenters do not use any link protec-
tion scheme, relying instead on ECMP and the plurality
of paths available, we use a similar multipath routing
algorithm as our baseline.

For our workload, we used partition-aggregate as pre-
viously described in DCTCP [2]. This workload consists
of a set of background flows, whose size and interarrival
frequencies we get from the original paper, and a set of
smaller, latency sensitive, request queries. The request
queries proceed by having a single machine send a set of
8 machines a single small request packet, and then receiv-
ing a 2 KB response in return. This pattern commonly
occurs in front-end datacenters, and a set of such requests
are used to assemble a single page. We generated a set
of such requests, and focused on the percentage of these

8

No guarantees on stretch, but empirically it’s good



Take-aways

Networks are messy and opaque

• Empirically, unreliability is common
• End-to-end measurements provide a view “inside the 

black box”

Highly reliable routing is possible

• requires failure response in the data plane
• single-failure protection practical, with backup paths
• surprisingly, ideal connectivity is achievable

But even that is just one of many components!



Next week: Project presentations

Two key goals

• Benchmark: Demonstrate concrete progress
• Feedback & discussion with your peers

Content

• What problem are you solving?
• Why has past work not addressed the problem?
• What is your approach for solving it?
• What are your preliminary results & progress?

Logistics

• 10 minutes total: 6:40 min presentation + 4 min discuss
• PechaKucha format: 20 slides x 20 seconds, auto-advance


