Capturing Intent

Brighten Godfrey CS 538 March 5, 2018

slides ©2010-2018 by Brighten Godfrey Except As Otherwise Noted

Two key goals

- Benchmark: Demonstrate concrete progress
- Feedback & discussion with your peers

Content

- What problem are you solving?
- Why has past work not addressed the problem?
- What is your approach for solving it?
- What are your preliminary results & progress?

Logistics

- I0 minutes total: 6:40 min presentation + 4 min discuss
- PechaKucha format: 20 slides x 20 seconds, auto-advance

We need networks that are

- Flexible
 - As adaptable and programmable as a well-designed software system
- Intuitive
 - Given a high level goal, the details are automated

Network Updates

Slides courtesy Nate Foster

Abstractions for Network Update

Nate Foster Mark Reitblatt

5

Updates Happen

Network Updates Are Hard

Network Update Abstractions

Goal

Tools for whole network update

Our Approach

- Develop update abstractions
- Endow them with strong semantics
- Engineer efficient implementations

Example: Distributed Access Control

Naive Update

Use an Abstraction!

Q: What's the right order to update?

A: Even atomic update doesn't work!

Per-Packet Consistent Updates

Per-Packet Consistent Update

Each packet processed with old or new configuration, but not a mixture of the two.

Security Policy

Src	Traffic	Action
	Web	Allow
	Non-web	Drop
	Any	Allow

Universal Property Preservation

Theorem: Per-packet consistent updates preserve all trace properties.

Trace Property Any property of a *single* packet's path through the network.

Examples of Trace Properties:

Loop freedom, access control, waypointing ...

Trace Property Verification Tools: Anteater, Header Space Analysis, ConfigChecker...

Formal Verification

Verification Tools

- Anteater [SIGCOMM '11]
- Header Space Analysis [NSDI '12]
- ConfigChecker [ICNP '09]

MECHANISMS

2-Phase Update

Overview

- Runtime instruments configurations
- Edge rules stamp packets with version
- Forwarding rules match on version

Algorithm (2-Phase Update)

- 1. Install new rules on internal switches, leave old configuration in place
- 2. Install edge rules that stamp with the new version number

2-Phase Update in Action

Optimized Mechanisms

Optimizations

- Extension: strictly adds paths
- Retraction: strictly removes paths
- Subset: affects small # of paths
- Topological: affects small # of switches

Runtime

- Automatically optimizes
- Power of using abstraction

IMPLEMENTATION & EVALUATION

Implementation

Runtime

- NOX Library
 - OpenFlow 1.0
- 2.5k lines of Python
- update(config, topology)
 - Uses VLAN tags for versions
- Automatically applies optimizations

Verification Tool

- Checks OpenFlow configurations
- CTL specification language
- Uses NuSMV model checker

Evaluation

Question: How much extra rule space is required?

Setup

Mininet VM

Applications

Routing and Multicast

Scenarios

- Adding/removing hosts
- Adding/removing links
- Both at the same time

Fattree

Small-world

Waxman

Results: Routing Application

Propane

Propane: Key Concepts

Don't Mind the Gap: Bridging Networkwide Objectives and Device-level Configurations Beckett, Mahajan, Millstein, Padhye, Walker SIGCOMM 2016

Capabilities

- Ability to express network-wide goals
- Domain-specific language to describe policy conveniently
- Compiled to distributed control plane configurations (BGP)

Propane product graphs

Policy Automata

[Figure from Propane paper]

How broad is the policy coverage?

Did they solve the configuration complexity problem?

Does the Propane system help detect errors?

OpenConfig

- Industry effort to abstract vendor-specific details
- Analogous to Propane's ABGP

OpenStack Congress [<u>https://wiki.openstack.org/wiki/</u> <u>Congress</u>]

- "App A is only allowed to communicate with app B."
- "Virtual machine owned by tenant A should always have a public network connection if tenant A is part of the group B."
- "Virtual machine A should never be provisioned in a different geographic region than storage B."

"Intent-based networking"

 Category of industry products aiming to help control and verify networks based on network-wide business goals

High-level abstractions for flexible programmability a grand challenge for networking

- What can people use? Who is doing the programming?
- Does different hardware change the abstraction?
- Can we carve out killer apps?