
Capturing Intent
Brighten Godfrey

CS 538 March 5, 2018

slides ©2010-2018 by Brighten Godfrey Except As Otherwise Noted

Project Midterm Presentations

Two key goals

• Benchmark: Demonstrate concrete progress
• Feedback & discussion with your peers

Content

• What problem are you solving?
• Why has past work not addressed the problem?
• What is your approach for solving it?
• What are your preliminary results & progress?

Logistics

• 10 minutes total: 6:40 min presentation + 4 min discuss
• PechaKucha format: 20 slides x 20 seconds, auto-advance

Grand Challenge: Capturing Intent

We need networks that are

• Flexible
- As adaptable and programmable as a well-designed

software system

• Intuitive
- Given a high level goal, the details are automated

Network Updates

Slides courtesy
Nate Foster

Abstractions for Network Update

Nate Foster
Mark Reitblatt

Jen Rexford
Cole Schlesinger

Dave Walker

5

Updates Happen

Desired Invariants
•No black-holes
•No loops
•No security

violations

Network Updates
• Maintenance
• Failures
• ACL Updates

6

Network Updates Are Hard

7

Goal
•Tools for whole network update

Our Approach
•Develop update abstractions
•Endow them with strong semantics
•Engineer efficient implementations

Network Update Abstractions

8

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Web:"✓
✱:"✕Web:"✓

 ✱:"✕

Security Policy
Src Traffic Action

Web Allow
Non-web Drop
Any Allow

OpenFlow Switch

Example: Distributed Access Control

OpenFlow Switch

OpenFlow Switch

Traffic

9

OpenFlow Switch

F1

F2

F3

I

✱:"✓

✱:"✓ ✱:"✓

Web:"✓
 ✱:"✕

!➔!F1!

!➔!F2,F3

 ➔!F1,F2!

!➔!F3

Security Policy
Src Traffic Action

Web Allow
Non-web Drop
Any Allow

OpenFlow Switch

Naive Update

OpenFlow Switch

OpenFlow Switch

Traffic

10

OpenFlow Switch

F1

F2

F3

I
�

 ➔!F1,F2!

!➔!F3

Web:"✓
 ✱:"✕

Web:"✓
✱:"✕

✱:"✓

✱:"✓ ✱:"✓

Web:"✓
 ✱:"✕

F1
F2
F3
I

Order

Use an Abstraction!

11

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

UPDATE

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Security Policy

✓

✓

✓

Web:"✓
✱:"✕Web:"✓

 ✱:"✕

Security Policy
Src Traffic Action

Web Allow
Non-web Drop
Any Allow

OpenFlow Switch

Q: What’s the right order to update?

OpenFlow Switch

OpenFlow Switch

Traffic

12

OpenFlow Switch

F1

F2

F3

I

✱:"✓

✱:"✓ ✱:"✓

Web:"✓
 ✱:"✕

!➔!F1!

!➔!F2,F3

 ➔!F1,F2!

!➔!F3

OpenFlow Switch

A: Even atomic update doesn’t work!

OpenFlow Switch

OpenFlow Switch

Traffic

13

OpenFlow Switch

F1

F2

F3

Security Policy
Src Traffic Action

Web Allow
Non-web Drop
Any Allow

I
�

 ➔!F1,F2!

!➔!F3

Web:"✓
 ✱:"✕

Web:"✓
✱:"✕

✱:"✓

✱:"✓ ✱:"✓

Web:"✓
 ✱:"✕

!➔!F1!

!➔!F2,F3

Security Policy
Src Traffic Action

Web Allow
Non-web Drop
Any Allow

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Per-Packet Consistent Updates

Obeys policy:

Obeys policy:

14

Per-Packet Consistent Update
Each packet processed with old or new configuration,
but not a mixture of the two.

Universal Property Preservation

Trace Property
Any property of a single packet’s path through the network.

Theorem: Per-packet consistent updates preserve
all trace properties.

15

Examples of Trace Properties:
 Loop freedom, access control, waypointing ...

Trace Property Verification Tools:
 Anteater , Header Space Analysis, ConfigChecker ...

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Formal Verification

Corollary: To check an invariant, verify the old
and new configurations.

16

✓Analyzer ✓AnalyzerSecurity PolicySecurity Policy

Verification Tools
• Anteater [SIGCOMM ’11]
• Header Space Analysis [NSDI ’12]
• ConfigChecker [ICNP ’09]

MECHANISMS

17

2-Phase Update

2-Phase Update

Overview
• Runtime instruments configurations
• Edge rules stamp packets with version
• Forwarding rules match on version

Algorithm (2-Phase Update)
1. Install new rules on internal switches, leave

old configuration in place
2. Install edge rules that stamp with the new

version number

18

update(config,topo)

Calculate rules,
generate messsages

Application

OpenFlow Switch

2-Phase Update in Action

OpenFlow Switch

OpenFlow Switch

Traffic

19

OpenFlow Switch

F1

F2

F3

I

 ➔!F1,F2! !

!➔!F3!

,Web:&✓
,&✱ :&✕

,Web:&✓
,&✱:&✕

,✱:#✓ ,✱:#✓

,✱:#✓,Web:&✓
,&✱ :&✕

!➔!F1! !

!➔!F2,F3!

Optimized Mechanisms

Optimizations
•Extension: strictly adds paths
•Retraction: strictly removes paths
•Subset: affects small # of paths
•Topological: affects small # of

switches

Runtime
•Automatically optimizes
•Power of using abstraction

20

update(config,topo)

Calculate rules,
generate messsages

Runtime

Application

IMPLEMENTATION
&

EVALUATION

21

Implementation

22

Runtime
• NOX Library

• OpenFlow 1.0
• 2.5k lines of Python
• update(config,	topology)

• Uses VLAN tags for versions
• Automatically applies optimizations

Verification Tool
• Checks OpenFlow configurations
• CTL specification language
• Uses NuSMV model checker

update(config,topo)

OpenFlow

OpenFlow

OpenFlow

NOX Controller

Runtime

Application

Evaluation

Setup
• Mininet VM
Applications
• Routing and Multicast
Scenarios
• Adding/removing hosts
• Adding/removing links
• Both at the same time

23

Fattree

Small-world Waxman

Question: How much extra rule space is required?

Topologies

Results: Routing Application

Fattree Small-world Waxman

24

W
or

st
-C

as
e

R
ul

e
O

ve
rh

ea
d

0%

25%

50%

75%

100%

Host Link Both Host Link Both Host Link Both

Full
Subset

Propane

Propane: Key Concepts

Capabilities

• Ability to express network-wide goals
• Domain-specific language to describe policy conveniently
• Compiled to distributed control plane configurations

(BGP)

Internal design

Don’t Mind the Gap: Bridging Network-wide Objectives and Device-level ConfigurationsBeckett, Mahajan, Millstein, Padhye, WalkerSIGCOMM 2016

The NoTrans constraint requires that all traffic not follow a
path that transits our network between Peer and Prov. Ad-
ditionally, it prevents traffic from ever following paths that
leave our network and later go through both Prov and Cust.
To implement both Routing and NoTrans simultaneously,
we simply conjoin them: Routing & NoTrans.

Collectively, the constraints above capture the entire pol-
icy. From them, our compiler will generate per-device im-
port and export filters, local preferences, MED attributes,
and community tags to ensure that the policy is implemented
correctly under all failures.

4.2 Example 2: The datacenter
Our datacenter example network has three main concerns:

(1) traffic for the prefix allocated to each top-of-rack router
must be able to reach that router, (2) local services must not
leak outside the datacenter, and (3) aggregation must be per-
formed on global prefixes to reduce churn in the network.

Propane allows modular specification of each of these
constraints. The first constraint is about prefix ownership—
we want traffic only for certain prefixes to end up at a partic-
ular location. The following definition captures this intent.

define Ownership =
{PG1 => end(A)
PG2 => end(B)
PL1 => end(E)
PL2 => end(F)
true => end(out)}

This definition says that traffic for prefix PG1 is allowed to
follow only paths that end at router A; traffic for PG2, but not
PG1, must end at router B; and so on. Any traffic destined for
a prefix that is not a part of the datacenter should be allowed
to leave the datacenter and end at some external location,
which is otherwise unconstrained. The special keyword out
matches any location outside the datacenter network, while
the keyword in will match any location inside the network.

For the second constraint, we define another policy:

define Locality =
{PL1 | PL2 => only(in)}

This definition says that traffic for local prefixes only follows
paths that are internal to the network at each hop. This con-
straint guarantees that the services remain accessible only to
locations inside the datacenter.

As in the backbone example, we can logically conjoin
these constraints to specify the network-wide policy. How-
ever, in addition to constraints on the shape of paths, Propane

allows the operator to specify constraints on the BGP con-
trol plane itself. For instance, a constraint on aggregation
is included to ensure that aggregation for global prefixes is
performed from locations inside (in) the network to loca-
tions outside (out). In this case, PG1 and PG2 will use the
aggregate PG (which we assume is defined earlier) when ad-
vertised outside the datacenter.

Ownership & Locality & agg(PG, in -> out)

Figure 3: Compilation pipeline stages for Propane.

Once Propane compiles the policy, it is guaranteed to re-
main compliant under all possible failure scenarios, modulo
any aggregation-induced black holes. In the presence of ag-
gregation, the Propane compiler will also efficiently find a
lower bound on the number of failures required to create an
aggregation-induced black hole.

5. COMPILATION
The examples above use what we call the front end (FE)

of Propane. It simplifies operators’ task of describing pre-
ferred paths, but that simplicity comes at the cost of compila-
tion complexity. The compiler must efficiently compute the
sets of paths represented by the intersection of preferences
and topology and ensure policy compliance under all failure
scenarios.

To handle these challenges, we decompose compilation
into multiple stages, shown in Figure 3, and develop efficient
algorithms for the translation between stages. The first stage
of the pipeline involves simple rewriting rules and substitu-
tions from the FE to the core Regular Intermediate Represen-
tation (RIR). Policies in RIR are checked well-formedness
(e.g., never constraining traffic that does not enter the net-
work), before being combined with the topology to obtain
the Product Graph Intermediate Representation (PGIR). The
PGIR is a data representation that compactly captures the
flow of BGP announcements subject to the policy and topol-
ogy restrictions. We develop efficient algorithms that op-
erate over the PGIR to ensure policy compliance under fail-
ures, avoid BGP instability, and prevent aggregation-induced
black holes. Once the compiler determines safety, it trans-
lates the PGIR to an abstract BGP (ABGP) representation.
ABGP can then be translated into various vendor-specific
device configurations as needed.

5.1 Regular IR (RIR)
The Propane FE is just a thin layer atop the RIR for de-

scribing preference-based path constraints. Figure 4 shows
the RIR syntax. A policy has one or more constraints. The
first kind of constraint is a test on the type of route and a cor-
responding set of preferred regular paths. Regular paths are
regular expressions where the base characters are abstract
locations representing either a router or an external AS. Spe-
cial in and out symbols refer to any internal or external
location respectively. In addition, ⌃ refers to any location.
We also use the standard regular expression abbreviation r

+

for r ·r⇤, a sequence of one or more occurrences of r. Predi-
cates (t) consist of logical boolean connectives (and, or, not)

Propane product graphs

Topology

Policy Automata

0 1 2 3 4 5

out D C A W

0 1 2 3 4
out in

A,C,D,E

B

B

A,C,D,E

W

Product Graph IR

Figure 5: Product graph construction for policy (W · A · C · D · out)»(W · B · in+ · out).

nism forces an AS to reject any route that is already in the
AS path. For example, in Figure 5, the path W ·A ·C ·B ·W
is a valid topological path, leading to a path that satisfies the
preference 2 policy, but which contains a loop.

We use graph dominators [21] as a relatively cheap ap-
proximation for removing many nodes and edges in the PGIR
that are never on any simple (loop free) path between the
start and end nodes. In the PGIR, a node m dominates a
node n if m appears on every path leading from the start
node to n. Similarly, a node m post-dominates a node n in
the PGIR if m appears on every path from n to the end node.
We can safely remove nodes and edges in the PGIR when
any of the following conditions hold, where we have m, m0

and n, n0 such that m ⇡ m

0 and n ⇡ n

0.

• Remove m if it is not reachable from the start node
• Remove m if it can not reach the end node
• Remove m if it is (post-)dominated by some m

0

• Remove edge (m, n) if some m

0 post-dominates n
• Remove edge (m, n) if some n

0 dominates m

For example, node (W, 1, 1) in Figure 5 is removed because
every path to the end node must always go through node
(W,�, 4). That is, node (W, 1, 1) is post-dominated by node
(W,�, 4) and both are shadows of topology location W .

We repeatedly apply the minimizations above until no fur-
ther minimization is possible. In the example from Figure 5,
colored nodes and dashed edges show edges and nodes re-
moved after minimization.

5.3 Failure-safety analysis
To implement path preferences in routing, BGP uses lo-

cal preferences on a per-device basis. However, the dis-
tributed nature of BGP makes setting preferences locally to
achieve a network-wide routing policy difficult. This task
becomes even more challenging in the presence of failures
since routers running BGP lack a global view of the network.

An illustrative example. To demonstrate the difficulty of
generating device-local preferences, consider the simple pol-
icy for the topology in Figure 6, which says to prefer the top
path over the bottom path: (A · B · D · E · G)»(A · C · D · F · G).
How could such a policy be implemented in BGP? Suppose
we set the local preferences to have D prefer E over F , and
have A prefer B over C. This works as expected under nor-
mal conditions, however, if the A–B link fails, then suddenly
D has made the wrong decision by preferring E. Traffic will
now follow the A ·C ·D ·E ·G path, even though this path
was not allowed by the policy. Thus, the distributed imple-
mentation has used a route that is not allowed by the policy.
To make matters worse, the second preference for the path
A · C · D · F · G is available in the network but not being
used. Thus, a path for the best possible route available af-
ter the A–B failure exists in the network, but the distributed
implementation will not find it. The first problem could be
fixed by tagging and filtering route advertisements appropri-
ately so that C rejects routes that go through E, however the
second problem cannot be fixed. In fact, this policy cannot
be implemented in BGP in a way that is policy compliant
under all failures since D cannot safely choose between E

and F without knowing whether the A–B link is available.

Problem formulation. The problem of determining local
preferences for each router is reflected in the structure of the
PGIR. Whenever a given router appears as multiple shadow
nodes in the PGIR, the compiler must decide which shadow
to prefer. In the example from Figure 5, the topology node
C can receive an advertisement from E in shadow (C,�, 2)
or from D in shadow (C, 3, 2). The compiler must deter-
mine a total ordering of shadow nodes for each router, which
reflects the relative preference of advertisements received
in each shadow and should be consistent with path ranks.
For example, if C’s shadow (C, 3, 2) can be preferred to
(C,�, 2), written as (C, 3, 2) lp (C,�, 2), C can prefer
advertisements from (D, 2, 2) over (E,�, 2). D and E tag

[Figure from Propane paper]

Propane: Discussion

How broad is the policy coverage?

Did they solve the configuration complexity problem?

Does the Propane system help detect errors?

Towards high-level abstractions

Low-level

High-level
“Make the world a better place”

Traditional device-by-device configs
(BGP, OSPF, VRRP, ECMP, …)

SDN controllers: centralized abstraction
(e.g.: state database, consistent updates)

SDN control languages
(Frenetic, NetKAT)

Network-wide declarative policy languages
(PGA, Propane, Merlin)

D
um

b
de

vi
ce

s,
sm

ar
t

co
nt

ro
lle

r

Propane

Beyond today’s research

OpenConfig

• Industry effort to abstract vendor-specific details
• Analogous to Propane’s ABGP

OpenStack Congress [https://wiki.openstack.org/wiki/
Congress]

• “App A is only allowed to communicate with app B.”
• “Virtual machine owned by tenant A should always have a

public network connection if tenant A is part of the group B.”
• “Virtual machine A should never be provisioned in a different

geographic region than storage B.”

https://wiki.openstack.org/wiki/Congress
https://wiki.openstack.org/wiki/Congress

Beyond today’s research

“Intent-based networking”

• Category of industry products aiming to help control
and verify networks based on network-wide business
goals

High-level abstractions for flexible programmability a
grand challenge for networking

• What can people use? Who is doing the programming?
• Does different hardware change the abstraction?
• Can we carve out killer apps?

