Capturing Intent

Brighten Godfrey
CS 538 March 5, 2018

slides ©2010-2018 by Brighten Godfrey Except As Otherwise Noted

Two key goals

® Benchmark: Demonstrate concrete progress
® Feedback & discussion with your peers

Content

What problem are you solving?

Why has past work not addressed the problem?
What is your approach for solving it?

What are your preliminary results & progress!?

Logistics

® |0 minutes total: 6:40 min presentation + 4 min discuss
® PechaKucha format; 20 slides x 20 seconds, auto-advance

Grand Challenge: Capturing Intent

We need networks that are

® Flexible
- As adaptable and programmable as a well-designed
software system

® [ntuitive
= Given a high level goal, the details are automated

Network Updates

Slides courtesy
Nate Foster

Abstractions for Network Update

Nate Foster Jen Rexford

Mark Reitblatt Cole Schlesinger v
Dave Walker

Updates Happen

-

Network Updates
* Maintenance |
 Failures

* ACL Updates

Desired Invariants

* No black-holes

* No loops

* No security
violations

Network Updates Are Hard

Network Update Abstractions

Goal
* Tools for whole network update

Our Approach

* Develop update abstractions
* Endow them with strong semantics
* Engineer efficient implementations

Example: Distributed Access Control

Securitv Policv

Src Traffic Action
8 Web Allow

& Non-web Drop
Any Allow

Traffic ﬁ

9

Naive Update

.

-

D

Securitv Policv

Src Traffic

Web

Action
Allow

Non-web Drop

Any

Allow

@ V

Traffic ﬁ

Order

F1

F2

F3
|

Use an Abstraction!

Securitv Policy

B

3
.

Q: What'’s the right order to update?

Securitv Policv

Src Traffic Action
8 Web Allow

& Non-web Drop
Any Allow

Traffic ﬁ

12

A: Even atomic update doesn’t work!

Traffic ﬁ

13

Securitv Policv

Src

Traffic

Web
Non-web

Any

Action
Allow
Drop

Allow

Per-Packet Consistent Updates

Per-Packet Consistent Update

Each packet processed with old or new configuration,
but not a mixture of the two.

{5)\ /‘\ Securitv Policv
Obeys policy: SN \{) Src Traffic Action
25 \\ , 8 Web Allow
‘ Non-web Drop
4 -
Any Allow

<

14

Universal Property Preservation
= S

Theorem: Per-packet consistent updates preserve
all trace properties.

Trace Property
Any property of a single packet’s path through the network.

Examples of Trace Properties:
Loop freedom, access control, waypointing ...

Trace Property Verification Tools:
Anteater , Header Space Analysis, ConfigChecker ...

118

Formal Verification

Corollary: To check an invariant, verify the old
and new configurations.

\

Security Policy |- > Analyzer ‘/ Security Policy - > Analyzer /

Verification Tools

* Anteater [SIGCOMM ’11]

* Header Space Analysis [NSDI '12]
* ConfigChecker [ICNP ’09]

16

MECHANISMS

2-Phase Update

Overview
* Runtime instruments configurations
* Edge rules stamp packets with version
* Forwarding rules match on version

Algorithm (2-Phase Update)

1. Install new rules on internal switches, leave
old configuration in place

update(config,topo)

) Calculate rules,
' generate messsages

2. Install edge rules that stamp with the new
version number

18

2-Phase Update in Action

Optimized Mechanisms
e ——————————

Optimizations
e Extension: strictly adds paths
e Retraction: strictly removes paths
*Subset: affects small # of paths
 Topological: affects small # of
switches

o
Dl
at,'o
n

update(config,topo)

Runtime
e Automatically optimizes
Power of using abstraction

20

IMPLEMENTATION

&
EVALUATION

Implementation

Runtime 4
- NOX Library eatio, |
R OpenFIow 1.0 update(config,topo)
- 2.5K lines of Python
- update(config, topology)
- Uses VLAN tags for versions
- Automatically applies optimizations

Verification Tool
- Checks OpenFlow configurations
- CTL specification language
- Uses NuSMV model checker

22

Evaluation

Question: How much extra rule space is required?

Setup

- Mininet VM
Applications

- Routing and Multicast
Scenarios

- Adding/removing hosts
- Adding/removing links
- Both at the same time

Small-world

23

Topologies

==

Waxman

Results: Routing Application

100%
B Full
B Subset

©
g 75%
<
()
>
@)
@
T 50%
(¢b]
n
(4y]
Q
Iz
S 25%

0%

Host Link Both Host Link Both Host Link Both
4
PN LN
= = = -\5
e,
Fattree Small-world Waxman

24

Propane

Capabilities

e Ability to express network-wid;goals\

® Domain-specific language to describe policy conveniently
® Compiled to distributed control plane configurations

(BGP)

Internal design

Network Policy

—

Propane FE

Topology

!

RIR

Rewriting Rules +
Well-Formedness

., RBGP Control Graph

—a” Safety Analysis

Config Generation
+ Minimization

Quagga

Propane product graphs

Topology ;!j?g 0

Policy Automata

A,C,D.E B

02020700

Propane: Discussion

How broad is the policy coverage!

Did they solve the configuration complexity problem?

Does the Propane system help detect errors?

High-level
“Make the world a better place”

Propane Network-wide declarative policy languages

(PGA, Propane, Merlin)

SDN control languages
(Frenetic, NetKAT)

SDN controllers: centralized abstraction
(e.g.: state database, consistent updates)

Dumb devices, smart controller

Traditional device-by-device configs

Low-level (BGP, OSPEVRRP.ECMP....)

OpenConfig

® |[ndustry effort to abstract vendor-specific details
® Analogous to Propane’s ABGP

OpenStack Congress [https://wiki.openstack.org/wiki/

Congress]

o “App A is only allowed to communicate with app B.”

® “Virtual machine owned by tenant A should always have a
public network connection if tenant A is part of the group B.”

® “Virtual machine A should never be provisioned in a different
geographic region than storage B.”

https://wiki.openstack.org/wiki/Congress
https://wiki.openstack.org/wiki/Congress

“Intent-based networking”

e (ategory of industry products aiming to help control
and verify networks based on network-wide business
goals

High-level abstractions for flexible programmability a
grand challenge for networking

® What can people use! Who is doing the programming!?
® Does different hardware change the abstraction?
® (Can we carve out killer apps!?

