Software-Defined
Networking

Architecture

Brighten Godfrey
CS 538 February 21 2018

The Problem

Networks are complicated

® Just like any computer system
® Worse:it’s distributed

® Even worse: no clean programming APls, only “knobs and
dials™

Inside a typical enterprise network m

Mainlarge Site | o0 Buiing Madium Bullding Small Bulking Extra Small Bulkiing
N il W e/ - -‘J'— p I Y et/ = 'ZEI “m iy = [:Zl &y iy
. =t

Bnﬂlunl(:om;r — =] ml _ mn:u;-c«m«- Sorvice Block
EiEmiE = BaEE \ sl

:é-i ----- E " E‘“ [-"Hl [‘%’\“‘}‘ g..._

(o [

‘ﬁ' k i ,.=(

b2 A P . . . e
— H’m «,-..-x!,:-f"—?@ -gx!@-_'@ @ g o@D B 4s @ B gy s
Large Bulkding Meclum Bulkling Small Buldng Madium Bulking Small Bulding Small Bullding g
Remote Large Site Remote Medium Site Remote Small Site &

Source: http:/www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Medium_Enterprise_Design_Profile/MEDP/chap5.html

Inside a typical enterprise data cen

Catalyst
6500

Aggregation
Layer Nexus

ACE Asa i=ul
Module 5580 [

" B h
- /‘ \
'l~‘A l;'

_/

ACE WAF

' \"A& : 5

IDS/IPS __/:_‘/p—v —4 IDS/lPS
Access maaal SEwe St .f I-' ’)
Layer Catalyst A I Nexus Ill lll il-l!
4900s : - ’
Catalyst |||llli|||

65005 6500 VSS Catalyst 3100 VBS -

Source: http:/www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/SAFE_RG/SAFE_rg/chap4.html

Many protocols and features used “

Layer 1 protocols (physical layer)

USB Physical layer

Ethernet physical layer including 10 BASE T, 100 BASE T,100 BASE TX,100 BASE FX, 1000 BASE T and other variants
varieties of 802.11 Wi-Fi physical layers

DSL
ISDN List of protocols commonly encountered by CCNAs
T1and other T-carrier links https:/learningnetwork.cisco.com/docs/D0OC-25649

E1and other E-carrier links
Bluetooth physical layer

I\
any protocols and features used

version 12.4

service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encrgption

|

hostname PrimaryR1

|

boot—start—marker
boot—end-marker

\

!

no aad new-model

!

!

ip cef

!

interface Loopback100

no ip address

|

interface GigabitEthernet0/1
description LAN port

ip address B4 XX 255.255.255.224
ip nat inside

ip virtua\-reassemblg
duplex auto

speed auto

media-type rj4>s

no negotiation auto

standby 1ip 64XX5
standby 1 priority 105
standby 1 preempt delay minimum 60

standby 1 track Serial3/0
|

interface GigabitEthernetO/Z
description conn to Backup Lightpath
ip address 65.X.X.66 255.255.255.240
ip nat outside

ip virtuat—reassemblg

duplex full

speed 100

media-type rj4>s

no negotiation auto

|

interface GigabitEthernetO/ 3
description LAN handoff from p2P to Denver
ip address 10.30.011 255.254.0.0
duplex auto

speed auto

media-type rj45

no negotiation auto

|

interface Seriall/0

description p-2-pto Denver DC

ip address 1010101 255.255.255.252
dsu bandwidth 44210

framing c-bit

cablelength 10

clock source internal

serial restart-delay 0

|

interface Serial3/0

description DS3 X0 WAN interface

ip address 65.X.X.254 255.255.255.252
ip access-group 150 in

encapsulation ppPP

dsu bandwidth 44210

framing c-bit

cablelength 10

serial restart-delay 0
|

l

router bgp 16XX

no sgnchronization

bgp Log—neighbor—changes

network 64X X.0 mask 255.255.255.224
network 64XX2

aggregate-address 64XX.0 255.255.255.0 summarg—onlg
neighbor 64 .X.X.2 remote-as 16XX

neighbor B64XX2 next—hop—setf

neighbor 65.X1X.253 remote-as 2828
neighbor 65.XX.253 route-map setLocalpref in
neighbor 65.XX.253 route-map localonly out
no auto-summary

\

no ip http server

|

ip as-path access-list 10 permit ~S

ip nat inside source list 101 interface GigabitEthernetO/Z overload
|

access-list 101 permit ipany any

access-list 150 permit ip any any

|

route-map setLocaLpref permit 10

set local-preference 200

\

route-map localony permit 10

match as-path 10

|

control-plane

|

gatekeeper

shutdown

!

!

E:tample basic BGP+HSRP config from
ps:./www.myriadsupply.com/blog/?p=259

Change
Initiator

Change Change

(Pian Change>< et

Teat and
Validate Change

d

y

l

Create Change

Proposal {optional)

Document RFC

l

Create RFC

!

Technical Review
and Signoff

Management Implementation
:) 4 0 =
3 @ -
+Y
Assess and
| Evaluate RFC B pmmm
|
| ¥
| N Y 3
| £ #| PBnUpdates | g g
| T
: : 5
(Impement MGH 8
&
3
Y oM
SKCESST > et g
N &)
Implementation |« | Back Out Change | —sgfeiie-
ReIiew
(OloseChengD e
e

http://www.cisco.com/c/en/us/products/collateral/services/high-availability/white _paper_c11-458050.html

http://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-458050.html

 —
[I[I[Iﬂ[l[l.

http://haneke.net

Networks are complicated

® Just like any computer system
® Worse:it’s distributed
® Even worse: no clean programming APls, only “knobs and

dials”

Network equipment is proprietary

® [ntegrated solutions (software, configuration, protocol
implementations, hardware) from major vendors

Result: Hard to innovate and modify networks

Traditional network

hostname bgBdA
password zebra
]

router bgp 8000
bgp router-id 10.1.4.2

! for the 1ink between A and B
neighbor 10.1.2.3 remote-as 8000
neighbor 10.1.2.3 update-source 100

network 10.0.0.0/7

! for the 1ink between A and C
neighbor 10.1.3.3 remote-as 7000
neighbor 10.1.3.3 ebgp-multiho
neighbor 10.1.3.3 next-hop-sel
neighbor 10.1.3.3 route-map PP out

! for link between A and D
neighbor 10.1.4.3 remote-as 6000
neighbor 10.1.4.3 ebgp-multiho
neighbor 10.1.4.3 next-hop-sel
neighbor 10.1.4.3 route-map TagD in

! route update filtering
ip community-1ist 1 permit 8000:1000

device software

protocols

ostnane bgpaa
ssword zébra

outer bap 8000
bop router-id 10.1.4.2

for the Tink between A and &
neighbor 10.1.2.3 remote-as 8000
neighbor 10.1.2.3 update-source 100

network 10.0.0.0/7

for the Tink between A and C
neighbor 10.1.3.3 remote-as 701
neighbor 10.1.3.3 ebgp-mu1tihoy
neighbor 10.1.3.3 next-hop-sel
neighbor 10.1.3.3 route-nap PP out

for link between A and D
nejghbor 10.1.4.3 remote-a:

neighbor 10.1.4.3 next-hop-se

route update filtering
ip community-1ist 1 permit 8000:1000

evice software

protocols
device software

oscnane bgpaa
ssuord zebra

outer bap 8000
bgp router-id 10.1.4.2

for the Tink between A and &
neighbor 10.1.2.3 remote-as 8000
neighbor 10.1:2.3 update-source 100

network 10.0.0.0/7

for the Tink between A and
neighbor 10.1.3. 000
neighbor 10.1.3.3 ebg ihoy

neighbor 10.1.3.3 next-hop-sel
neighbor 10.1.3.3 route-map PP out

for Tink between A and b

neighbor 10.1.4.3 remote-as 6000
neighbor 10:1:4.3 ebgp-nultihop
neighbor 10.1143 next-hop-self
neighbor 10.114.3 route-map Tago in

route update filtering
ip community-1ist 1 permit 8000:1000

device software

protocols

Software-defined network

mﬂ “Network OS”
software
abstractions

Logically centralized
controller

Data plane API

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port
attr out[DL SRC] = nox.reverse resolve(host).mac
action out = [(nox.OUTPUT, (0, nox.FLOOD)),

(nox.ADD VLAN, (vlanid))]
install datapath flow(dp, attr out, action out)

For packets to the user with the VLAN tag, remove it

attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL VLAN)]

install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port Match specific set of
attr out[DL SRC] = nox.reverse resolve(host).mac packets
action out = [(nox.OUTPUT, (0, nox.FLOOD)),

(nox.ADD VLAN, (vlanid))]
install datapath flow(dp, attr out, action out)

For packets to the user with the VLAN tag, remove it

attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL VLAN)]

install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

Example

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port Match specific set of
attr out[DL SRC] = nox.reverse resolve(host).mac packets
action out = [(nox.OUTPUT, (0, nox.FLOOD)), Construct action

(nox.ADD VLAN, (vlanid))]
install datapath flow(dp, attr out, action out)

For packets to the user with the VLAN tag, remove it

attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL VLAN)]

install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

Example

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port Match specific set of

attr out[DL SRC] = nox.reverse resolve(host).mac packets

action out = [(nox.OUTPUT, (0, nox.FLOOD)), Construct action
(nox.ADD VLAN, (vlanid))]

install datapath flow(dp, attr out, action out) Install (match, action)

in a specific switch
For packets to the user with the VLAN tag, remove it
attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL VLAN)]
install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port Match specific set of

attr out[DL SRC] = nox.reverse resolve(host).mac packets

action out = [(nox.OUTPUT, (0, nox.FLOOD)), Construct action
(nox.ADD VLAN, (vlanid))]

install datapath flow(dp, attr out, action out) Install (match,action)

in a specific switch

For packets to the user with the VLAN
attr in[DL DST] = nox.reverse resolve(h Common primitives:
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLooD ® Match packets, execute actions
install datapath flow(dp, attr in, acti (rewrite forward packet)
B B - - Topology discovery
nox.register for user authentication(setup ° Hionitoring

| —— e ———————

Evolution of SDN

“Network OS”
software
abstractions
w_ Logically centralized
controller

[Graphic: José-Manuel Benitos]

Flexible Data Planes

Label switching / MPLS (1997)

o “Tag Switching Architecture Overview”, [Rekhter, Davie,
Rose, Swallow, Farinacci, Katz, Proc. IEEE, 1997]
e Set up explicit paths for classes of traffic

Active Networks (1999)

® Packet header carries (pointer to) program code

Logically Centralized Control

Routing Control Platform (2005)

® [Caesar, Caldwell, Feamster, Rexford, Shaikh, van der

Merwe, NSDI 2005]
® Centralized computation of BGP routes, pushed to

border routers via iBGP

. RCP |

Logically Centralized Control

Routing Control Platform (2005)

4D architecture (2005)

® A Clean Slate 4D Approach to Network Control and
Management | Greenberg, Hjalmtysson, Maltz, Myers,
Rexford, Xie,Yan, Zhan, Zhang, CCR Oct 2005]

® | ogically centralized “decision plane” separated from
data Plan e network—leiel objectives

A Decision

) 1SS ation .
network—wide direct

Logically Centralized Control

Routing Control Platform (2005)
4D architecture (2005)
Ethane (2007)

® [Casado, Freedman, Pettit, Luo, McKeown, Shenker,

SIGCOMM 2007}
® Centralized controller enforces enterprise network

Ethernet forwarding policy using existing hardware

Routing Control Platform (2005)

4D architecture (2005)
Ethane (2007)

® [Casado, Freedman, Pettit, L
SIGCOMM 2007/]

® (Centralized controller enfo
Ethernet forwarding policy

Groups —

desktops = ["griffin","ro0"];

laptops = ["glaptop"," rlaptop"];

phones = ["gphone","rphone"];

server = ["http_server","nfs_server"];

private = ["desktops'," laptops'];

computers = ["private","server'];

students = ["bob","bill"," pete"];

profs = ["plum"];

group = ["students’,"profs'];

WapS - ["Wap1 n ,"Wap2"] ,

%%

Rules —

[(hsrc=in("server") A(hdst=in("private"))] : deny;

Do not alow phones and private computers to communicate
[(hsrc=in("phones') A(hdst=in("computers'))] : deny;
[(hsre=in("computers') A (hdst=in("phones'))] : deny;

NAT-like protection for laptops

[(hsre=in("laptops')] : outbound-only;

No restrictions on desktops communicating with each other
[(hsre=in("desktops') A (hdst=in("desktops'))] : allow;

For wireless, non-group members can use http through

aproxy. Group members have unrestricted access.
[(apsrc=in("waps"))A(user=in("group"))] :allow;
[(apsrc=in("waps"))A(protocol="http)] : waypoi nts("http proxy");
[(apsrc=in("waps"))] : deny;

[]: allow; # Default-on: by default alow flows

Figure 4: A sample policy file using Pol-Eth

L ee———

Logically Centralized Control

Routing Control Platform (2005)
4D architecture (2005)

Ethane (2007)

OpenFlow (2008)

® [McKeown,Anderson, Balakrishnan, Parulkar, Peterson,
Rexford, Shenker, Turner, CCR 2008]

® Thin, standardized interface to data plane

® General-purpose programmability at controller

Routing Control Platform (2005)

4D architecture (2005) ——

(app3

_ NOX Controller
. ® i

Ethane (2007)

OpenFlow (2008)
NOX (2008) al
® [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker,
CCR 2008]

® First OF controller: centralized network view provided
to multiple control apps as a database
® Behind the scenes, handles state collection & distribution

Ind
ustry explosion (~2010+)
=

goftware defined networking
Web \mages Maps shoppingd News More ~ gearch tools
/
About 11,800 results (0.26 seoonds)
O}
are defin d network\ng
i Too\S
More gettings

www.broc
gcale Your Network Rap
Soﬂware-Deﬁned Ne Al
www.r'werbed.comNXLA —_—
Gain networK yraffic visioil AbOu\Q.TA 000 results o5 second)
Add "software defined ing\ @
pT&T Fle are | SO are DefIN® Networt 0
g Cloud, Mol pusiness® coml ¥ c e W T Fle are!
pProminen t Move Netw F jons F m\—\a\'d N::Cs e‘r:\Ns \ue des VPN B s'\nessB dl
oWeek - Oct: gecure munt \P netwo\'\(mg
EWS ANAL N ‘-K\ng
' networking.) . ned etwo
were - ywhat \s SO ? F‘Ne—N\\nu\e \ideo \ SO are efi
The Myth That Telco Cant Genad ml v \ owl
Light Reading - Oct3,2013 : o Tomki \ains i o 5-minute & ta " o netvor
Verizon unveils SpN-based (;\:n:he:;e content delivery ’ r edu U\\i\t:d
Bus'\nessC\oud News - Oct a } . " aglutions oa- P ucts
I ct\Us” Why C\ena'? o
o~ aws SOUrces ? \ndustries Cont2 "
. . m
ration & N\odem\zat\on | \BM.
o fhare pefined Networks \ P\% 4“2’2%;2}‘0“
el ®" work/SON v BTN Jsery
e ke for pybrid clou -a-s" T costs
Ne = cient 1T perall® d .
OPE g - HYP Cloud \Whitep2

Open data plane interface

® Hardware: Easier for operators to change hardware, and
for vendors to enter market

® Software: Can more directly access device behavior

Centralized controller

® Direct programmatic control of network

Software abstractions on the controller

® Solve dist. sys. problems once, then just write algorithms

® Libraries/languages to help programmers write net apps

e Systems to write high level policy instead of
programming

Open data plane interface

® Hardware: Easier for operators to change hardware, and
for vendors to enter market

® Software: Can more directly access device behavior

Centralized controller

® Direct programmatic control of network

Software abstractions on the cont

® Solve dist. sys. problems once, th
e Libraries/languages to help progi
e Systems to write high level polic

programming

Challenges for SDN

Performance and scalability

Distributed system challenges still present

® Resilience of “logically centralized” controller
® |mperfect knowledge of network state
e (Consistency issues between controllers

Reaching agreement on data plane protocol

o OpenFlow! NFV functions!? Whitebox switching!?
Programmable data planes?

Devising the right control abstractions

® Programming OpenFlow: far too low level
e But what are the right high-level abstractions to cover
important use cases!

Q: When do you control the net? | [

When does the SDN controller send instructions to
switches!?

e ..in the OpenFlow paper?
e _..other options!

Q: When do you control the net? | [

When does the SDN controller send instructions to
switches!?

® _..in the OpenFlow paper? Reactive (when packet arrives
needing forwarding rule)
e _.other options! Proactive (in advance of need)

Q: How does SDN affect reliability? | [

More bugs in the network, or fewer?

From SDN to Fabric

[Casado,Koponen,Shenker, Tootoonchian, HotSDN’ | 2]

Separate interfaces:

® Host-network (external-to-internal data plane)
® Operator-network
® Packet-switch (internal data plane)

Edge Controller

Fabric Controller
= E——

Src > Fabric Dst
Host Elements Host

Ingress Egress
Edge Switch Edge Switch

Q:“Host-Network and Packet-Switch interfaces were
identical” in the Internet. How is this a simplification?

Q: Does OF meet the “ideal network” goals the

Fabric paper lays out?:

Simplified hardware
Vendor-neutral hardware
“Future-proof” hardware
Flexible software

I

Q: Drivers of early deployment? | [

What drove early deployment of OpenFlow & SDN?

Access control in enterprises! Net research!?

® Good ideas, are already valuable
® But not the “killer apps” for initial large-scale deployment

Inter-datacenter traffic engineering

® Drive utilization to near 100% when possible
® Protect critical traffic from congestion

Cloud virtualization

® (Create separate virtual networks for tenants
® Allow flexible placement and movement of VMs

Key characteristics of the above use cases

® Special-purpose deployments with less diverse hardware
® Existing solutions aren’t just inconvenient, they don’t work!

Software Defined WAN (SD-WAN)

® Overlay network connecting enterprise sites across the
Internet instead of traditional MPLS service
® Note: Not the same as Google’s B4

SDN in service provider networks

® (Central control of virtualized network functions (VNFs)

Controllers that use traditional configs instead of OF

o ec.g, APl” into the device is a BGP config
e Automate configuring a data center or cluster in an
enterprise

Next up

Monday: SDN in the WAN

Brighten out on jury duty next week

