Intradomain Routing

Brighten Godfrey CS 538 February 19 2018

Routing

Choosing paths along which messages will travel from source to destination.

Often defined as the job of Layer 3 (IP). But...

- Ethernet spanning tree protocol (Layer 2)
- Content delivery overlays, distributed hash tables, network virtualization, ... (Layer 4+)

Problems for intradomain routing

Distributed path finding

React to dynamics

High reliability even with failures

Scale

Optimize link utilization (traffic engineering)

Protocols: The Building Blocks

Distance vector routing

Protocol variants

- Original ARPANET
- More recently: RIP, EIGRP

Remember vector of distances to each destination and exchange this vector with neighbors

- Initially: distance 0 from myself
- Upon receipt of vector: my distance to each destination
 = min of all my neighbors' distances + I
- Send packet to neighbor with lowest dist.

Slow convergence and looping problems

• E.g., consider case of disconnection from destination

Path vector routing

Protocol variants

BGP

Remember vector of paths to each destination and exchange path announcements

- Initially: empty path to myself
- Upon receipt of path announcement or withdrawal: selected path = shortest among active paths to destination
- Send packet along selected path

Link state routing

Protocol variants

- ARPANET: McQuillan, Richer, Rosen 1980; Perlman 1983
- Intermediate System-to-Intermediate System (IS-IS)
- Open Shortest Path First (OSPF)

Algorithm

- Gossip the entire topology to everyone
- Forwarding at each hop:
 - Compute shortest path (e.g., Dijkstra's algorithm)
 - Send packet to neighbor along computed path

Question

We have a network...

Question

A link fails. How many total units of message does x send in immediate response?

...using DV or PV?

...using link state?

Link state vs. DV/PV

Disadvantages of LS

- Need consistent computation of shortest paths
 - Same view of topology
 - Same metric in computing routes
- Slightly more complicated protocol

Advantages of LS

- Faster convergence if compute time is negligible
- Gives unified global view
 - Useful for other purposes, e.g., building MPLS tables

Q: Can link state have forwarding loops?

Comparison

DV/PV

Computes paths incrementally as path announcements are disseminated

- Simple protocol
- Local, independent decisions
- Can have convergence problems
 - e.g. burst of updates
 - Or worse if you lack a path vector...

Link State

Decouples topology gossiping from routing decision

- Slightly more complex, but not too bad
- Requires consistent view of topology and routing metric across all routers
- Faster convergence if compute time is negligible
- Provides unified global view
 - Useful for other purposes, e.g. building MPLS tables

Q: Can link state have forwarding loops?

LS variant: Source routing

Algorithm:

- Broadcast the entire topology to everyone
- Forwarding at source:
 - Compute shortest path (Dijkstra's algorithm)
 - Put path in packet header
- Forwarding at source and remaining hops:
 - Follow path specified by source

Q: Can this result in forwarding loops?

Source routing vs. link state

Advantages

- Essentially eliminates loops
- Compute route only once rather than every hop
- Forwarding table (FIB) size = #neighbors (not #nodes)
- Flexible computation of paths at source

Disadvantages

- Computation of paths at source
- Header size: ≥ log₂(#nodes)•|Path|
 - Can use local rather than global next-hop identifiers
 - Then, size drops to $\geq \log_2(\#\text{neighbors}) \cdot |\text{Path}|$
- Source needs to know topology
- Harder to redirect packets in flight (to avoid a failure)

MPLS design

Why is this more flexible than shortest path routing?

MPLS design

Ingress:

Traffic classification, label packets ("forwarding equivalence class")

Control plane constructs paths and coordinates labels

Can also stack labels = concatenate paths

used for backup paths in MPLS Fast ReRoute (FRR)

MPLS motivation

In the design doc

- High performance forwarding
- Minimal forwarding requirements, so can interface well with many types of media such as ATM
- Flexible control of traffic routing

What matters today?

Flexibility. Widely used to achieve:

- Virtual Private Network (VPN) service along dedicated paths between enterprise sites
- Control backup paths with MPLS Fast ReRoute
- Traffic engineering (load balancing)

Using the Protocols: Traditional Traffic Engineering

Traffic engineering

Key task of intradomain routing: optimize utilization

No TE: Shortest path routing

• How well does this work?

What do we actually want to accomplish?

TE: Classic ISP formulation

Given

 C_{ij}

Capacity of link from i to j

 T_{st}

Traffic demand from s to t

Objective

 $\min u^*$

Subject to

 u^*

Max link utilization (0 to 1)

 x_{ijst}

Traffic volume of (s,t) flow carried over link (i,j)

 $\forall_{st} \ T_{st} = \sum_{j} x_{sjst}$

Ingress flow equals demand

 $\forall_{st} \ T_{st} = \sum_{i}^{s} x_{itst}$

Egress flow equals demand

 $\forall_{st} \forall_{v \notin \{s,t\}} \ \sum_{i} x_{ivst} = \sum_{j} x_{vjst}$

Flow conservation

 $\forall_{i,j} \sum_{i} x_{ijst} \le u^* C_{ij}$

Utilization cap

TE: Classic ISP formulation

Can we solve it?

- Computationally yes: multi-commodity flow problem, represented as linear program,
- Solvable in polynomial time with LP solvers
- But how do we solve it in a distributed way with everchanging inputs?

Is it enough?

- What about different objectives (e.g. latency)?
- What about different priorities (enterprise VPN vs. besteffort Internet flow)?

Classic TE solutions

Approach I: Optimize OSPF weights

- e.g. OSPF-TE
- Need to propagate everywhere: can't change often
- Artificial constraints make it difficult to optimize
 - Same weights apply to all traffic
 - So all traffic at one ingress follows same paths

Approach 2: Allocate traffic to explicit MPLS paths

- Control protocol like RSVP-TE reserves capacity and constructs MPLS tunnels at each router along path
- Tradeoff: improves path choice but also state in routers
 - Not all possible paths will be available

- Link-state protocol (OSPF / IS-IS)
- Also flood available bandwidth info
- Fulfill tunnel provisioning requests

- Link-state protocol (OSPF / IS-IS)
- 2 Also flood available bandwidth info
- Fulfill tunnel provisioning requests
- 4 Update network state, flood info

- Link-state protocol (OSPF / IS-IS)
- 2 Also flood available bandwidth info
- Fulfill tunnel provisioning requests
- 4 Update network state, flood info

TeXCP [Kandula et al 2005]

Pre-construct small set of paths between every ingress-egress pair

10 MPLS tunnels in implementation

Dynamically at each ingress node:

- Probe utilization, latency of each path
- Dynamically reallocate traffic between paths

[Kandula et al, "Walking the Tightrope", SIGCOMM 2005]

TeXCP results

Q: In OSPF-TE, "Finding optimal link weights that minimize the max-utilization is NP-hard". Why is this harder than finding the best possible (non-OSPF) solution?

Background: Segment Routing

Idea: source routing by composing path segments

- Segment identifies
 - link or service (local)
 - router (global)
- Associated actions at router:
 - Push a new segment onto front of packet
 - Continue forwarding along a specified segment
 - Go to Next segment in packet
- Can be implemented with MPLS

DEFO

A Declarative and Expressive Approach to Control Forwarding Paths in Carrier-Grade Networks

Hartert, Vissicchio, Schaus, Bonaventure, Filsfils, Telkamp, Francois SIGCOMM 2015

```
val goal = new Goal(topology){
for(d<-Demands) add(d.deviations <= 2)
for(l<-topology.links) add(l.load <= 0.9 l.capacity)
minimize(MaxLoad)}</pre>
```


... for each ingress-egress traffic bundle

DEFO

DEFO discussion

What's the benefit of using a middlepoint instead of an explicit path?

What are the advantages & disadvantages of DEFO compared to TeXCP?

Wednesday

Project proposal feedback later today

Readings

- OpenFlow (McKeown et al, 2008)
- Fabric: A Retrospective on Evolving SDN (Casado et al, HotSDN 2012)
- Recommended, but no review: The Future of Networking (Shenker, ONS 2011)