Congestion Control

N the Network

Brighten Godfrey
CS 538 February 5 2018

How TCP congestion control
1S broken

A partial list...

Efficiency

Tends to fill queues

® creates latency and loss

Slow to converge

® for short flows or links with high bandwidthedelay
product

Loss # congestion

Often does not fully utilize bandwidth

Fairness

Unfair to large-RTT flows (less throughput)
Unfair to short flows if ssthresh starts small
Equal rates isn’t necessarily “fair” or best

Vulnerable to selfish & malicious behavior

o TCP assumes everyone is running TCP!

Fills queues: adds loss, latency
Slow to converge

Loss # congestion

May not utilize full bandwidth
Unfair to large-RTT

Unfair to short flows

Is equal rates really “fair’?

Vulnerable to selfishness

Limitations of TCP CC

Fills queues: adds loss, latency Hard t |
ard to use only

Slow to converge end-to-end
| information to find
Loss # congestion ‘right’ rate

May not utilize full bandwidth Obvious solution:

Unfair to large-RTT Get more info
from network

Unfair to short flows
Is equal rates really “fair’?

Vulnerable to selfishness

Limitations of TCP CC

Fills queues: adds loss, latency Hard t |
ard to use only

Slow to converge end-to-end
| information to find
Loss # congestion ‘right’ rate

May not utilize full bandwidth Obvious solution:

Unfair to large-RTT Get more info
from network

Unfair to short flows

Is equal rates really “fair’?
Incentive issues

Vulnerable to selfishness

Congestion control with
help from the network

Random early detection (RED)

® Drops more packets (randomly) as
congestion increases
Mechanism is entirely within routers
More recently: CoDel (see paper list)

Pr[drop packet]

max
Average queue length

Explicit Congestion Notification (ECIN)

® Mark bit in header instead of dropping

But what does the source really want?

® |ust tell me the right rate, already!
e eXplicit Control Protocol (XCP)
e Rate Control Protocol (RCP)

Flows finish slowly

= fair
queueing

[Dukkipati & McKeown '05]

100

XCP - -
' TCP -
PS e

7}

&)

()]

9D,

c 10 | -
O !

o e

> T

- o

2 |

O i o

Lq'; | BB Seos et el ol
o)) 1 __
©

| -

()

> amu
<C

fawnss? "

0.1]]]]]]
0

Flow Size [pkis]

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

o
=

s
[Dukkipati & McKeown '05]

1

Many flows wa

XCP -
TCP o
PS

9000
8000 r
/7000
6000

SMO|4 A0V JO JaquinN

2000 e e e e

1000

300

250

200

50
Time (secs)

1

00

1

50

I

Rate Control Protocol [Dulkkipati, Kobayashi, Zhang-
Shen, McKeown, IWQoS 2005]

Router’s algorithm:

o Compute fair per-flow rate R(i) at time t as whatever will
fill up the link capacity (roughly)
® Tell end-hosts about this by putting the value in packets

- pkt.rate = min(pkt.rate, locally-calculated rate)
® Recompute every RTT

RCP rate computation

- N é A
spare queue
' old rate | capacity size
| o(C —y(t)) — 5ch2>)
R(t) = R(t — do) O
estimated
_# of flows |

Simpler than window-based control (e.g. XCP):

® rates instead of windows
® thus, feedback doesn’t depend on a flow’s RTT
® thus, same feedback to everyone

(How can you estimate # flows!?)

Estimating the number of flows | [

If guess is wrong, what happens?

e Changes magnitude but not sign of rate change
® Possibly this estimator could be improved

Average Flow Completion Time [sec]

100 —— .

XCP (avg.)

|
e Xem e -

TCP (avg.) *

RCP (avg.)

Slow-Start ———

0.1 .
0 200 400

600 800 1000 1200 1400 1600 1800 2000

flow size [pkts] (normal scale)

Enforcing fairness and isolation

Based on slides by lon Stoica

Assume router uses First In First Out (FIFO) queue

No protection: if a flow misbehaves it will hurt the

other flows

Example: | UDP (10 Mbps) and 3| TCP’s sharinga 10

Mbps link

Throughput(Mbps)

10.0000

7.5000

5.0000

2.5000

0.0000

RED

|||F|||||||||||||||||||||

Flow Number

32

A first solution

Round robin among different flows [Nagle '87]

® One queue per flow
e while (I) { send one packet from each queue }

==
o

Advantages: protection among flows

® Misbehaving flows will not affect the performance of
well-behaving flows
® FIFO does not have such a property

Disadvantages:

® More complex than FIFO: per flow queue/state
® Biased toward large packets: a flow receives service
proportional to the number of packets

Define a fluid flow system:a system in which flows
are served continuously

® essentially, bit-by-bit round robin

Advantages

® FEach flow will receive exactly its max-min fair rate
e _.and exactly its fair per-packet delay
® _.regardless of packet sizes

Def'n of fairness: Max-Min fairness | [

If link congested, compute f such that

Emln(naf) =C

f=4

. 10 A min(8, 4) = 4
min(©, 4) =
5 2 min(2,4) =2

What we just saw was bit-by-bit round robin
But can’t interrupt transfer of a packet (why not?)

ldea: serve packets in the order in which they would
have finished transmission in the fluid flow system

Strong guarantees: nearly the same as having a virtual
link of the max-min fair capacity. Each flow gets:

® Exactly its max-min fair rate (+/- one packet size)
® Exactly its max-min fair per-packet delay (+/- one packet
size) or better!

Example

!:|0W 1 | 1 2 3 4 S 6
(arrival traffic) > time

Flow 2
(arrival traffic)

> time
Service 1 2 1 2 3 4 5 6
in fluid flow 3 4 5 6
system - e
Packet 1 2 1 3 |2/3| 4 |4,5] 5 |6

system > time

Recall:“serve packets in the order in which they

would have finished transmission in the fluid flow
system”

50, need to compute finish time of each packet in the
fluid flow system

... but new packet arrival can change finish times of
existing packets (perhaps all)!

Updating those times would be expensive

Solution: virtual time

I

Key Observation: finish times may change when a new
packet arrives, but the finish order doesn’t

® Only the order is important for scheduling

Solution: maintain the number of rounds needed to
send the remaining bits of the packet

® New packet arrival doesn’t change # remaining rounds
® Does change rounds executed per unit time, but that’s

ok

System virtual time = index of the final round in the
bit-by-bit round robin scheme

Measure

service, instead of time

® Slope of V(t) = rate at which an active flow is serviced
® (C = link capacity

o N(t)

virtual time V(t)

Service
in fluid flow
system

= # of active flows in fluid flow system at time t

N(2)

real time t

> real time

Define

E" = virtual finishing time of packet k of flow i
a' = arrival time of packet k of flow i
® ! =length of packet k of flow i

Virtual finishing time of packet k+1 of flow i is

F = max(V(a)), F') + L™

Order packets by increasing virtual finishing time, and
send them in that order

Weighted Fair Queueing (WFQ) 1

What if we don’t want exact fairness?

® Maybe web traffic is more important than file sharing

Assign weight w; to each flow i
And change virtual finishing time to

k+1
Lk

W.

l

F = max(V(al), F') +

I

FQ does not eliminate congestion; it just manages the
congestion

Provides isolation between flows

® complete isolation?

Both end-host and router-based congestion control
matter

® End-host congestion control to adapt rate
® Router congestion control to isolate flows, inform end-
hosts

Rethinking “fairness":
Congestion pricing

The Internet routes money;
backets are just a side effect.

— Unknown, via Dave Clark

What 1s “fair”?

Flow rate equality! ®

911
Easily circumvented ®
Doesn’t even optimize for ® PP

any metric of interest

Fig. |1 Poppycock

Fairness for real life resources

Plentiful: use as much as you want

® air
® advisor’s grant money

Scarce: pay for what you want

® price set by market
® result (under assumptions): socially optimal allocation

Fig. 2: Invisible hand
of the market.

Briscoe’s main points

Flow rate fairness (FRF) is not useful

Cost fairness is useful

Flow rate fairness is hard to enforce Fig 3: Briscoe,

Cost fairness is feasible to enforce

Doesn’t equalize benefits

® e.g,5MS message vs.a
packet of a video stream

Doesn’t equalize costs

® e.g, ‘parking lot” network:
long flow causes significant
congestion but is given
equal rate by fair queueing

Therefore, doesn’t
equalize cost or benefit

FRF not useful

Myopic: no notion of fairness across time

In summary, FRF does not optimize utility

® except for strange definitions of utility...

S0, even cooperating entities should not use it!

Economic entities pay for the costs they incur

® This is “fair” (in a real-world sense), not “equal”—and
that’s fine

In other words, networks charge packets for the
congestion they cause

® (Can networks lie about congestion!?
® Yes.So it’s really a market price, not exactly congestion

Result: senders want to maximize utility

e Will balance benefit with cost (utility = benefit — cost)

Example: ight & heavy traffic
[Briscoe 2009]

revealed
congestion
time

bit-rate heavy usage

light usage

'unfair' TCP sharing

bit-rate

time

throttling heavy usage

©)

bit-rate

time

welghted TCP sharing

Key point: Benefit per bit is
high for light flow and
low for heavy flow.

CF 1s provably useful

Frank Kelly 1997: Cost fairness maximizes
aggregate utility

i.e.: any different outcome results in suboptimal
utility

Why
won't anyone listen to Kelly?
Hello??!! ... where did everybody

go!

Each user i has utility Ui(r) for rate r;

Each user i pays pi for access to link (its own
choice)

Link sets price per unit bandwidth: b = (Sum p;) /C
® thus,r = pDi / p = CP,‘/ (Sum Pj)
Theorem:assuming U; concave, strictly increasing,

and continuously differentiable, then

® A competitive equilibrium exists: setting of pis in which
no user can improve their utility given current price
® This equilibrium maximizes Sum Ui(r)

FRF 1s hard to enforce

Run your flow longer

Create more flows (similar to sybil attack)

® Multiple TCP connections between same source/

destination (web browsers)
® Spoof source IP / MAC address
e Multiple flows to other destinations (BitTorrent)

- —
_—
— -
~

— ——
- —
—
-

You send me a packet; | handle
delivery and charge you for it

How much do | charge?

You (src.) Dest.
® Depends on cost on entire

remainder of path! o 3
(S

Not the only way of arranging
payments, but it is convenient

® payments are between neighbors
that already have an economic
relationship

Mechanism: Re-Feedback

Key property: every hop knows total congestion
along downstream path

First

packet O@O—F@—@——O ;50|)
100 B0

e T e—T—o
packet
$

50 I
m

Previous explanation was in terms of money, but
doesn’t have to directly involve money

® Re-feedback is a mechanism
® Doesn’t imply a particular way of implementing
congestion pricing

Possible variants of congestion pricing

pay per packet?
monthly allowance?
only at edges?
between all ISPs?

Host running a persistent “light” job is interrupted
by heavy flows congesting the net!?

Host is compromised? (botnet) Who pays!?

If we want cost fairness, is Weighted Fair Queueing
useless!?

® No: provides mechanism to isolate flows, virtualize links
® e.g,could use congestion pricing to set WFQ’s weights

Conclusion (Briscoe stylel)

“It just isn’t realistic to create a system the size of the
Internet and define fairness within the system without
reference to fairness outside the system.”

Cost fairness optimizes aggregate utility and is
feasible to enforce

Flow rate fairness does not optimize utility and is
not feasible to enforce

® (ease publication on the topic and stop teaching it in
undergraduate courses

Announcements

Announcements

Wed: Modern congestion control

Mon: Project proposals due

Project proposals due | lam Monday Feb |3

® Submit via email to Brighten
® |/2 page, plaintext

Describe;

® Problem you plan to address and why solution is valuable
® Your first steps at a technical approach

® What is the most closely related work, and why it has
not addressed your problem
= at least 3 full academic paper citations (title, authors,
publication venue, year) plus paper URLs
® |[f there are multiple people on your project team, who
they are and how you plan to partition the work

Talk to us if...

You need a project idea

You'd like advice on a project idea

You need partners

You're just a nice person and want to say hi

After submission

® (Course staff will give feedback and approve or request
changes
® Proposal is 5% of course grade

See also course syllabus

