
Congestion Control
Brighten Godfrey

CS 538 January 31 2018

Based in part on slides by Ion Stoica

Announcements

A starting point:
the sliding window protocol

TCP flow control

Make sure receiving end can handle data

Negotiated end-to-end, with no regard to network

Ends must ensure that no more than W packets are in
flight if buffer has size W

• Receiver ACKs packets
• When sender gets an ACK, it knows packet has arrived

Sliding window-based flow control

no
ack ack’d no

ack ack’d ack’d

At the sender...

Sent and all
ACKs received

Window: Sent but
leftmost not yet ack’d Not yet sent

... ...

Sliding window-based flow control

not
rec’d

not
rec’d rec’d rec’d not

rec’d

At the receiver...

Received
Window: ready to

receive but leftmost
missing

Not ready
to receive

... ...

Sliding window

1
2

3

4
56

5

67

Last ACKed (without gap) Last received (without gap)

7

Observations

What is the throughput in terms of RTT and window
size, in theory?

• Throughput is ~ (w/RTT)

On to Jacobson’88

Getting to equilibrium: Slow Start

• Initial rate is slow: very conservative starting point
• But acceleration is high
• …or is it? Maybe too conservative now

- http://research.google.com/pubs/pub36640.html
load times, Web browsers routinely open multiple concur-
rent TCP connections to the same server. Web sites also
spread content over multiple domains so browsers can open
even more connections [7]. A study on the maximum num-
ber of parallel connections that browsers open to load a
page [16] showed Firefox 2.0 opened 24 connections and IE8
opened 180 connections while still not reaching its limit.
These techniques not only circumvent TCP’s congestion con-
trol mechanisms [13], but are also inefficient as each new flow
independently probes for end-to-end bandwidth and incurs
the slow start overhead. Increasing init cwnd will not only
mitigate the need for multiple connections, but also allow
newer protocols such as SPDY [1] to operate efficiently when
downloading multiple Web objects over a single TCP con-
nection.

(3) Allow short transfers to compete fairly with bulk data
traffic. Internet traffic measurements indicate that most
bytes in the network are in bulk data transfers (such as
video), while the majority of connections are short-lived and
transfer small amounts of data. Statistically, on start-up,
a short-lived connection is already competing with connec-
tions that have a congestion window greater than three seg-
ments. Because short-lived connections, such as Web trans-
fers, don’t last long enough to achieve their fair-share rate,
a higher init cwnd gives them a better chance to compete
with bulk data traffic.

(4) Allow faster recovery from losses. An initial win-
dow larger than three segments increases the likelihood that
losses can be recovered through Fast Retransmit rather than
the longer initial retransmission timeout. Furthermore, in
the presence of congestion, the widespread deployment of
Selective Acknowledgments (SACK) enables a TCP sender
to recover multiple packet losses within a round-trip time.

We propose to increase TCP’s init cwnd to at least ten
segments (approximately 15KB).1 To that end, we quantify
the latency benefits and costs, as measured in large scale
experiments conducted via Google’s front-end infrastructure
serving users a diverse set of applications.

Ideally, we want to pick an init cwnd satisfying each of
the following properties: (i) minimize average Web page
download time; (ii) minimize impact on tail latency due
to increased packet loss, and (iii) maintain fairness with
competing flows. Raising the initial congestion window to
ten segments can reasonably satisfy these properties. It im-
proves average TCP latency, yet is sufficiently robust for
use on the Internet. In the following, we articulate the per-
tinence of ten segments to TCP’s initial congestion window:

(1) Covers ≈90% of HTTP Web objects: 90% of HTTP re-
sponses from the top 100 and 500 sites fit within 16KB [14],
as shown in the response size distribution of Figure 1. The
distribution also shows that about 90% of Google Web search,
Maps, and Gmail responses fit in about 15KB or ten seg-
ments; for applications with larger average size such as Pho-
tos, about 20% more responses can fit within ten segments
as compared to three segments.

(2) Improves latency, while being robust: Figure 2 shows
the average TCP latency for Google Web search as init cwnd
is varied from 3 to 42 segments, in a small scale experiment
conducted concurrently on six servers in the same data cen-
ter (all offered similar traffic load and user base). Using
ten segments improves the average TCP latency compared

1We assume IP over Ethernet and a maximum segment size
of 1430 bytes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

Response size (Bytes)

Google Web search
Top 500 sites

All sites
Gmail

Google maps
Photos blogger

Top 100 sites

Figure 1: CDF of HTTP response sizes for top 100
sites, top 500 sites, all the Web, and for a few popu-
lar Google services. Vertical lines highlight response
sizes of 3 and 10 segments.

 465

 470

 475

 480

 485

 490

 495

 500

3 6 10 16 26 42

T
C

P
 la

te
n

cy
 (

m
s)

init_cwnd

Google Web search

Figure 2: TCP latency for Google search with dif-
ferent init cwnd values.

to using three segments. We note that raising init cwnd to
16 improves latency further. However, much larger values,
such as 42, show a degradation in latency, likely due to in-
creased packet losses. Larger scale experiments described in
the rest of the paper demonstrate at length the benefits and
potential costs of using an initial congestion window of ten
segments.

There are numerous studies in literature on speeding up
short transfers over new TCP connections [9, 15]. These
techniques range from faster start-up mechanisms using cached
congestion windows such as in TCP Fast Start, to more com-
plex schemes requiring router support such as Quick Start.
These solutions are neither widely deployed, nor standard-
ized, and do not have practical reference implementations.
A recent measurements study [12] showed that up to 15.8%
of Internet flows have an init cwnd larger than the standard
specification [5].

The rest of the paper is arranged as follows: Section 2
describes the experiments’ setup and datasets. Section 3
presents an analysis of receiver advertised windows. Sec-
tion 4 describes the experiment results with an initial con-
gestion window of ten, quantifying its benefits and cost an-
alyzed by network properties (bandwidth, BDP, RTT), as
well as traffic characteristics. Section 5 concludes the paper
with a discussion on future work.

2. EXPERIMENT SETUP AND DATASETS
Our experiments consist of enabling a larger initial conges-

tion window on front-end servers in several data centers at
geographically diverse locations. We compare the results us-
ing the larger window against data from the same data cen-
ters using the standard initial congestion window as a base-

ACM SIGCOMM Computer Communication Review 28 Volume 40, Number 3, July 2010

load times, Web browsers routinely open multiple concur-
rent TCP connections to the same server. Web sites also
spread content over multiple domains so browsers can open
even more connections [7]. A study on the maximum num-
ber of parallel connections that browsers open to load a
page [16] showed Firefox 2.0 opened 24 connections and IE8
opened 180 connections while still not reaching its limit.
These techniques not only circumvent TCP’s congestion con-
trol mechanisms [13], but are also inefficient as each new flow
independently probes for end-to-end bandwidth and incurs
the slow start overhead. Increasing init cwnd will not only
mitigate the need for multiple connections, but also allow
newer protocols such as SPDY [1] to operate efficiently when
downloading multiple Web objects over a single TCP con-
nection.

(3) Allow short transfers to compete fairly with bulk data
traffic. Internet traffic measurements indicate that most
bytes in the network are in bulk data transfers (such as
video), while the majority of connections are short-lived and
transfer small amounts of data. Statistically, on start-up,
a short-lived connection is already competing with connec-
tions that have a congestion window greater than three seg-
ments. Because short-lived connections, such as Web trans-
fers, don’t last long enough to achieve their fair-share rate,
a higher init cwnd gives them a better chance to compete
with bulk data traffic.

(4) Allow faster recovery from losses. An initial win-
dow larger than three segments increases the likelihood that
losses can be recovered through Fast Retransmit rather than
the longer initial retransmission timeout. Furthermore, in
the presence of congestion, the widespread deployment of
Selective Acknowledgments (SACK) enables a TCP sender
to recover multiple packet losses within a round-trip time.

We propose to increase TCP’s init cwnd to at least ten
segments (approximately 15KB).1 To that end, we quantify
the latency benefits and costs, as measured in large scale
experiments conducted via Google’s front-end infrastructure
serving users a diverse set of applications.

Ideally, we want to pick an init cwnd satisfying each of
the following properties: (i) minimize average Web page
download time; (ii) minimize impact on tail latency due
to increased packet loss, and (iii) maintain fairness with
competing flows. Raising the initial congestion window to
ten segments can reasonably satisfy these properties. It im-
proves average TCP latency, yet is sufficiently robust for
use on the Internet. In the following, we articulate the per-
tinence of ten segments to TCP’s initial congestion window:

(1) Covers ≈90% of HTTP Web objects: 90% of HTTP re-
sponses from the top 100 and 500 sites fit within 16KB [14],
as shown in the response size distribution of Figure 1. The
distribution also shows that about 90% of Google Web search,
Maps, and Gmail responses fit in about 15KB or ten seg-
ments; for applications with larger average size such as Pho-
tos, about 20% more responses can fit within ten segments
as compared to three segments.

(2) Improves latency, while being robust: Figure 2 shows
the average TCP latency for Google Web search as init cwnd
is varied from 3 to 42 segments, in a small scale experiment
conducted concurrently on six servers in the same data cen-
ter (all offered similar traffic load and user base). Using
ten segments improves the average TCP latency compared

1We assume IP over Ethernet and a maximum segment size
of 1430 bytes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

Response size (Bytes)

Google Web search
Top 500 sites

All sites
Gmail

Google maps
Photos blogger

Top 100 sites

Figure 1: CDF of HTTP response sizes for top 100
sites, top 500 sites, all the Web, and for a few popu-
lar Google services. Vertical lines highlight response
sizes of 3 and 10 segments.

 465

 470

 475

 480

 485

 490

 495

 500

3 6 10 16 26 42

T
C

P
 la

te
n
cy

 (
m

s)

init_cwnd

Google Web search

Figure 2: TCP latency for Google search with dif-
ferent init cwnd values.

to using three segments. We note that raising init cwnd to
16 improves latency further. However, much larger values,
such as 42, show a degradation in latency, likely due to in-
creased packet losses. Larger scale experiments described in
the rest of the paper demonstrate at length the benefits and
potential costs of using an initial congestion window of ten
segments.

There are numerous studies in literature on speeding up
short transfers over new TCP connections [9, 15]. These
techniques range from faster start-up mechanisms using cached
congestion windows such as in TCP Fast Start, to more com-
plex schemes requiring router support such as Quick Start.
These solutions are neither widely deployed, nor standard-
ized, and do not have practical reference implementations.
A recent measurements study [12] showed that up to 15.8%
of Internet flows have an init cwnd larger than the standard
specification [5].

The rest of the paper is arranged as follows: Section 2
describes the experiments’ setup and datasets. Section 3
presents an analysis of receiver advertised windows. Sec-
tion 4 describes the experiment results with an initial con-
gestion window of ten, quantifying its benefits and cost an-
alyzed by network properties (bandwidth, BDP, RTT), as
well as traffic characteristics. Section 5 concludes the paper
with a discussion on future work.

2. EXPERIMENT SETUP AND DATASETS
Our experiments consist of enabling a larger initial conges-

tion window on front-end servers in several data centers at
geographically diverse locations. We compare the results us-
ing the larger window against data from the same data cen-
ters using the standard initial congestion window as a base-

ACM SIGCOMM Computer Communication Review 28 Volume 40, Number 3, July 2010

[Figures from Dukkipati et al, CCR July 2010]

http://research.google.com/pubs/pub36640.html

On to Jacobson’88

Getting to equilibrium: Slow Start

• Initial rate is slow: very conservative starting point
• But acceleration is high
• …or is it? Maybe too conservative now

- http://research.google.com/pubs/pub36640.html

Conservation: Round-Trip Timing

Congestion Avoidance

http://research.google.com/pubs/pub36640.html

Round-trip timing

Error recovery

Must retransmit packets that were dropped

To do this efficiently

• Keep transmitting whenever possible
• Detect dropped packets and retransmit quickly

Requires:

• Timeouts (with good timers)
• Other hints that packet were dropped

A bad timer algorithm

Is twice the mean what we really want?

• No: want outliers
• 2A(n) a poor estimate of outliers
• Idea: measure deviation from mean

A(n) = b*A(n-1) + (1 – b)*T(n)

Timeout(n) = 2*A(n)

T(n) = measured RTT of
this packet

mean:

Better timer [Jacobson]

A(n) = b*A(n-1) + (1 – b)*T(n)
D(n) = b*D(n-1) + (1 – b)*(T(n) – A(n))
Timeout(n) = A(n) + 4D(n)

T(n) = measured RTT of
this packet

mean:
deviation:

Questions:

• Measure T(n) only for original transmissions. Why?
• Double Timeout after a timeout happens. Why?
• Is deviation what we really want? Really?

Better timer [Jacobson]

Is deviation what we REALLY want? Really?

[SNL]

Better still...

What do we REALLY want?

• Estimate whether Pr[packet lost] is high
• Is timing the only way?

Another way: Duplicate ACKs

• Receiver sends an ACK whenever a packet arrives
• ACK has seq. # of last consecutively received packet
• Duplicate ACKs suggest missing packet (assumptions?)
• Modern TCPs: Fast Retransmit after 3 dup-ACKs

Does this eliminate need for timers?

• No: What if we get no packets from receiver?
• But, makes them less important

What should the receiver ACK?

ACK every packet, giving its sequence number

Use negative ACKs (NACKs), indicating which packet
did not arrive

Use cumulative ACK, where an ACK for number n
implies ACKS for all k < n

Use selective ACKs (SACKs), indicating those that did
and did not arrive, even if not in order

Congestion

TCP congestion control

Can the network handle the rate of data?

Determined end-to-end, but TCP is making guesses
about the state of the network

Two papers:

• Good science vs great engineering

Dangers of increasing load

Knee – point after which

• Throughput increases very
slowly

• Delay increases quickly

Cliff – point after which

• Throughput starts to
decrease very fast to zero
(congestion collapse)

• Delay approaches infinity

In an M/M/1 queue

• Delay = 1/(1 – utilization)
Load

Load

Th
ro

ug
hp

ut
D

el
ay

knee cliff

congestion
collapse

packet
loss

Cong. control vs. cong. avoidance

Congestion control goal

• Stay left of cliff

Congestion avoidance goal

• Stay left of knee

Load

Th
ro

ug
hp

ut

knee cliff

congestion
collapse

Control system model [CJ89]

Simple, yet powerful model

Explicit binary signal of congestion

User 1

User 2

User n

x1

x2

xn

Σ Σxi>Xgoal

y

Possible choices

! Multiplicative increase, additive decrease

- aI=0, bI>1, aD<0, bD=1

! Additive increase, additive decrease

- aI>0, bI=1, aD<0, bD=1

! Multiplicative increase, multiplicative decrease

- aI=0, bI>1, aD=0, 0<bD<1

! Additive increase, multiplicative decrease

- aI>0, bI=1, aD=0, 0<bD<1

Which should
we pick?

Mult. increase, additive decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(bI(x1h+aD), bI(x2h+aD))! Does not
converge to
fairness

! (Additive
decrease
worsens
fairness)

Additive increase, add. decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(x1h+aD+aI),  
x2h+aD+aI))! Reaches

stable cycle,
but does not
converge to
fairness

efficiency
line

Mult. increase, mult. decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

(x1h,x2h)

(bdx1h,bdx2h)

(bIbDx1h,  
bIbDx2h)

! Converges
to stable
cycle, but is
not fair

efficiency
line

(bDx1h+aI,  
bDx2h+aI)

Additive increase, mult. decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

(x1h,x2h)

(bDx1h,bDx2h)

! Converges
to stable and
fair cycle

efficiency
line

Modeling

Critical to understanding complex systems

• [CJ89] model relevant after nearly 30 years, 106 increase
in bandwidth, 1000x increase in number of users

Criteria for good models

• Two conflicting goals: reality and simplicity
• Realistic, complex model → too hard to understand, too

limited in applicability
• Unrealistic, simple model → can be misleading

• Where does this model fit?

Putting the pieces together

TCP congestion control

[CJ89] provides theoretical basis for basic congestion
avoidance mechanism

Must turn this into real protocol

TCP congestion control

Maintains three variables:

• cwnd: congestion window
• flow_win: flow window; receiver advertised window
• ssthresh: threshold size (used to update cwnd)

For sending, use: win = min(flow_win, cwnd)

TCP: slow start

Goal: reach knee quickly

Upon starting (or restarting):

• Set cwnd =1
• Each time a segment is acknowledged, increment cwnd

by one (cwnd++).

Starts slow but accelerates quickly

• cwnd increases exponentially

Slow start example

The congestion
window size grows
very rapidly

TCP slows down
the increase of
cwnd when  
cwnd ≥ ssthresh

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 4

cwnd = 4 segment 4
segment 5
segment 6
segment 7

ACK8

cwnd = 8

Congestion avoidance

Slow down “Slow Start”

ssthresh variable is lower-bound guess about location
of knee

If cwnd > ssthresh then  
each time a segment is acknowledged,  
increment cwnd by 1/cwnd (cwnd += 1/cwnd).

Result: cwnd is increased by one after a full window of
segments have been acknowledged

Slow start/cong. avoidance example

! Assume that
ssthresh = 8

0

3

6

9

12

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Roundtrip times

C
w

nd
 (i

n
se

gm
en

ts
)

ssthresh

All together: TCP pseudocode

Initially:
cwnd = 1;

ssthresh = infinite;

New ack received:
if (cwnd < ssthresh)

 /* Slow Start*/

 cwnd = cwnd + 1;

else

 /* Additive increase */

 cwnd = cwnd + 1/cwnd;

Timeout:
/* Multiplicative decrease */

ssthresh = cwnd/2;

cwnd = 1;

while (next < unack + win)
 transmit next packet;

where win = min(cwnd,
flow_win);

unack next

win

seq #

The big picture (so far)

Time

cwnd

Timeout

Slow Start

Congestion
Avoidance

Fast retransmit

Resend a
segment after 3
duplicate ACKs

Avoids waiting
for timeout to
discover loss

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 4
cwnd = 4 segment 4

segment 5
segment 6
segment 7

ACK 3

3 duplicate
ACKs

ACK 4

ACK 4

ACK 4

Fast recovery

After a fast-retransmit set cwnd to ssthresh/2

• i.e., don’t reset cwnd to 1

But when RTO expires still do cwnd = 1

Fast Retransmit and Fast Recovery

• Implemented by TCP Reno & other variants

Lesson: avoid RTOs at all costs!

Picture with fast retransmit & recov.

Retransmit after 3 duplicated acks

• prevent expensive timeouts

No need to slow start again

At steady state, cwnd oscillates around the optimal
window size

Time

cwnd

Slow Start

Congestion
Avoidance

Discussion

Engineering vs. Science in CC

Great engineering by Jacobson and others built useful
protocol

• TCP Reno, etc.

Good science by Chiu, Jain and others

• Basis for understanding why it works so well

Limitations of TCP CC

In what ways is TCP congestion control broken or
suboptimal?

A partial list...

Tends to fill queues

• creates latency and loss

Slow to converge

• for short flows or links with high bandwidth•delay
product

Loss ≠ congestion

Often does not fully utilize bandwidth

Efficiency

A partial list...

Unfair to large-RTT flows (less throughput)

Unfair to short flows if ssthresh starts small

Equal rates isn’t necessarily “fair” or best

Vulnerable to selfish & malicious behavior

• TCP assumes everyone is running TCP!

Fairness

Announcements

Assignment 1 was due today

Mon: Congestion control in the network (2 papers)

Wed: Project proposals due

