Future Internet Architectures

Brighten Godfrey CS 538 May 1 2017

Internet Architecture challenges

Security & accountability

Privacy

Mobility

Reliability

Performance

Not as challenging...

- Scalability
- Contentawareness

Evolvability of the architecture itself

"Tussle" between stakeholders

"Tussle in Cyberspace"

[Clark, Wroclawski, Sollens, Braden, ToN'05]

Tussle: process of "contention among parties with conflicting interests"

What tussles have we studied this semester?

"Tussle in Cyberspace"

What tussles have we studied?

- Content access: countries & ISPs censor & block for security; users circumvent with Tor
- Congestion: selfish user behavior; ISPs block apps; etc.
- Routing policy: conflicting preferences cause divergence
- ...

Key point: Design of protocols shapes how tussles play out in the running system

Example 1: Naming & Addressing

Naming & addressing

Originally "just" technical problems...

- Address: indicates location, convenient for routing
- Name: location-independent, convenient for human

...all wrapped up in tussle

- Names tied to trademarks
- Addresses difficult to change (and now scarce for IPv4!)

How would you fix this?

Modularize to protect the system

Principle: Modularize along tussle boundaries

 Separate task of location independent identification of endpoints (hosts/services) from tussle spaces

Possible implementation: flat names

- Endpoint identifier (EID): Just a bag of bits
- Human-readable name maps to location-indep. EID
- Location-independent EID maps to address

Or, can we route directly on flat names?

- VRR, ROFL [Caesar et al, SIGCOMM'06]
- Disco [Singla et al, CoNEXT'10]

Example 2: Control of routes

Choice in routing

Current Internet: routes fixed within the network

- Each router makes part of the route choice
- Picks one route per destination & advertises that one

Technical problems

- Single offered path may be broken, congested, insecure
- Decision-makers (in the network) lack end-to-end path quality measurements

Tussle problems

- Parties disagree on what is a "good" path
- Lack of choice discourages competition

Choice in routing

Architecture exacerbates tussle: no way to enable choice even if involved parties want it

- In IP, typically just get to specify destination
- No infrastructure for exposing extant choices

One solution: separate routing from the network by letting sender specify a route in packet

- Switch quickly in response to end-to-end failures
- Use multiple routes simultaneously
- Better load balance, more efficient use of capacity
- Competition among providers

Pathlet routing

[Godfrey, Ganichev, Shenker Stoica, SIGCOMM '09]

Idea: separate route computation from the network

Refined idea: route in a virtual topology which can flexibly represent policy constraints

- For network owners: flexibility to define how the network can be used, via what virtual links (pathlets) are advertised
- For users: flexibility to choose paths or services defined by any concatenated sequence of advertised pathlets

Pathlet routing example

e.g., all valley free routes

("customers can go anywhere; anyone can route to customer")

Pathlet routing example

Pathlet routing example 2

Design for variation

So that the outcome can be different in different places, and the tussle takes place within the design, not by distorting or violating it.

— Clark, Wroclawski, Sollins & Braden

Balancing Accountability and Privacy in the Network

[Naylor, Mukerjee, Steenkiste, SIGCOMM 2014]

Terms & concepts

Egress filtering

- Drops packets that do not pass security check as they try to exit the network
- e.g. "source address should always be in one of this network's IP prefixes"

Unicast reverse path forwarding (uRPF)

- Strict: router accepts packets only on interface it would send a reply
- Loose: router accepts packets only when source address exists in routing table

Terms & concepts

Self-certifying identifier

- Principal's identifier is its public key (or hash thereof)
- No need for trusted authority to prove ownership of ID
- Another interesting example
 - ID = address or hash of address
 - Used by some distributed hash tables
 - Why is this self-certifying?

Key points in paper

Decouple accountability and return addresses

- Source address has at least 5 different roles today!
- Might not need return address in every packet!

Discussion

Who do you pick as your accountability delegate? Your ISP?

- + No need to send briefs
- + Already have a relationship with them
- Implicitly reveals information about your location

Brief-flooding: why would a host flood its own delegate?

Discussion

In AIP [Anderson et al, SIGCOMM'08], receivers could send shutoff requests directly to attackers (handled by NIC).

Sound crazy? Could it work?

Announcements

Final lecture Wednesday

- Discuss project presentation format & requirements
- Course wrap-up
- ICES survey

Final Project Presentations

- Tue May 9, I I am 2:00 pm
- 3403 SC