Blockchain + Networks (kinda)

UIUC CS 538 Fall 2017 Instructor: Mo Dong

Overview

Scalability challenges in blockchain systems

Payment networks and state channels

Other scalability directions and proposals

Scalability Challenge

BTC ETH Visa X 10

Transaction per second

Scalability Challenge

BTC ETH Visa X 10

Transaction per second

Scalability Challenge

BTC ETH

Visa

X 10

Transaction per second

Transaction per second

Why?

It's a rabbit hole but let's dig it a little bit until it is not fun...

It's a rabbit hole but let's dig it a little bit until it is not fun...

Scalability =

It's a rabbit hole but let's dig it a little bit until it is not fun...

Scalability = Block size / Block Time

It's a rabbit hole but let's dig it a little bit until it is not fun...

Scalability =
Block size / Block Time

1Mb

It's a rabbit hole but let's dig it a little bit until it is not fun...

Scalability =
Block size / Block Time

1Mb 10min

Mining Mechanism Proof of Work (PoW)

Avoid short-term fork and orphaned chain

Orphan blocks make miner lose \$\$\$

- Orphan blocks make miner lose \$\$\$
- Any possible mitigation?

- Orphan blocks make miner lose \$\$\$
- Any possible mitigation?
- Reward orphan! "Uncle" in Ethereum pushes down block time to ~10s

- Orphan blocks make miner lose \$\$\$
- Any possible mitigation?
- Reward orphan! "Uncle" in Ethereum pushes down block time to ~10s
- Why not lower??

Security vs block time tradeoff

Security vs block time tradeoff

 Intuitively: the shorter the block time, the harder it is to make the valid block propagate to the majority of the network

Security vs block time tradeoff

- Intuitively: the shorter the block time, the harder it is to make the valid block propagate to the majority of the network
- Formally, blockchain assumes synchronize network communication

Bottom line

For POW based consensus, ~10s block time is pretty much the limit

How did we end up with 1MB blocks anyway?

Once up on a time, block was BIG (32M)

- Once up on a time, block was BIG (32M)
- Satoshi is a(a bunch of?) really weird guy/gal/ alien and one day, without explanation:

```
fix openssl linkage problems,

disable minimize to tray on Linux because it has too many problems including a CPU peg bug

git-svn-id: <a href="https://bitcoin.svn.sourceforge.net/svnroot/bitcoin/trunk@103">https://bitcoin.svn.sourceforge.net/svnroot/bitcoin/trunk@103</a> 1a98c847-1fd6-4fd8-948a-caf355@aa51b

$\tilde{\psi}$ master $\tilde{\nabla}$ v0.14.1 ... v0.3.10
```

```
catch some recoverable exceptions and continue
-- version 0.3.12 release

git-svn-id: https://bitcoin.svn.sourceforge.net/svnroot/bitcoin/trunk@148 1a98c847-1fd6-4fd8-948a-caf3550aa51b

$\mathcal{V}$ master $\sigma \text{v0.14.1} \quad v0.3.12$
```


- Once up on a time, block was BIG (32M)
- Satoshi is a(a bunch of?) really weird guy/gal/ alien and one day, without explanation:

- Once up on a time, block was BIG (32M)
- Satoshi is a(a bunch of?) really weird guy/gal/ alien and one day, without explanation:

- Once up on a time, block was BIG (32M)
- Satoshi is a(a bunch of?) really weird guy/gal/ alien and one day, without explanation:
- Just like that, block size became 1MB

- Once up on a time, block was BIG (32M)
- Satoshi is a(a bunch of?) really weird guy/gal/ alien and one day, without explanation:
- Just like that, block size became 1MB
- Problem is no one had a clue why....

- Once up on a time, block was BIG (32M)
- Satoshi is a(a bunch of?) really weird guy/gal/ alien and one day, without explanation:
- Just like that, block size became 1MB
- Problem is no one had a clue why....
- Let's all guess and justify....

Possible Reasons

Explicit growth control

Possible Reasons

- Explicit growth control for system health
 - Storage: 153G and growing
 - Compute: validation of the transactions
 - Network: bandwidth to tx and rx block data
 - Larger block require higher end hardware to run full node —> less full node in the system and therefore, less "network effect"

Possible Reasons

- Incentivize the miner
 - Bigger block = higher misc cost (network, storage, validation)
 - Smaller block = more backlog and higher fee

Possible Reasons

- Security
 - Bigger block = longer propagation delays
 - Therefore bigger block = more orphan transactions
 - percentage of hash rate goes to orphan is REALLY wasted

Despite all the justifications

Block size / Block Time 1Mb 10min

Why can't we just up the block size and see?

Hard Fork

Hard Fork

Please, refer this term from now on as "You Know What"

Hard Fork

Please, refer this term from now on as "You Know What"

Or at the very least, Hard F*rk

Hard f*rk can cause permanent chain split

Chain split kills network effect and confidence/pure ideology of "unalterable ledger"

More practically, harm security, e.g. replay attack

Small Debate

Hard F*rk or Not?

Unalterable shared state

Hard to change protocol or even fix bugs

Hard to change protocol or even fix bugs

IMHO, Hard Fork is not scary at all

Forget about all these debates

So, let's just say we put 32MB block in place (which is almost impossible)

Transaction per second

No hope for mass adoption

Buy an ice cream, wait two hour

Transfer \$10 for lunch, pay \$1.5 fee

Store a 500 element hash map, pay \$10

Play a chess game pay \$50

Develop a smart contract? Buy 10PB SSD RAID

No hope for mass adoption

And btw, total energy consumption: O(n^2)

ALL IS LOST

Not so fast

Offchain State Channels and Networks

Repeatedly transfer small amount of BTC without using on-chain transaction every time

Alice

Bob

Unidirectional Channel

Alice

Bob

Unidirectional Channel Time-Locked Contract (TLC)

Bob

Unidirectional Channel Time-Locked Contract (TLC)

Unidirectional Channel Time-Locked Contract (TLC)

Unidirectional Channel Time-Locked Contract (TLC)

Unidirectional Channel
Time-Locked Contract (TLC)

2 on-chain transactions

Send Bob one BTC

Address: C Alice + Bob 10 BTC

Alice

Bob

Send Bob one BTC

Address: C Alice + Bob 10 BTC

Send Bob one BTC

Address: C Alice + Bob 10 BTC

Send Bob another BTC

Alice

sign_Alice

C->A, 9

C->B, I

Bob

Send Bob one BTC

Address: C Alice + Bob 10 BTC

Send Bob another BTC

Alice

sign_Alice

C->A, 9

C->B, I

Bob

sign_Alice

C->A, 8

C->B, 2

Bidirectional Channel

Bidirectional Channel

Address: C Alice + Bob 20 BTC

Alice

Bob

Address: C Alice + Bob 20 BTC

Alice

sign_Alice C->A, I I C->B, 9

Bob

Address: C Alice + Bob 20 BTC

Alice

sign_Alice C->A, I I C->B, 9

Bob

sign_Bob C->A, 10 C->B, 10

Bob likes this more

sign_Alice C->A, I I C->B, 9

Bob

sign_Bob C->A, 10 C->B, 10

Bob likes this more

Bob

Alice

sign_Alice

C->A, I I

C->B, 9

in 9 days(SeqNo1)

But Alice has final say

sign_Bob

C->A, 10

C->B, 10

in 8 days (SeqNo2)

Address: C Alice + Bob 20 BTC

What's the down side of bi-directional channels?

ore

sign_Bob

C->A, 10

C->B, 10

in 8 days (SeqNo)

. _

Address: C Alice + Bob 20 BTC

What's the down side of bi-directional channels?

Shortened lifetime of channel

sign_Bob

C->A, 10

C->B, 10

in 8 days (SeqNo)

או כ

Bidirectional channel can be built using two unidirectional channels in a single contract

Balance can go negative in one direction

sign_Alice C->A, -100 C->B, 110

Bidirectional channel can be built using two unidirectional channels in **a single contract**Balance can go negative in individual directions, get settled later

sign_Alice C->A, -100 C->B, 110 sign_Bob C->A,200 C->B,0

Settlement Guidelines

Do not play too close to the time lock

Hashed Time-locked Contract

Conditional Transaction

Conditional Transaction

Conditional Transaction

Deployment Status

BTC

ETH

Nothing at all

PoC

Requires Hard Forks Turing
Complete
smart
contract

Cannot do concurrent payment!

Crypto researcher's solution

Solves the safety issue, but.....

Solves the safety issue, but.....

Solves the safety issue, but.....

What is this?

in the view of our sharpe eyes of advanced networking

1920s

[Getty Images] [US Air Force]

1920s

[Getty Images] [US Air Force]

1920s

1967

[US Air Force]

Circuit switching

You want to build a scalable network with circuit switching in 2017?

YOU GOTTA BE KIDDING ME!

Circuit switching

Right All the Wrong (RAW):

A Networking Stack for Payment Networks

(Our Active Research Projects, actively recruiting collaborators)

A limited preview

Right All the Wrong (RAW): A Networking Stack for Payment Networks (Our Active Research Projects, actively recruiting collaborators)

A limited preview

Address: C Alice + Bob 0 BTC

On-chain Contract

sign_Alice C->A, 9 C->B, I

Payment

RAW: Packet Switching Contract

sign_Alice C->Bob, [1,3,4,7,11,23,45..]

On-chain Contract

Payment

State Channel

A block chain Design Philosophy

Combine the on-chain program state settlement with frequent off-chain intermediate state transactions

Other Scalability Proposals

Proof of Stake

Sharding of Blockchain