
Programmable Switches
Brighten Godfrey

CS 538 April 12 2017

slides ©2010-2017 by Brighten Godfrey unless otherwise noted

History

Network processors

Active networks (~ 1999)

FPGAs (NetFPGA: Lockwood et al, 2007)

Software-Defined Networking (2008)

Drivers of programmable switches

Programmability of the network => SDN

Simplify and future-proof OpenFlow

N
um

be
r

of
 H

ea
de

r
Fi

el
ds

0

10

20

30

40

50

OpenFlow version

1.0 (Dec '09) 1.1 (Feb '11) 1.2 (Dec '11) 1.3 (Jun '12) 1.4 (Oct '13) 1.5 (Dec '14)

/* OXM Flow match field types for OpenFlow basic class. */
enum oxm_ofb_match_fields {

Drivers of programmable switches

Programmability of the network => SDN

Simplify and future-proof OpenFlow

New capabilities — ideas? [5-min group discussion]

Drivers of programmable switches

Programmability of the network => SDN

Simplify and future-proof OpenFlow

New capabilities — ideas? [5-min group discussion]

• Simplified data planes
• Customizable queueing algorithms
• Fine-grained monitoring

- e.g. monitor individual flows or microbursts
- see Barefoot + AT&T + SnapRoute announcement,

April 2017

Key tension

General-purpose
hardware

Special-purpose
hardware

Flexible,
inefficient

Constrained,
efficient

So
ftw

ar
e

ro
ut

er
s

FP
G

A
s

N
et

w
or

k
pr

oc
es

so
rs

Pr
og

ra
m

m
ab

le
 s

w
itc

he
s

How do we at least make
this easy to program,

even if it’s not fully flexible?
A

SI
C

 (A
pp

-S
pe

ci
fic

 In
te

gr
at

ed
 C

irc
ui

t)

P4 Introduction

P4: Programming Protocol-Independent
Packet Processors

Bosshart, Daly, Gibb, Izzard, McKeown,

Rexford, Schlesinger, Talayco, Vahdat,
Varghese, WalkerSIGCOMM CCR 2014

P4 discussion

It’s pretty low level; what does it do for you?

• Compiles parser
• Compiles imperative control-flow spec to table

dependency graph
- Compiler looks for opportunities for parallelism

• Unified hardware-independent standard
- Intermediate table dependency graph mapped to

actual hardware by target-specific back-end
- Software switch, hardware switch with TCAM, various

constraints on table size or number of tables, …

Packet Transactions

Packet Transactions: High-level

Programming for Line Rate Switches

Sivaraman, Cheung, Budiu, Kim, Alizadeh,

Balakrishnan, Varghese, McKeown, Licking
SIGCOMM 2016

Packet Transactions

What does Domino do for you?

• Stateful operations, atomic for each packet
- but local to the processing element

• Higher-level language (C-like; no need to specify tables)
• Automagically compiles using program synthesis

Domino key features

No iteration (while, for, do-while).
No unstructured control flow (goto, break, continue).
No heap, dynamic memory allocation, or pointers.
At most one location in each array is accessed by a single
execution of a transaction.
No access to unparsed portions of the packet (payload).

Table 1: Restrictions in Domino

l 2 literals v 2 variables bop 2 binary ops uop 2 unary ops
e 2 expressions ::= e.f | l | v | e bop e | uop e | e[d.f] |

f(e1, e2, . . .)

s 2 statements ::= e = e | if (e) {s} else {s} | s ; s
t 2 packet txns ::= name(v){s}

d 2 packet decls ::= {v1, v2, . . .}
sv 2 state var inits ::= v = e | sv ; sv

p 2 Domino programs ::= {d; sv; t}

Figure 4: Domino grammar. Type annotations (void, struct,
int, and Packet) are elided for simplicity.

3.3 Triggering packet transactions
Packet transactions specify how to process packet headers

and state. To specify when to run packet transactions, pro-
grammers use guards: predicates on packet fields that trig-
ger a transaction if a packet matches the guard. For example,
(pkt.tcp_dst_port == 80) would trigger heavy-hitter de-
tection [63] on packets with TCP destination port 80.

Guards can be realized using an exact match in a match-
action table, with the actions being the atoms compiled
from a packet transaction. Guards can take various forms,
e.g., exact, ternary, longest-prefix, and range-based matches,
depending on the matches supported by the match-action
pipeline. Because guards map straightforwardly to the match
key in a match-action table, we focus only on compiling
packet transactions in this paper.

3.4 Handling multiple transactions
So far, we have discussed a single packet transaction cor-

responding to a single data-plane algorithm. In practice, a
switch would run multiple data-plane algorithms, each pro-
cessing its own subset of packets. To address this, we en-
vision a policy language that specifies pairs of guards and
transactions. Realizing a policy is straightforward when all
guards are disjoint. When guards overlap, multiple transac-
tions need to execute on the same subset of packets, requir-
ing a mechanism to compose transactions.

One composition semantics is to run the two transactions
one after another sequentially in a user-specified order. This
can be achieved by concatenating the two transaction bodies
to create a larger transaction. We leave a detailed exploration
of multiple transactions to future work, and focus only on
compiling a single packet transaction here.

Domino
Code

Preprocessing
(4.1)

Pipelining
(4.2)

Code
Generation
(4.3)

Atom templates, pipeline width, pipeline depth

Atom
pipeline for
Banzai
machine

Domino compiler

Figure 5: Passes in the Domino compiler

4. THE DOMINO COMPILER
The Domino compiler translates Domino programs to

Banzai targets. The compiler provides an all-or-nothing
model: if compilation succeeds, the program will run at line
rate on the target with packet transaction semantics. Other-
wise, if the program cannot run at line rate, it will not com-
pile. This all-or-nothing model trades off diminished pro-
grammability for guaranteed line-rate performance, in con-
trast to software routers that provide greater flexibility, but
lower and unpredictable run-time performance [34].

The Domino compiler has three passes (Figure 5), which
we illustrate using the flowlet switching example. Prepro-
cessing (§4.1) simplifies packet transactions into a simpler
three-address code form [18]. Pipelining (§4.2) transforms
preprocessed code into code for a Pipelined Virtual Switch
Machine (PVSM), an intermediate representation that mod-
els a switch pipeline with no computational or resource lim-
its. Code generation (§4.3) transforms this intermediate rep-
resentation into configuration for a Banzai machine, given
the machine’s computational and resource limits (§2.4), and
rejects the program if it can not run at line rate. The Domino
compiler uses many existing compilation techniques, but
adapts them in important ways for line-rate switches (§4.4).

4.1 Preprocessing
Branch removal. A packet transaction’s body can contain
(potentially nested) branches (e.g., Lines 27 to 29 in Fig-
ure 3a). Branches alter control flow and complicate depen-
dency analysis, i.e., whether a statement should precede an-
other. We transform branches into conditional assignments,
starting from the innermost if and proceeding outwards
(Figure 6). This turns the transaction body into straight-line
code with no branches, which simplifies dependency analy-
sis during pipelining (§4.2).

Rewriting state variable operations. We now identify
state variables in a packet transaction, e.g., last_time and
saved_hop in Figure 3a. For each state variable, we create a
read flank to read the variable into a temporary packet field.
For an array, we also move the index expression into the read
flank using the fact that only one array index is accessed per
packet (§3.2). Within the packet transaction, we replace the
state variable with the temporary packet field, and create a
write flank to write this temporary packet field back to the
state variable (Figure 7). After this, the only operations on
state variables are reads and writes; all arithmetic happens
on packet fields. Restricting stateful operations simplifies
handling of state during pipelining (§4.2).

20

High level language

Dependency graph of ‘codelets’
Use SKETCH to automatically
find hardware’s ‘atoms’ that can

implement each codelet

Key is to minimize delay
(area not as big a deal)

[Figure from Sivaraman et al.]

Ex.: Fair Queueing prioritization

#include "hashes.h"

#define NUM_FLOWS 8000
#define TIME_MIN 1

struct Packet {
 int sport;
 int dport;
 int id;
 int start;
 int length;
 int virtual_time;
};

int last_finish [NUM_FLOWS] = {TIME_MIN};

void stfq(struct Packet pkt) {
 pkt.id = hash2(pkt.sport,
 pkt.dport)
 % NUM_FLOWS;

[https://github.com/packet-transactions/domino-examples]

Ex.: Fair Queueing prioritization
 int sport;
 int dport;
 int id;
 int start;
 int length;
 int virtual_time;
};

int last_finish [NUM_FLOWS] = {TIME_MIN};

void stfq(struct Packet pkt) {
 pkt.id = hash2(pkt.sport,
 pkt.dport)
 % NUM_FLOWS;

 if ((last_finish[pkt.id] > TIME_MIN) && (pkt.virtual_time <
last_finish[pkt.id])) {
 pkt.start = last_finish[pkt.id];
 last_finish[pkt.id] += pkt.length;
 } else {
 pkt.start = pkt.virtual_time;
 last_finish[pkt.id] = pkt.virtual_time + pkt.length;
 }
}

[https://github.com/packet-transactions/domino-examples]

Discussion

What code will be placed within a pipeline? What will
be placed across multiple pipelines?

Domino models the computation “but not how
packets are matched (e.g., direct or ternary)” – what
do those mean?

How did Domino navigate the tradeoff between
efficiency and ease of programmability?

Announcements

Assignment 2

• Release date delayed till next class

Monday

• Content Distribution & Overlay Networks

