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Cloud service characteristics

O(billions) scale
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O(billions) scale

App workflows have wide “fan-out”

® |00s of memcached servers per request
e (Causes all-to-all traffic from web to memcached servers

App workflows need multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?
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Implications

® Need extreme performance
® Exceptional conditions become the common case



A cornucopia of systems optimizations

® Aggregate queries across threads, compression, batching
requests in one packet, custom malloc, use UDPF, client
flow control to avoid incast, ...

® One master region handles writes, others read-only

Keep memcache servers simple

® Only talk to web clients
® Web clients handle complexity (e.g., installing cached
values, carrying tokens, error recovery)

Pr[stale] is tunable, not a correctness problem




Warmup takes hours! (How did they handle this?)

® Bring up new cluster fast by moving content from
already-warm memcache cluster
® memcached servers store cached values semi-persistently
= in shared memory region
= doesn’t die when memcached process is killed or
upgraded!

Intriguing questions

® What would happen if you shut off Facebook and turned
it back on again?

® What if you shut off the Internet and turned it back on
again?



“Tail at Scale” [Dean and Barroso] | [

Key problem identified?

® Exceptional conditions become the common case



Probability of one-second service-level response time as the system scales and frequency

of server-level high-latency outliers varies.
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[Dean and Barroso, CACM 201 3]



Key problem identified:

® Exceptional conditions become the common case

Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured

from root node of the tree).

50%ile latency 95%ile latency 99%ile latency
One random leaf finishes 1ms 5ms 10ms
95% of all leaf 12ms 32ms 70ms
requests finish
100% of all leaf 40ms 87ms 140ms

requests finish

[Dean and Barroso, CACM 201 3]




Discussion question

How do these two papers approach replication?

® Google’s “tail at scale”
® Facebook’s scaled memcached



How do these two papers approach replication!?

® Facebook’s scaled memcached
= Goal: scaling efficiently
= Data in memory => minimize replicated data to
maximize cache size
- Replication is used to increase throughput

o Google’s “tail at scale”
- Goal: consistent performance
= Data replicated for reliability, enabling ...
= ...replicated requests (“hedged”)
- ...replicated requests with cancellation (“tied”)




Announcements

Next time

® Programmable switches



