Cloud Services

Brighten Godfrey
CS 538 April 10 2017

slides ©2010-2017 by Brighten Godfrey unless otherwise noted



Region (Master) Region (Slave)

Front-End
Clusters

Front-End
Clusters

Web Server “

Memcache 'I |

Memcache '

Storage Cluster (Master)

Storage Cluster (Slave)

) oo O

Storage
Replication

) e O

[from Nishtala et al.,, Scaling Memcache at Facebook, NSDI 201 3]




Cloud service characteristics

O(billions) scale

Wide “fan-out”

| 00s of
memcached

servers per
request

Causes all-to-all
traffic from web
to memcached
servers

percentile of requests

60 80 100

40

20

GO
€500Y0) O ¢/
SV

O All requests
2 A popular data intensive page

© @O

20 100 200 300 400 500 600

distinct memcached servers

(from web server for single web request)

[from Nishtala et al., Scaling Memcache at
Facebook, NSDI 201 3]



O(billions) scale

App workflows have wide “fan-out”

® |00s of memcached servers per request
e (Causes all-to-all traffic from web to memcached servers

App workflows need multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?




O(billions) scale

App workflows have wide “fan-out”

® |00s of memcached servers per request
e (Causes all-to-all traffic from web to memcached servers

App workflows need multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?

Implications

® Need extreme performance
® Exceptional conditions become the common case



A cornucopia of systems optimizations

® Aggregate queries across threads, compression, batching
requests in one packet, custom malloc, use UDPF, client
flow control to avoid incast, ...

® One master region handles writes, others read-only

Keep memcache servers simple

® Only talk to web clients
® Web clients handle complexity (e.g., installing cached
values, carrying tokens, error recovery)

Pr[stale] is tunable, not a correctness problem




Warmup takes hours! (How did they handle this?)

® Bring up new cluster fast by moving content from
already-warm memcache cluster
® memcached servers store cached values semi-persistently
= in shared memory region
= doesn’t die when memcached process is killed or
upgraded!

Intriguing questions

® What would happen if you shut off Facebook and turned
it back on again?

® What if you shut off the Internet and turned it back on
again?



“Tail at Scale” [Dean and Barroso] | [

Key problem identified?

® Exceptional conditions become the common case



Probability of one-second service-level response time as the system scales and frequency

of server-level high-latency outliers varies.

== 1in100 === 1in1000 === 1in10,000

-

O
©

—

O
o)

-
\l

0.63

O
o))

O
&y

P (service latency > 1s)
(@)
N~

0.3
0.18
0.2 -
0.1
0
1 500 1,000 1,500 2,000

Numbers of Servers

[Dean and Barroso, CACM 201 3]



Key problem identified:

® Exceptional conditions become the common case

Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured

from root node of the tree).

50%ile latency 95%ile latency 99%ile latency
One random leaf finishes 1ms 5ms 10ms
95% of all leaf 12ms 32ms 70ms
requests finish
100% of all leaf 40ms 87ms 140ms

requests finish

[Dean and Barroso, CACM 201 3]




Discussion question

How do these two papers approach replication?

® Google’s “tail at scale”
® Facebook’s scaled memcached



How do these two papers approach replication!?

® Facebook’s scaled memcached
= Goal: scaling efficiently
= Data in memory => minimize replicated data to
maximize cache size
- Replication is used to increase throughput

o Google’s “tail at scale”
- Goal: consistent performance
= Data replicated for reliability, enabling ...
= ...replicated requests (“hedged”)
- ...replicated requests with cancellation (“tied”)




Announcements

Next time

® Programmable switches



