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How a Web search works



How a Web search works



How a Web search works

Extremely short response deadlines for each server — 10ms

Scatter-gather traffic pattern



“Up to 150 stages, degree of 40, path lengths of 10 or more”

Request

Response
Image source:  Talk on “Speeding up Distributed Request-Response Workflows” 

by Virajith Jalaparti at ACM SIGCOMM’13
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What does data center traffic look like?

It depends … on applications, scale, network design, …



Traffic characteristics: growing volume

acenter deployments, the number of required protocols
can be substantially reduced.

Inspired by the community’s ability to scale out com-
puting with parallel arrays of commodity servers, we
sought a similar approach for networking. This paper
describes our experience with building five generations
of custom data center network hardware and software
leveraging commodity hardware components, while ad-
dressing the control and management requirements in-
troduced by our approach. We used the following prin-
ciples in constructing our networks:

Clos topologies: To support graceful fault tol-
erance, increase the scale/bisection of our datacenter
networks, and accommodate lower radix switches, we
adopted Clos topologies [2, 9, 15] for our datacenters.
Clos topologies can scale to nearly arbitrary size by
adding stages to the topology, principally limited by
failure domain considerations and control plane scala-
bility. They also have substantial in-built path diversity
and redundancy, so the failure of any individual ele-
ment can result in relatively small capacity reduction.
However, they introduce substantial challenges as well,
including managing the fiber fanout and more complex
routing across multiple equal-cost paths.

Merchant silicon: Rather than use commercial
switches targeting small-volume, large feature sets, and
high reliability, we targeted general-purpose merchant
switch silicon, commodity priced, o↵ the shelf, switch-
ing components. To keep pace with server bandwidth
demands which scale with cores per server and Moore’s
Law, we emphasized bandwidth density and frequent re-
fresh cycles. Regularly upgrading network fabrics with
the latest generation of commodity switch silicon allows
us to deliver exponential growth in bandwidth capacity
in a cost-e↵ective manner.

Centralized control protocols: Control and man-
agement becomes substantially more complex with Clos
topologies because we dramatically increase the num-
ber of discrete switching elements. Existing routing
and management protocols were not well-suited to such
an environment. To control this complexity, we ob-
served that individual datacenter switches played a pre-
determined forwarding role based on the cluster plan.
We took this observation to one extreme by collecting
and distributing dynamically changing link state infor-
mation from a central, dynamically-elected, point in the
network. Individual switches could then calculate for-
warding tables based on current link state relative to a
statically configured topology.

Overall, our software architecture more closely resem-
bles control in large-scale storage and compute plat-
forms than traditional networking protocols. Network
protocols typically use soft state based on pair-wise
message exchange, emphasizing local autonomy. We
were able to use the distinguishing characteristics and
needs of our datacenter deployments to simplify control
and management protocols, anticipating many of the
tenets of modern Software Defined Networking deploy-

Figure 1: Aggregate server tra�c in our datacenter fleet.

Figure 2: A traditional 2Tbps four-post cluster (2004). Top
of Rack (ToR) switches serving 40 1G-connected servers
were connected via 1G links to four 512 1G port Cluster
Routers (CRs) connected with 10G sidelinks.

ments [13]. The datacenter networks described in this
paper represent some of the largest in the world, are in
deployment at dozens of sites across the planet, and sup-
port thousands of internal and external services, includ-
ing external use through Google Cloud Platform. Our
cluster network architecture found substantial reuse for
inter-cluster networking in the same campus and even
WAN deployments [19] at Google.

2. BACKGROUND AND RELATED
WORK

The tremendous growth rate of our infrastructure
served as key motivation for our work in datacenter
networking. Figure 1 shows aggregate server commu-
nication rates since 2008. Tra�c has increased 50x in
this time period, roughly doubling every year. A combi-
nation of remote storage access [7, 14], large-scale data
processing [10,18], and interactive web services [4] drive
our bandwidth demands.

In 2004, we deployed traditional cluster networks sim-
ilar to [5]. Figure 2 depicts this “four-post” cluster ar-
chitecture. We employed the highest density Ethernet
switches available, 512 ports of 1GE, to build the spine
of the network (CRs or cluster routers). Each Top of
Rack (ToR) switch connected to all four of the cluster
routers for both scale and fault tolerance.

With up to 40 servers per ToR, this approach sup-
ported 20k servers per cluster. However, high band-
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“Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s 
Datacenter Network”,  Arjun Singh et al. @ Google,  ACM SIGCOMM’15

Facebook: “machine to machine” traffic is several orders of 
magnitude larger than what goes out to the Internet



Traffic characteristics: rack locality
Figure 4: Per-second traffic locality by system type over a two-minute span: Hadoop (top left), Web server (top right), cache
follower (bottom left) and leader (bottom right) (Note the differing y axes)

inter-datacenter traffic is present in larger quantities. Fron-
tend cluster traffic, including Web servers and the atten-
dant cache followers, stays largely within the cluster: 68%
of Web server traffic during the capture plotted here stays
within the cluster, 80% of which is destined to cache sys-
tems; the Multifeed systems and the SLB servers get 8%
each. While miscellaneous background traffic is present, the
volume of such traffic is relatively inconsequential.

Cache systems, depending on type, see markedly different
localities, though along with Web servers the intra-rack lo-
cality is minimal. Frontend cache followers primarily send
traffic in the form of responses to Web servers (88%), and
thus see high intra-cluster traffic—mostly servicing cache
reads. Due to load balancing (see Section 5.2), this traffic
is spread quite widely; during this two-minute interval the
cache follower communicates with over 75% of the hosts in
the cluster, including over 90% of the Web servers. Cache
leaders maintain coherency across clusters and the backing
databases, engaging primarily in intra- and inter-datacenter
traffic—a necessary consequence of the cache being a "sin-
gle geographically distributed instance." [15]

The stability of these traffic patterns bears special men-
tion. While Facebook traffic is affected by the diurnal traffic
pattern noted by Benson et al. [12], the relative proportions
of the locality do not change—only the total amount of traf-
fic. Over short enough periods of time, the graph looks es-
sentially flat and unchanging. In order to further investigate
the cause and particulars of this stability, we turn our atten-
tion to the traffic matrix itself.

Locality All Hadoop FE Svc. Cache DB
Rack 12.9 13.3 2.7 12.1 0.2 0

Cluster 57.5 80.9 81.3 56.3 13.0 30.7
DC 11.9 3.3 7.3 15.7 40.7 34.5

Inter-DC 17.7 2.5 8.6 15.9 16.1 34.8
Percentage 23.7 21.5 18.0 10.2 5.2

Table 3: Different clusters have different localities; last row
shows each cluster’s contribution to total network traffic

4.3 Traffic matrix
In light of the surprising lack of rack locality and high

degree of traffic stability, we examine traffic from the more
long-term and zoomed-out perspective provided by Fbflow.

Table 3 shows the locality of traffic generated by all of
Facebook’s machines during a 24-hour period in January
2015 as reported by Fbflow. Facebook’s traffic patterns re-
main stable day-over-day—unlike the datacenter studied by
Delimitrou et al. [17]. The clear majority of traffic is intra-
cluster but not intra-rack (i.e., the 12.9% of traffic that stays
within a rack is not counted in the 57.5% of traffic labeled as
intra-cluster). Moreover, more traffic crosses between data-
centers than stays within a rack.

Table 3 further breaks down the locality of traffic gener-
ated by the top-five cluster types which, together, account for
78.6% of the traffic in Facebook’s network. Hadoop clusters
generate the most traffic (23.7% of all traffic), and are sig-
nificantly more rack-local than others, but even its traffic is
far from the 40–80% rack-local reported in the literature [12,

Figure 3: Mix of jobs in an example cluster with 12 blocks
of servers (left). Fraction of tra�c in each block destined
for remote blocks (right).

width applications had to fit under a single ToR to
avoid the heavily oversubscribed ToR uplinks. Deploy-
ing large clusters was important to our services because
there were many a�liated applications that benefited
from high bandwidth communication. Consider large-
scale data processing to produce and continuously re-
fresh a search index, web search, and serving ads as
a�liated applications. Larger clusters also substan-
tially improve bin-packing e�ciency for job scheduling
by reducing stranding from cases where a job cannot
be scheduled in any one cluster despite the aggregate
availability of su�cient resources across multiple small
clusters.

Maximum cluster scale is important for a more sub-
tle reason. Power is distributed hierarchically at the
granularity of the building, multi-Megawatt power gen-
erators, and physical datacenter rows. Each level of hi-
erarchy represents a unit of failure and maintenance.
For availability, cluster scheduling purposely spreads
jobs across multiple rows. Similarly, the required re-
dundancy in storage systems is in part determined by
the fraction of a cluster that may simultaneously fail as
a result of a power event. Hence, larger clusters lead to
lower storage overhead and more e�cient job scheduling
while meeting diversity requirements.

Running storage across a cluster requires both rack
and power diversity to avoid correlated failures. Hence,
cluster data should be spread across the cluster’s failure
domains for resilience. However, such spreading natu-
rally eliminates locality and drives the need for uni-
form bandwidth across the cluster. Consequently, stor-
age placement and job scheduling have little locality in
our cluster tra�c, as shown in Figure 3. For a rep-
resentative cluster with 12 blocks (groups of racks) of
servers, we show the fraction of tra�c destined for re-
mote blocks. If tra�c were spread uniformly across the
cluster, we would expect 11/12 of the tra�c (92%) to
be destined for other blocks. Figure 3 shows approxi-
mately this distribution for the median block, with only
moderate deviation.

While our traditional cluster network architecture
largely met our scale needs, it fell short in terms of
overall performance and cost. Bandwidth per host was
severely limited to an average of 100Mbps. Packet drops
associated with incast [8] and outcast [21] were severe

Figure 4: A generic 3 tier Clos architecture with edge
switches (ToRs), aggregation blocks and spine blocks. All
generations of Clos fabrics deployed in our datacenters fol-
low variants of this architecture.

pain points. Increasing bandwidth per server would
have substantially increased cost per server and reduced
cluster scale.
We realized that existing commercial solutions could

not meet our scale, management, and cost requirements.
Hence, we decided to build our own custom data center
network hardware and software. We started with the
key insight that we could scale cluster fabrics to near
arbitrary size by leveraging Clos topologies (Figure 4)
and the then-emerging (ca. 2003) merchant switching
silicon industry [12]. Table 1 summarizes a number of
the top-level challenges we faced in constructing and
managing building-scale network fabrics. The following
sections explain these challenges and the rationale for
our approach in detail.
For brevity, we omit detailed discussion of related

work in this paper. However, our topological approach,
reliance on merchant silicon, and load balancing across
multipath are substantially similar to contemporaneous
research [2,15]. In addition to outlining the evolution of
our network, we further describe inter cluster network-
ing, network management issues, and detail our control
protocols. Our centralized control protocols running on
switch embedded processors are also related to subse-
quent substantial e↵orts in Software Defined Network-
ing (SDN) [13]. Based on our experience in the dat-
acenter, we later applied SDN to our Wide Area Net-
work [19]. For the WAN, more CPU intensive tra�c
engineering and BGP routing protocols led us to move
control protocols onto external servers with more plen-
tiful CPU from the embedded CPU controllers we were
able to utilize for our initial datacenter deployments.
Recent work on alternate network topologies such as

HyperX [1], Dcell [17], BCube [16] and Jellyfish [22]
deliver more e�cient bandwidth for uniform random
communication patterns. However, to date, we have
found that the benefits of these topologies do not make
up for the cabling, management, and routing challenges
and complexity.

3. NETWORK EVOLUTION

3.1 Firehose 1.0
Table 2 summarizes the multiple generations of our
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Traffic characteristics: rack locality

“Network Traffic Characteristics of Data Centers in the Wild”
Theophilus Benson et al.,  ACM IMC’10
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Data Centers

Intra-Rack Extra-Rack

Figure 8: The ratio of Extra-Rack to Intra-Rack traffic in the
data centers.

Next, we focus on the enterprise and university data centers.
With the exception of EDU1, these appear to be both very diffe-
rent from the cloud data centers and qualitatively similar to each
other: at least 50% of the server-originated traffic in the data cen-
ters leaves the racks, compared with under 25% for the cloud data
centers. These data centers run user-facing applications, such as
Web services and file servers. While this application mix is simi-
lar to CLD1–3 discussed above, the Intra/Extra rack usage patterns
are quite different. A possible reason for the difference is that the
placement of dependent services in enterprise and campus data cen-
ters may not be as optimized as the cloud data centers.

6.2 Link Utilizations vs Layer
Next, we examine the impact of the Extra-Rack traffic on the

links within the interconnect of the various data centers. We ex-
amine link utilization as a function of location in the data center
topology. Recall that all 10 data centers employed 2-Tiered or 3-
Tiered tree-like networks.
In performing this study, we studied several hundred 5-minute

intervals at random for each data center and examined the link uti-
lizations as reported by SNMP. In Figure 9, we present the utiliza-
tion for links across different layers in the data centers for one such
representative interval.
In general, we find that utilizations within the core/aggregation

layers are higher than those at the edge; this observation holds
across all classes of data centers. These findings support observa-
tions made by others [3], where the focus was on cloud data centers.
A key point to note, not raised by prior work [3], is that across

the various data centers, there are differences in the tail of the dis-
tributions for all layers–in some data centers, such as CLD4, there
is a greater prevalence of high utilization links (i.e., utilization 70%
or greater) especially in the core layer, while in others there are no
high utilization links in any layer (e.g., EDU1). Next, we examine
these high utilization links in greater depth.

6.3 Hot-spot Links
In this section, we study the hot-spot links—those with 70%

or higher utilization—unearthed in various data centers, focusing
on the persistence and prevalence of hot-spots. More specifically,
we aim to answer the following questions: (1) Do some links fre-
quently appear as hot-spots? How does this result vary across lay-
ers and data centers? (2) How does the set of hot-spot links in
a layer change over time? (3) Do hot-spot links experience high
packet loss?

(a)
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Figure 9: CDF of link utilizations (percentage) in each layer.

6.3.1 Persistence and Prevalence
In Figure 10, we present the distribution of the percentage of

time intervals that a link is a hot-spot. We note from Figures 10(a)
and (b) that very few links in either the edge or aggregation lay-
ers are hot-spots, and this observations holds across all data centers
and data center types. Specifically, only 3% of the links in these
two layers appear as a hot-spot for more than 0.1% of time inter-
vals. When edge links are congested, they tend to be congested
continuously, as in CLD2, where a very small fraction of the edge
links appear as hot-spots in 90% of the time intervals.
In contrast, we find that the data centers differ significantly in

their core layers (Figure 10(c)). Our data centers cluster into 3 hot-
spot classes: (1) Low Persistence-Low Prevalence: This class of
data centers comprises those where the hot-spots are not localized
to any set of links. This includes PRV2, EDU1, EDU2, EDU3,
CLD1, and CLD3, where any given core link is a hot-spot for no
more than 10% of the time intervals; (2) High Persistence-Low
Prevalence: The second group of data centers is characterized by
hot-spots being localized to a small number of core links. This in-
cludes PRV1 and CLD2 where 3% and 8% of the core links, respec-
tively, each appear as hot-spots in> 50% of the time intervals; and
(3) High Persistence-High Prevalence: Finally, in the last group
containing CLD4 and CLD5, a significant fraction of the core links
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Traffic characteristics: concurrent flows

“Web servers and cache hosts have 100s 
to 1000s of concurrent connections”

“Inside the Social Network’s (Datacenter) Network”
Arjun Roy et al.,  ACM SIGCOMM’15

Facebook

“Hadoop nodes have approximately 25 
concurrent connections on average.”

“The Nature of Datacenter Traffic: Measurements & Analysis”
Srikanth Kandula et al. (Microsoft Research),  ACM IMC’09

1500 server cluster @ ?? “median numbers of correspondents for a 
server are two (other) servers within its 
rack and four servers outside the rack”



Traffic characteristics: flow arrival rate

“median inter-arrival times of 
approximately 2ms” at a server“Inside the Social Network’s (Datacenter) Network”

Arjun Roy et al.,  ACM SIGCOMM’15

Facebook

“The Nature of Datacenter Traffic: Measurements & Analysis”
Srikanth Kandula et al. (Microsoft Research),  ACM IMC’09

1500 server cluster @ ??
< 0.1x Facebook’s rate



Traffic characteristics: flow sizes

Hadoop:   median flow <1KB
<5% exceed 1MB or 100sec

Caching:   most flows are long-lived

… but bursty internally

Heavy-hitters ≈ median flow, not persistent

> 80% of the flows last <10sec
> 50% bytes are in flows lasting less <25sec

“Inside the Social Network’s (Datacenter) Network”
Arjun Roy et al.,  ACM SIGCOMM’15

Facebook

“The Nature of Datacenter Traffic: Measurements & Analysis”
Srikanth Kandula et al. (Microsoft Research),  ACM IMC’09

1500 server cluster @ ??



What does data center traffic look like?

It depends … on applications, scale, network design, …

… and right now, not a whole lot of data is available.



Implications for networking

Data center internal traffic is BIG1

Tight deadlines for network I/O2

Congestion and TCP incast3

Need for isolation across applications4

Centralized control at the flow level may be difficult5



Implications for networking

Data center internal traffic is BIG1

acenter deployments, the number of required protocols
can be substantially reduced.

Inspired by the community’s ability to scale out com-
puting with parallel arrays of commodity servers, we
sought a similar approach for networking. This paper
describes our experience with building five generations
of custom data center network hardware and software
leveraging commodity hardware components, while ad-
dressing the control and management requirements in-
troduced by our approach. We used the following prin-
ciples in constructing our networks:

Clos topologies: To support graceful fault tol-
erance, increase the scale/bisection of our datacenter
networks, and accommodate lower radix switches, we
adopted Clos topologies [2, 9, 15] for our datacenters.
Clos topologies can scale to nearly arbitrary size by
adding stages to the topology, principally limited by
failure domain considerations and control plane scala-
bility. They also have substantial in-built path diversity
and redundancy, so the failure of any individual ele-
ment can result in relatively small capacity reduction.
However, they introduce substantial challenges as well,
including managing the fiber fanout and more complex
routing across multiple equal-cost paths.

Merchant silicon: Rather than use commercial
switches targeting small-volume, large feature sets, and
high reliability, we targeted general-purpose merchant
switch silicon, commodity priced, o↵ the shelf, switch-
ing components. To keep pace with server bandwidth
demands which scale with cores per server and Moore’s
Law, we emphasized bandwidth density and frequent re-
fresh cycles. Regularly upgrading network fabrics with
the latest generation of commodity switch silicon allows
us to deliver exponential growth in bandwidth capacity
in a cost-e↵ective manner.

Centralized control protocols: Control and man-
agement becomes substantially more complex with Clos
topologies because we dramatically increase the num-
ber of discrete switching elements. Existing routing
and management protocols were not well-suited to such
an environment. To control this complexity, we ob-
served that individual datacenter switches played a pre-
determined forwarding role based on the cluster plan.
We took this observation to one extreme by collecting
and distributing dynamically changing link state infor-
mation from a central, dynamically-elected, point in the
network. Individual switches could then calculate for-
warding tables based on current link state relative to a
statically configured topology.

Overall, our software architecture more closely resem-
bles control in large-scale storage and compute plat-
forms than traditional networking protocols. Network
protocols typically use soft state based on pair-wise
message exchange, emphasizing local autonomy. We
were able to use the distinguishing characteristics and
needs of our datacenter deployments to simplify control
and management protocols, anticipating many of the
tenets of modern Software Defined Networking deploy-

Figure 1: Aggregate server tra�c in our datacenter fleet.

Figure 2: A traditional 2Tbps four-post cluster (2004). Top
of Rack (ToR) switches serving 40 1G-connected servers
were connected via 1G links to four 512 1G port Cluster
Routers (CRs) connected with 10G sidelinks.

ments [13]. The datacenter networks described in this
paper represent some of the largest in the world, are in
deployment at dozens of sites across the planet, and sup-
port thousands of internal and external services, includ-
ing external use through Google Cloud Platform. Our
cluster network architecture found substantial reuse for
inter-cluster networking in the same campus and even
WAN deployments [19] at Google.

2. BACKGROUND AND RELATED
WORK

The tremendous growth rate of our infrastructure
served as key motivation for our work in datacenter
networking. Figure 1 shows aggregate server commu-
nication rates since 2008. Tra�c has increased 50x in
this time period, roughly doubling every year. A combi-
nation of remote storage access [7, 14], large-scale data
processing [10,18], and interactive web services [4] drive
our bandwidth demands.

In 2004, we deployed traditional cluster networks sim-
ilar to [5]. Figure 2 depicts this “four-post” cluster ar-
chitecture. We employed the highest density Ethernet
switches available, 512 ports of 1GE, to build the spine
of the network (CRs or cluster routers). Each Top of
Rack (ToR) switch connected to all four of the cluster
routers for both scale and fault tolerance.

With up to 40 servers per ToR, this approach sup-
ported 20k servers per cluster. However, high band-
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Facebook: “machine to machine” traffic is several orders 
of magnitude larger than what goes out to the Internet



Implications for networking

Tight deadlines for network I/O2



Implications for networking

Tight deadlines for network I/O2

Suppose: server response-time is 10ms for 99% of requests; 1s for 1%

#Servers Requests 1s or slower

1 1%

100 63%

Need to reduce variability and tolerate some variation



Implications for networking

TCP does not work very well

Congestion and TCP incast3



Implications for networking

Applications with different objectives sharing the network

Need for isolation across applications4



Implications for networking

Distributed control, perhaps with some centralized tinkering

Centralized control at the flow level may be difficult5


