
Software-Defined Data
Centers

Brighten Godfrey
CS 538 March 6, 2017

slides ©2017 by Brighten Godfrey except graphics from cited papers

Multi-Tenant Data Centers:
The Challenges

Key Needs

Agility

Strength

Constitution

Dexterity

Charisma

Key Needs

Agility

Location independent addressing

Performance uniformity

Security

Network semantics

Agility

Agility: Use any server for any service at any time

• Better economy of scale through increased utilization
• Improved reliability

Service / tenant

• Customer renting space in a public cloud
• Application or service in a private cloud (internal

customer)

Lack of Agility in Traditional DCs

Tenants in “silos”

Lack of Agility in Traditional DCs

Tenants in “silos”

Poor utilization

Lack of Agility in Traditional DCs

Tenants in “silos”

Poor utilization

Inability to expand

Lack of Agility in Traditional DCs

IP addresses locked
to topological
location!

10.0.6.0/2410.0.4.0/24

Key Needs

Agility

Location independent addressing

• Tenant’s IP addresses can be taken anywhere

Performance uniformity

Security

Network semantics

Lack of Agility in Traditional DCs

Nonuniform
performance

Full line rate

1:100 or w
orse

oversubscription

Key Needs

Agility

Location independent addressing

• Tenant’s IP addresses can be taken anywhere

Performance uniformity

• VMs receive same throughput regardless of placement

Security

Network semantics

Lack of Agility in Traditional DCs

Untrusted
environment

Key Needs

Agility

Location independent addressing

• Tenant’s IP addresses can be taken anywhere

Performance uniformity

• VMs receive same throughput regardless of placement

Security

• Micro-segmentation: isolation at tenant granularity

Network semantics

Lack of Agility in Traditional DCs

x 1000s of legacy
apps in a large
enterprise

Key Needs

Agility

Location independent addressing

• Tenant’s IP addresses can be taken anywhere

Performance uniformity

• VMs receive same throughput regardless of placement

Security

• Micro-segmentation: isolation at tenant granularity

Network semantics

• Layer 2 service discovery, multicast, broadcast, …

Network Virtualization
Case Study: VL2

Case Study

VL2: A Scalable and Flexible Data Center Network

Albert Greenberg James R. Hamilton Navendu Jain
Srikanth Kandula Changhoon Kim Parantap Lahiri

David A. Maltz Parveen Patel Sudipta Sengupta

Microsoft Research

Abstract

To be agile and cost effective, data centers should allow dynamic re-
source allocation across large server pools. In particular, the data
center network should enable any server to be assigned to any ser-
vice. Tomeet these goals, we presentVL, a practical network archi-
tecture that scales to support huge data centers with uniform high
capacity between servers, performance isolation between services,
andEthernet layer- semantics. VLuses () flat addressing to allow
service instances to be placed anywhere in the network, () Valiant
Load Balancing to spread traffic uniformly across network paths,
and () end-system based address resolution to scale to large server
pools, without introducing complexity to the network control plane.
VL’s design is driven by detailed measurements of traffic and fault
data from a large operational cloud service provider. VL’s imple-
mentation leverages proven network technologies, already available
at low cost in high-speed hardware implementations, to build a scal-
able and reliable network architecture. As a result, VL networks
can be deployed today, and we have built a working prototype. We
evaluate the merits of the VL design using measurement, analysis,
and experiments. Our VL prototype shuffles . TB of data among
 servers in  seconds – sustaining a rate that is  of the max-
imum possible.

Categories and Subject Descriptors: C.. [Computer-Communi-
cation Network]: Network Architecture and Design

General Terms: Design, Performance, Reliability

Keywords: Data center network, commoditization

1. INTRODUCTION
Cloud services are driving the creation of data centers that hold

tens to hundreds of thousands of servers and that concurrently sup-
port a large number of distinct services (e.g., search, email, map-
reduce computations, and utility computing). The motivations for
building such shared data centers are both economic and technical:
to leverage the economies of scale available to bulk deployments and
to benefit from the ability to dynamically reallocate servers among
services as workload changes or equipment fails [, ]. The cost is
also large – upwards of  million per month for a , server
data center — with the servers themselves comprising the largest
cost component. To be profitable, these data centers must achieve
high utilization, and key to this is the property of agility — the ca-
pacity to assign any server to any service.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

Agility promises improved risk management and cost savings.
Without agility, each service must pre-allocate enough servers to
meet difficult to predict demand spikes, or risk failure at the brink
of success. With agility, the data center operator can meet the fluc-
tuating demands of individual services from a large shared server
pool, resulting in higher server utilization and lower costs.

Unfortunately, the designs for today’s data center network pre-
vent agility in several ways. First, existing architectures do not
provide enough capacity between the servers they interconnect.
Conventional architectures rely on tree-like network configurations
built from high-cost hardware. Due to the cost of the equipment,
the capacity between different branches of the tree is typically over-
subscribed by factors of : or more, with paths through the highest
levels of the tree oversubscribedby factors of : to :. This lim-
its communication between servers to the point that it fragments the
server pool — congestion and computation hot-spots are prevalent
even when spare capacity is available elsewhere. Second, while data
centers host multiple services, the network does little to prevent a
traffic flood in one service from affecting the other services around
it—when one service experiences a trafficflood,it is common for all
those sharing the same network sub-tree to suffer collateral damage.
Third, the routing design in conventional networks achieves scale by
assigning servers topologically significant IP addresses and dividing
servers among VLANs. Such fragmentation of the address space
limits the utility of virtual machines, which cannot migrate out of
their original VLAN while keeping the same IP address. Further,
the fragmentation of address space creates an enormous configura-
tion burden when servers must be reassigned among services, and
the human involvement typically required in these reconfigurations
limits the speed of deployment.

To overcome these limitations in today’s design and achieve
agility, we arrange for the network to implement a familiar and
concrete model: give each service the illusion that all the servers
assigned to it, and only those servers, are connected by a single
non-interfering Ethernet switch—a Virtual Layer — andmaintain
this illusion even as the size of each service varies from  server to
,. Realizing this vision concretely translates into building a
network that meets the following three objectives:

• Uniform high capacity: The maximum rate of a server-to-server
traffic flow should be limited only by the available capacity on the
network-interface cards of the sending and receiving servers, and
assigning servers to a service should be independent of network
topology.

• Performance isolation: Traffic of one service should not be af-
fected by the traffic of any other service, just as if each service was
connected by a separate physical switch.

• Layer- semantics: Just as if the servers were on a LAN—where
any IP address can be connected to any port of an Ethernet switch
due to flat addressing—data-centermanagement software should
be able to easily assign any server to any service and configure

[ACM SIGCOMM 2009]

Influenced architecture of
Microsoft Azure

VL2 Æ Azure Clos Fabrics with 40G NICs

16

T2-1-1 T2-1-2
T2-1-8

T3-1 T3-2 T3-3 T3-4

Row Spine

T2-2-1 T2-2-2
T2-2-4

Data Center Spine

T1-1

T1-8
T1-7…T1-2

…

…Regional Spine

…

T1-1

T1-8
T1-7…T1-2

T1-1

T1-8
T1-7…T1-2

Rack
…

T0-1 T0-2
T0-20

Servers

…
T0-1 T0-2

T0-20

Servers

…
T0-1 T0-2

T0-20

Servers

Outcome of >10 years of history, with major

revisions every six months

Scale-out, active-active

L3

L2LB/FW

LB/FW LB/FW

LB/FW

Scale-up, active-passive

[From Albert Greenberg keynote at SIGCOMM 2015:
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf]

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf%5D

Virtualization

“All problems in computer science can be solved by
another level of indirection.”

– David Wheeler

• Application Addresses (AAs): Location independent
• Illusion of a single big Layer 2 switch connecting the app

Virtualization layer

App / Tenant layer

Physical network layer
• Locator Addresses (LAs): Tied to topology, used to route
• Layer 3 routing via OSPF

• Directory server: Maintain AA to LA mapping
• Server agent: Query server, wrap AAs in outer LA header

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Q
: W

here is

AA 20.0.0.56?

A: LA 10.0.06

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Q
: W

here is

AA 20.0.0.56?

A: LA 10.0.06

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Intermediate switch
decapsulates

Q
: W

here is

AA 20.0.0.56?

A: LA 10.0.06

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Intermediate switch
decapsulates

Destination ToR
decapsulates again

Q
: W

here is

AA 20.0.0.56?

A: LA 10.0.06

End-to-end example

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

[Greenberg et al.]

Application sends
to AA 20.0.0.56

Host agent
encapsulates

Directory
servers

Intermediate switch
decapsulates

Destination ToR
decapsulates again

Host agent delivers

Q
: W

here is

AA 20.0.0.56?

A: LA 10.0.06

Did we achieve agility?

Location independent addressing

• AAs are location independent

L2 network semantics

• Agent intercepts and handles L2 broadcast, multicast

• Both of the above require “layer 2.5” shim agent running
on host; but, concept transfers to hypervisor-based virtual
switch

Did we achieve agility?

Performance uniformity

• Clos network is nonblocking (non-oversubscribed)
• Uniform capacity everywhere
• ECMP provides good (though not perfect) load balancing
• But, performance isolation among tenants depends on TCP

backing off to rate destination can receive
• Leaves open the possibility of fast load balancing

Security

• Directory system can allow/deny connections by choosing
whether to resolve an AA to a LA

• But, segmentation not explicitly enforced at hosts

Where’s the SDN?

Directory servers: Logically centralized control

• Orchestrate application locations
• Control communication policy

Host agents: dynamic “programming” of data path

VL2 Enduring Take-Aways

Scale-out nonblocking Clos network

ECMP for traffic-oblivious routing

Separation of virtual and physical addresses

Centralized control plane

Network Virtualization
Case Study: NVP

Case Study: NVP

This paper is included in the Proceedings of the
11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).

ISBN 978-1-931971-09-6

Open access to the Proceedings of the
11th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’14)

is sponsored by USENIX

Network Virtualization in Multi-tenant Datacenters
Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda, Bryan

Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, Ethan Jackson, Andrew
Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff,

and Rajiv Ramanathan, VMware; Scott Shenker, International Computer Science Institute
and the University of California, Berkeley; Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan

Wendlandt, Alexander Yip, and Ronghua Zhang, VMware

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen

NVP Approach to Virtualization

L3 L3

L2

L2

L2

L2

L2

L2

L2

L2

1. Service: Arbitrary network topology

NVP Approach to Virtualization

L3 L3

L2

L2

L2

L2

L2

L2

L2

L2

1. Service: Arbitrary network topology

NVP Approach to Virtualization

L2

L2

Service: Arbitrary network topology

Physical Network:
Any standard layer 3 network

L3 L3

L2

L2

L2

L2

L2

L2

Network Hypervisor

Virtual network service

L3L2 L2

[Figure: Koponen et al.]

Virtual network service

L3L2 L2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

[Figure: Koponen et al.]

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Virtual network service

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical
Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Packet
abstraction

Control abstraction
(sequence of OpenFlow flow tables)

Physical L3 Network
server

server

server

server
server

L3L2 L2

Network Hypervisor
Controllers

Tenant control
abstraction

tunnel

(GRE,

 VXLAN)

Open
vSwitch

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Open
vSwitch

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Open
vSwitch

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 207

ACL L2 ACL

Map

VM

Map

ACL L2 L3 ACL

Map

ACLACL L2

Map Tunnel

Logical

Physical

Logical Datapath 1 Logical Datapath 2 Logical Datapath 3

Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance
OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5

Tenant VM
Tenant VM

Tenant VM

Challenge: Performance

Large amount of state to compute

• Full virtual network state at every host with a tenant VM!
• O(n2) tunnels for tenant with n VMs
• Solution 1: Automated incremental state computation with

nlog declarative language
• Solution 2: Logical controller computes single set of

universal flows for a tenant, translated more locally by
“physical controllers”

Challenge: Performance

Pipeline processing in virtual switch can be slow

• Solution: Send first packet of a flow through the full
pipeline; thereafter, put an exact-match packet entry in the
kernel

Tunneling interferes with TCP Segmentation Offload
(TSO)

• NIC can’t see TCP outer header
• Solution: STT tunnels adds “fake” outer TCP header

Discussion

Where’s the SDN?

• API to data plane
• centralized controller
• control abstractions

Why was micro-segmentation a “killer app” for SDN?

• Needed to automate control of a dynamic, virtualized
environment, not suited to manual solutions

How does it compare to wide-area control in B4?

Industry Impact

Multiple vendors with software-defined data center
“micro-segmentation” products

• VMware’s NSX
• Cisco’s ACI
• Startups vArmour, Illumio

• VMware claims more than 2,400 customers, $1B/yr sales

Next time

• Higher-level programming abstractions for SDN

Mid-term project presentations

Two key goals

• Demonstrate concrete progress
• Feedback & discussion with your peers

Content

• What problem are you solving?
• Why has past work not addressed the problem?
• What is your approach for solving it?
• What are your preliminary results & progress?

