
SDN WAN Applications
Brighten Godfrey

CS 538 March 1, 2017

slides ©2010-2017 by Brighten Godfrey

Initial “Killer apps”

Cloud virtualization

• Create separate virtual networks for tenants
• Allow flexible placement and movement of VMs

WAN traffic engineering

• Drive utilization to near 100% when possible
• Protect critical traffic from congestion

Key characteristics of the above

• Special-purpose deployments with less diverse hardware
• Existing solutions aren’t just annoying, they don’t work!

How large online services work

How large online services work

The Internet

Why multiple data centers?

Data availability

Load balancing

Latency

Local data laws

Hybrid public-private operation

Inter-data center traffic is significant

IEEE INFOCOM, 2011
A First Look at Inter-Data Center Traffic Characteristics via

Yahoo! Datasets
Yingying Chen1, Sourabh Jain1, Vijay Kumar Adhikari1, Zhi-Li Zhang1, and Kuai Xu2

1University of Minnesota-Twin Cities
2Arizona State University

Abstract—Effectively managing multiple data centers and their
traffic dynamics pose many challenges to their operators, as little
is known about the characteristics of inter-data center (D2D)
traffic. In this paper we present a first study of D2D traffic
characteristics using the anonymized NetFlow datasets collected
at the border routers of five major Yahoo! data centers. Our
contributions are mainly two-fold: i) we develop novel heuristics
to infer the Yahoo! IP addresses and localize their locations from
the anonymized NetFlow datasets, and ii) we study and analyze
both D2D and client traffic characteristics and the correlations
between these two types of traffic. Our study reveals that
Yahoo! uses a hierarchical way of deploying data centers, with
several satellite data centers distributed in other countries and
backbone data centers distributed in US locations. For Yahoo!
US data centers, we separate the client-triggered D2D traffic and
background D2D traffic from the aggregate D2D traffic using
port based correlation, and study their respective characteristics.
Our findings shed light on the interplay of multiple data centers
and their traffic dynamics within a large content provider, and
provide insights to data center designers and operators as well
as researchers.
Index Terms—Content provider, Inter-data center, NetFlow,

Anonymization

I. INTRODUCTION

Recent years have seen unprecedented growth in the data
center driven technologies and services. Various organizations
are now sourcing their computing to “cloud-based” infrastruc-
tures. Therefore, large scale data centers and associated cloud
services are developed and deployed by various organizations
and service providers to store massive amounts of data, and
enable “anywhere, anytime” data access as well as compu-
tations on the data. Further, for scalability, robustness and
performance (e.g., latency), multiple data centers are often
deployed to cover large geographical regions. For instance,
Microsoft, Google, and Yahoo! own large scale data centers
that are located in different geographic locations around the
world.
While there are a few recent studies [1], [2] regarding the

traffic characteristics within a single data center, little is known
about the inter-data center (D2D) traffic dynamics among mul-
tiple data centers. Just as the studies of traffic characteristics
within a data center, such as workload distribution and where
congestion occurs, helps the design and management of data
centers, we believe that better understanding of the traffic
characteristics between multiple data centers (within a single
service provider, e.g., a content provider) and their interactions

with client-triggered traffic is critical to effective operations
and management of multiple data centers. For instance, such
understanding can help in deciding what and how services
should be deployed across multiple data centers, what caching
and load-balancing strategies [3], [4] should be employed,
and how to manage the traffic in the wide-area network
backbone connecting the data centers to optimize performance
and minimize operational costs [3], [4].
In this paper we present a first study of inter-data center

(D2D) traffic characteristics using the anonymized NetFlow
datasets collected at the border routers of five major Yahoo!
data centers. Our contributions are multi-fold. First, we de-
velop novel heuristics to infer the Yahoo! IP addresses that are
involved in data center-client (D2C) traffic and localize their
locations from the anonymized NetFlow datasets. Based on
several key observations regarding traffic directions and router
interfaces, we develop an effective methodology to extract and
separate inter-data (D2D) traffic from data center-client (D2C)
traffic, and analyze the characteristics of both D2D and D2C
traffic and their correlations. Our analysis reveals that Yahoo!
organizes data centers in a hierarchical way. In “satellite”
data centers, D2D traffic is strongly correlated with the client
traffic. In “backbone” data centers, we classify D2D traffic into
two categories: i) client-triggered D2D traffic, i.e., D2D traffic
triggered by the front-end “customer-facing” services such as
web search, email, online chat, gaming, video, and so forth;
ii) background D2D traffic, i.e., D2D traffic due to internal
tasks such as routine background computation (e.g., search in-
dexing), periodic data back-up, and so forth. Using novel port
based correlation analysis, we are able to further separate these
types of D2D traffic, and study their respective characteristics.
We find that background D2D traffic has smaller variance, with
no significant trends over the day; on the other hand, client-
triggered D2D traffic exhibits varying trends over the day.
Furthermore, we show that several D2C services are strongly
correlated with each other. These correlations among different
services have important implications for distributing different
services at multiple data centers. For instance, services with
highly correlated traffic can be served from the same data
center to minimize the inter-data center traffic.
To our best knowledge, our work is the first study of inter-

data center traffic characteristics of a large global content
provider. It sheds light on the interplay of multiple data centers
and their traffic dynamics within a large content provider.

Though the D2D and D2C traffic characteristics studied in the
paper may be specific to Yahoo! and the services it provides,
our methodology is nonetheless general, and can be applied
to understand the D2D and D2C traffic characteristics of any
other large content provider or cloud-service provider. All in
all, we believe that our work provides useful insight to data
center designers and operators as well as researchers.
The remainder of the paper is organized as follows. In

Sec. III we provide the overview of the datasets and Yahoo!
data centers. Sec. IV presents the methodology for separating
Yahoo and non-Yahoo IP addresses, and analysis of inter-data
center traffic are presented in Sec. V. Finally, we provide a
discussion of the implications for our findings in Sec. VI and
conclude the paper in Sec. VII.

II. RELATED WORK

As mentioned earlier, there have been a few recent stud-
ies [1], [2] regarding the traffic characteristics within a single
data center. In [1], authors provide both macroscopic and a
microscopic view of the traffic characteristics and congestion
conditions within data center networks. In [2], authors analyze
the end-to-end traffic patterns in data center networks, and
examine temporal and spatial variations in link loads and
losses. On the other hand, little is known about inter-data
center traffic characteristics. Similarly in [4], the authors study
the YouTube data center traffic dynamics using the Netflow
data collected at a tier-1 ISP, with the emphasis on inference
of load-balancing strategy used by YouTube and its interaction
and impact on the ISP network. Due to the nature of data used,
the traffic seen is primarily D2C traffic, and limited to the
perspective to a single ISP. To our best knowledge, our work
is the first attempt at analyzing and characterizing inter-data
center traffic characteristics; we also develop novel methods
for separating D2D traffic from D2C traffic, and for further
separating background D2D traffic and client-triggered D2D
traffic.

III. OVERVIEW OF YAHOO! DATASETS
In this section we provide the overview of the Yahoo! data

centers and their connectivity. We also describe the network
flow datasets [5] used in this study. Further, to facilitate the
discussion in the paper we classify the flows into several
meaningful categories which is described later in the section.
In this study we consider five major Yahoo! data centers

which are located at Dallas (DAX), Washington DC (DCP),
Palo Alto (PAO), Hong Kong (HK), and United Kingdom
(UK). DAX, DCP and PAO are located in US, and provide
most of the core services such as web, email, messenger and
games, etc. They are also the largest Yahoo! data centers in
terms of the amount of traffic exchanged. At each of the data
centers, Yahoo’s border routers connect to several other ISPs to
reach its clients and other data centers. These data centers are
also directly connected to each other through a private network
service(e.g. VPN, leased lines etc), and hence may carry traffic
for each other through this private network. Fig. 1 provides an
overview of the Yahoo! data centers and their connectivity.

Fig. 1. Overview of five major Yahoo! data centers and their network
connectivity.

Our study is based on NetFlow datasets collected at one
of the border routers at each of the locations mentioned.
Unlike the datasets used in the previous studies related to data
center traffic analysis (such as [1], [2]) the NetFlow datasets
used in our study provide us with not only the profiling
of Yahoo! to “client”1 traffic, but also the traffic exchanged
between different Yahoo! data centers, which we believe is
the first such work that sheds light on the inter-data center
traffic characteristics for a large content provider. The network
flow data collected at each border router, includes both the
inbound and outbound traffic. Each record in the NetFlow
data contains a “sampled flow” information, which includes
following fields: a) timestamp, b) source and destination IP
addresses and transport layer port numbers, c) source and
destination interface on the router, d) IP protocol, e) number
of bytes and packets exchanged.
An important challenge with the datasets is that the IP

addresses in the network flow traces are permuted to hide
the identities of the Yahoo! users. However, prefix-preserving
schemes [6], [7] are used in permutation, i.e. if an IP address
a.b.c.d is permuted to w.x.y.z then another IP address a.b.c.d̄
is mapped to w.x.y.z̄. Due to this reason, through out this
paper we represent summarized IP address based statistics
using /24 IP prefixes. Also, we use the term “client” to
represents the non-Yahoo hosts connected to Yahoo! servers.
These hosts may be the actual Yahoo! users connecting to
Yahoo! servers to access various services, or other servers
connecting to Yahoo! servers, such as other mail servers may
connect to Yahoo! mail servers to exchange emails.
Classification of Flows: In order to facilitate the discussion
in this paper, we classify the flows collected into following
two categories:
i. D2C traffic: The traffic exchanged between Yahoo! servers
and clients.
ii. D2D traffic: The traffic exchanged between different Yahoo!
servers at different locations.
A border router at a given location may also carry D2C

and D2D traffic for other locations. We refer to these types

1We refer to non-Yahoo hosts connecting to Yahoo! servers as clients unless
specified.

IEEE INFOCOM, 2011
A First Look at Inter-Data Center Traffic Characteristics via

Yahoo! Datasets
Yingying Chen1, Sourabh Jain1, Vijay Kumar Adhikari1, Zhi-Li Zhang1, and Kuai Xu2

1University of Minnesota-Twin Cities
2Arizona State University

Abstract—Effectively managing multiple data centers and their
traffic dynamics pose many challenges to their operators, as little
is known about the characteristics of inter-data center (D2D)
traffic. In this paper we present a first study of D2D traffic
characteristics using the anonymized NetFlow datasets collected
at the border routers of five major Yahoo! data centers. Our
contributions are mainly two-fold: i) we develop novel heuristics
to infer the Yahoo! IP addresses and localize their locations from
the anonymized NetFlow datasets, and ii) we study and analyze
both D2D and client traffic characteristics and the correlations
between these two types of traffic. Our study reveals that
Yahoo! uses a hierarchical way of deploying data centers, with
several satellite data centers distributed in other countries and
backbone data centers distributed in US locations. For Yahoo!
US data centers, we separate the client-triggered D2D traffic and
background D2D traffic from the aggregate D2D traffic using
port based correlation, and study their respective characteristics.
Our findings shed light on the interplay of multiple data centers
and their traffic dynamics within a large content provider, and
provide insights to data center designers and operators as well
as researchers.
Index Terms—Content provider, Inter-data center, NetFlow,

Anonymization

I. INTRODUCTION

Recent years have seen unprecedented growth in the data
center driven technologies and services. Various organizations
are now sourcing their computing to “cloud-based” infrastruc-
tures. Therefore, large scale data centers and associated cloud
services are developed and deployed by various organizations
and service providers to store massive amounts of data, and
enable “anywhere, anytime” data access as well as compu-
tations on the data. Further, for scalability, robustness and
performance (e.g., latency), multiple data centers are often
deployed to cover large geographical regions. For instance,
Microsoft, Google, and Yahoo! own large scale data centers
that are located in different geographic locations around the
world.
While there are a few recent studies [1], [2] regarding the

traffic characteristics within a single data center, little is known
about the inter-data center (D2D) traffic dynamics among mul-
tiple data centers. Just as the studies of traffic characteristics
within a data center, such as workload distribution and where
congestion occurs, helps the design and management of data
centers, we believe that better understanding of the traffic
characteristics between multiple data centers (within a single
service provider, e.g., a content provider) and their interactions

with client-triggered traffic is critical to effective operations
and management of multiple data centers. For instance, such
understanding can help in deciding what and how services
should be deployed across multiple data centers, what caching
and load-balancing strategies [3], [4] should be employed,
and how to manage the traffic in the wide-area network
backbone connecting the data centers to optimize performance
and minimize operational costs [3], [4].
In this paper we present a first study of inter-data center

(D2D) traffic characteristics using the anonymized NetFlow
datasets collected at the border routers of five major Yahoo!
data centers. Our contributions are multi-fold. First, we de-
velop novel heuristics to infer the Yahoo! IP addresses that are
involved in data center-client (D2C) traffic and localize their
locations from the anonymized NetFlow datasets. Based on
several key observations regarding traffic directions and router
interfaces, we develop an effective methodology to extract and
separate inter-data (D2D) traffic from data center-client (D2C)
traffic, and analyze the characteristics of both D2D and D2C
traffic and their correlations. Our analysis reveals that Yahoo!
organizes data centers in a hierarchical way. In “satellite”
data centers, D2D traffic is strongly correlated with the client
traffic. In “backbone” data centers, we classify D2D traffic into
two categories: i) client-triggered D2D traffic, i.e., D2D traffic
triggered by the front-end “customer-facing” services such as
web search, email, online chat, gaming, video, and so forth;
ii) background D2D traffic, i.e., D2D traffic due to internal
tasks such as routine background computation (e.g., search in-
dexing), periodic data back-up, and so forth. Using novel port
based correlation analysis, we are able to further separate these
types of D2D traffic, and study their respective characteristics.
We find that background D2D traffic has smaller variance, with
no significant trends over the day; on the other hand, client-
triggered D2D traffic exhibits varying trends over the day.
Furthermore, we show that several D2C services are strongly
correlated with each other. These correlations among different
services have important implications for distributing different
services at multiple data centers. For instance, services with
highly correlated traffic can be served from the same data
center to minimize the inter-data center traffic.
To our best knowledge, our work is the first study of inter-

data center traffic characteristics of a large global content
provider. It sheds light on the interplay of multiple data centers
and their traffic dynamics within a large content provider.

Though the D2D and D2C traffic characteristics studied in the
paper may be specific to Yahoo! and the services it provides,
our methodology is nonetheless general, and can be applied
to understand the D2D and D2C traffic characteristics of any
other large content provider or cloud-service provider. All in
all, we believe that our work provides useful insight to data
center designers and operators as well as researchers.
The remainder of the paper is organized as follows. In

Sec. III we provide the overview of the datasets and Yahoo!
data centers. Sec. IV presents the methodology for separating
Yahoo and non-Yahoo IP addresses, and analysis of inter-data
center traffic are presented in Sec. V. Finally, we provide a
discussion of the implications for our findings in Sec. VI and
conclude the paper in Sec. VII.

II. RELATED WORK

As mentioned earlier, there have been a few recent stud-
ies [1], [2] regarding the traffic characteristics within a single
data center. In [1], authors provide both macroscopic and a
microscopic view of the traffic characteristics and congestion
conditions within data center networks. In [2], authors analyze
the end-to-end traffic patterns in data center networks, and
examine temporal and spatial variations in link loads and
losses. On the other hand, little is known about inter-data
center traffic characteristics. Similarly in [4], the authors study
the YouTube data center traffic dynamics using the Netflow
data collected at a tier-1 ISP, with the emphasis on inference
of load-balancing strategy used by YouTube and its interaction
and impact on the ISP network. Due to the nature of data used,
the traffic seen is primarily D2C traffic, and limited to the
perspective to a single ISP. To our best knowledge, our work
is the first attempt at analyzing and characterizing inter-data
center traffic characteristics; we also develop novel methods
for separating D2D traffic from D2C traffic, and for further
separating background D2D traffic and client-triggered D2D
traffic.

III. OVERVIEW OF YAHOO! DATASETS
In this section we provide the overview of the Yahoo! data

centers and their connectivity. We also describe the network
flow datasets [5] used in this study. Further, to facilitate the
discussion in the paper we classify the flows into several
meaningful categories which is described later in the section.
In this study we consider five major Yahoo! data centers

which are located at Dallas (DAX), Washington DC (DCP),
Palo Alto (PAO), Hong Kong (HK), and United Kingdom
(UK). DAX, DCP and PAO are located in US, and provide
most of the core services such as web, email, messenger and
games, etc. They are also the largest Yahoo! data centers in
terms of the amount of traffic exchanged. At each of the data
centers, Yahoo’s border routers connect to several other ISPs to
reach its clients and other data centers. These data centers are
also directly connected to each other through a private network
service(e.g. VPN, leased lines etc), and hence may carry traffic
for each other through this private network. Fig. 1 provides an
overview of the Yahoo! data centers and their connectivity.

Fig. 1. Overview of five major Yahoo! data centers and their network
connectivity.

Our study is based on NetFlow datasets collected at one
of the border routers at each of the locations mentioned.
Unlike the datasets used in the previous studies related to data
center traffic analysis (such as [1], [2]) the NetFlow datasets
used in our study provide us with not only the profiling
of Yahoo! to “client”1 traffic, but also the traffic exchanged
between different Yahoo! data centers, which we believe is
the first such work that sheds light on the inter-data center
traffic characteristics for a large content provider. The network
flow data collected at each border router, includes both the
inbound and outbound traffic. Each record in the NetFlow
data contains a “sampled flow” information, which includes
following fields: a) timestamp, b) source and destination IP
addresses and transport layer port numbers, c) source and
destination interface on the router, d) IP protocol, e) number
of bytes and packets exchanged.
An important challenge with the datasets is that the IP

addresses in the network flow traces are permuted to hide
the identities of the Yahoo! users. However, prefix-preserving
schemes [6], [7] are used in permutation, i.e. if an IP address
a.b.c.d is permuted to w.x.y.z then another IP address a.b.c.d̄
is mapped to w.x.y.z̄. Due to this reason, through out this
paper we represent summarized IP address based statistics
using /24 IP prefixes. Also, we use the term “client” to
represents the non-Yahoo hosts connected to Yahoo! servers.
These hosts may be the actual Yahoo! users connecting to
Yahoo! servers to access various services, or other servers
connecting to Yahoo! servers, such as other mail servers may
connect to Yahoo! mail servers to exchange emails.
Classification of Flows: In order to facilitate the discussion
in this paper, we classify the flows collected into following
two categories:
i. D2C traffic: The traffic exchanged between Yahoo! servers
and clients.
ii. D2D traffic: The traffic exchanged between different Yahoo!
servers at different locations.
A border router at a given location may also carry D2C

and D2D traffic for other locations. We refer to these types

1We refer to non-Yahoo hosts connecting to Yahoo! servers as clients unless
specified.

TABLE IV
THE NUMBER OF IPS PROVIDING EACH D2C SERVICE AND THE OVERLAPPING NUMBER OF IPS BETWEEN EACH PAIR OF SERVICES.

email DNS IM news video game web SMTP unique
email 83 8 2 3 1 0 62 67 10
DNS 8 131 2 2 1 0 27 22 102
IM 2 2 235 60 1 1 163 64 71
news 3 2 60 66 0 0 64 64 2
video 1 1 1 0 87 0 67 2 20
game 0 0 1 0 0 2 1 0 1
web 62 27 163 64 67 1 3773 262 3333
SMTP 67 22 64 64 2 0 262 699 424

0 20 40 60 80
0

1

2

3

4

5
x 105

Time interval

Nu
m

be
r o

f f
lo

ws

0 20 40 60 80
0

2

4

6
x 104

Time interval

Nu
m

be
r o

f f
lo

ws

UK HK

(b) D2D Flow Pattern(a) D2C Flow Pattern

Fig. 6. The D2C and D2D flow patterns during one day in UK and HK.

0 20 40 60 80
0

5

10

x 106

Time interval

Nu
m

be
r o

f f
lo

ws

a) D2C Flow Pattern

0 20 40 60 80
0

0.5

1

1.5

2
x 106

Time interval

Nu
m

be
r o

f f
lo

ws

b) D2D Flow Pattern

DAX DCP PAO

Fig. 7. The D2C and D2D flow patterns during one day in US locations.

14
3 53 80 46
5

11
0

99
5

58
7

19
35

11
99

9
44

3 25
50

00
50

01
50

50
50

61 11
9

143
53
80
465
110
995
587

1935
11999

443
25

5000
5001
5050
5061
119 −1

−0.5

0

0.5

1
D2C Service Correlation

Fig. 5. Cross-correlation between each pair of D2C services.

in this figure, the aggregate D2C traffic is mainly dominated
by the web services, which is not surprising as most of the
services provided by Yahoo! have web-based interface, and
these services are provided at all five locations. On the other
hand, instant-messaging (IM), video, and game services have
smaller but significant contribution to D2C traffic at all three
US locations. Moreover, the choice of location for different
services can be affected by many factors such as regional
demand, cost of infrastructure and the nature of service itself.
Also location based services replicate content at multiple data
centers to provide better performance [15], [16]. Table IV
shows the number of IPs providing each type of service in
DCP data center. We separate port 25 (SMTP) from rest of
the email category due to the fact that this is mainly used
between Yahoo! mail servers, or between Yahoo! and other
service providers’ mail servers such as Gmail or Hotmail. On

the other hand, other email port numbers are used by clients to
directly interact with Yahoo!. The diagonal entries in the table
show the number of IPs providing each service as specified in
row or column, and the non-diagonal entries show the number
of overlapping IPs between two services as specified per row
and column. In the last column, we also list the number of
unique IPs providing each D2C service. As seen in this table,
some of the IP addresses only provide one type of service
(see the “unique” column), a large number of them provide
multiple services on the same server IP address. From the table
we learn that many of the web, SMTP, and DNS services are
mostly served using a dedicated set of IP addresses, while the
remaining services share IP addresses with other services4.
2) Cross-Correlation among D2C Services: Though D2C

services can be categorized into 7 groups, we find that some
of them are strongly correlated (positively or negatively) with
each other, while others are independent of each other. We
compute the pair wise temporal correlation of each service
category to get a better understanding of the interplay among
different types of D2C services. Figure 5 shows the correlation
between each pair of D2C services in the PAO data center.
In this figure, both x-axis and y-axis represent the list of
D2C server ports observed in this location. The colored cell
corresponding to a pair of services as specified in x-axis and
y-axis shows the correlation between them. It turns out that the
D2C service ports are clustered into 2 major traffic patterns.
The first group consists of several email related ports, and
the other messenger ports. These correlations among different
4It can happen due to a variety of reasons, such as a single host machine

might be running multiple different server instances or a NAT based forward-
ing is used to divide the traffic to multiple physical(or virtual) servers. It is
also likely that these IP addresses are simply frontend servers.

Inter-data center traffic is significant

Inter-data center traffic is significant

Back-Office Web Traffic on The Internet

Enric Pujol
TU Berlin

enric@inet.tu-berlin.de

Philipp Richter
TU Berlin

prichter@inet.tu-berlin.de

Balakrishnan Chandrasekaran
Duke University

balac@cs.duke.edu

Georgios Smaragdakis
MIT / TU Berlin / Akamai
gsmaragd@csail.mit.edu

Anja Feldmann
TU Berlin

anja@inet.tu-berlin.de

Bruce Maggs
Duke / Akamai

bmm@cs.duke.edu

Keung-Chi Ng
Akamai

kng@akamai.com

ABSTRACT
Although traffic between Web servers and Web browsers is read-
ily apparent to many knowledgeable end users, fewer are aware of
the extent of server-to-server Web traffic carried over the public
Internet. We refer to the former class of traffic as front-office In-
ternet Web traffic and the latter as back-office Internet Web traffic
(or just front-office and back-office traffic, for short). Back-office
traffic, which may or may not be triggered by end-user activity, is
essential for today’s Web as it supports a number of popular but
complex Web services including large-scale content delivery, so-
cial networking, indexing, searching, advertising, and proxy ser-
vices. This paper takes a first look at back-office traffic, measuring
it from various vantage points, including from within ISPs, IXPs,
and CDNs. We describe techniques for identifying back-office traf-
fic based on the roles that this traffic plays in the Web ecosystem.
Our measurements show that back-office traffic accounts for a sig-
nificant fraction not only of core Internet traffic, but also of Web
transactions in the terms of requests and responses. Finally, we dis-
cuss the implications and opportunities that the presence of back-
office traffic presents for the evolution of the Internet ecosystem.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions.

Keywords
Network measurement; the Web; content delivery; online adver-
tisements; real-time bidding; crawlers.

1. INTRODUCTION
The Web has not only revolutionized the way people publish, ac-

cess, and search for content but, some would argue (e.g., [49]),
has also evolved to become the new “narrow waist” of the Internet.
Indeed, the HTTP protocol provides a common interface that many
popular Internet applications rely on, including video, social net-
working, e-commerce, and software delivery. These applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’14, November 5–7, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-3213-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663716.2663756.

front-office traffic back-office traffic

S1 S2

S3

S4

org. A

org. B

org. C

Figure 1: Front- vs. back-office Internet Web traffic.

are often supported by advertisements, which are also delivered via
HTTP.

Although an end user typically views a Web page as a unit, re-
cent studies [17, 36] demonstrate that a single Web page often con-
tains links to objects that are delivered by a large and diverse set
of servers. For example, the creation of a single Web page may in-
volve several Web companies as, e.g., parts of the Web page may be
under the control of a content provider, a Web advertiser, a video
streamer, a search engine, and/or a social network. Furthermore,
even fetching an individual part of a Web page may involve many
parties. For example, when an end user requests Web content,
the delivery involves not only the servers that receive HTTP re-
quests from the end user’s browser, but also a whole service ecosys-
tem consisting of proxies, content delivery networks (CDNs), ad-
sellers, ad-bidders, back-end servers or databases, crawler bots, etc.

Thus, “there is more to content delivery than is visible to the
eye,” and, consequently, this paper explores the distinction between
front-office and back-office Web traffic. The first refers to the traf-
fic involving end users directly. The second refers to Web traffic
exchanged between machines (e.g., the front-office servers and any
other server which is part of the Web service ecosystem). Figure 1
depicts this distinction. Note that not all back-office Web traffic
travels over the public Internet. Some is carried over private back-
bones or within data centers. In this paper, we focus on back-office
Web traffic on the public Internet. For short, we henceforth use the
term “front-office traffic” to refer to front-office Web traffic carried
on the public Internet and similarly for “back-office traffic.”

In contrast to back-office traffic, front-office traffic has long been
studied, e.g., [8, 14, 17, 26, 27, 45, 47]. While there is some related
work on Machine-to-Machine traffic in specific environments, e.g.,
in cellular networks [52] and within data centers [12, 13, 34], we
are not aware of studies of back-office Web traffic on the public
Internet. Liang et al. studied security-related aspects arising from
CDN back-end communication [44] and for some specific other
services, e.g., DNS, Gao et al. have characterized the correspond-
ing Machine-to-Machine traffic [31].

The reason why previous work has focused mainly on front-
office traffic is that end-user Quality of Experience (QoE) can be
analyzed by observing front-office traffic, but back-office traffic is

257

[IMC 2014]

(d) Crawlers

Web
Crawler

S1 S2

S4S3

HTTP GET

(b) CDN Servers

Front-End
Server

Back-End
Server

Content Origin
Server

CDN

HTTP GET

HTTP GET

(c) Ad Exchanges - Auctioneers and Bidders

Ad Publisher

Advertiser/Bidder A

Advertiser/Bidder B

Advertiser/Bidder C

Ad Exchange
Auctioneer

HTTP
GET/POST

HTTP GET

Web Proxy
S1 S2

S4S3

(a) Proxies/Intermediaries

HTTP GET/POSTHTTP GET/POST

front-office Web requests back-office Web requests

Figure 2: Back-office Web Traffic: typical HTTP requests made by Web proxies, CDNs, ad-exchanges, and crawlers.

overlays to improve end-to-end performance and for task sharing
between front-end and back-end servers are deployed by today’s
CDNs [43, 54, 28, 40, 21].

(c) Ad Exchanges – Auctioneers and Bidders: As shown in
Figure 2(c), advertisement exchanges consist of (i) publishers that
sell advertisement space (ad space) on their Web pages, as well as
(ii) advertisers that buy ad space on these Web pages. An exchange
acts as a common platform to bring publishers and advertisers to-
gether. The matching between offered ad space on a Web site and
interested advertisers is often performed using real-time bidding
(RTB). Once an end user visits a Web page where ad space is avail-
able, the ad exchange auctioneer contacts the potential advertisers
(i.e., the bidders), and provides information about the visitor to start
a bidding process among the interested parties [10, 59, 55, 9].1 A
number of sophisticated tools together with visitor information sup-
pliers optimize the bidding process for both the advertisers and the
publishers. Hence, if RTB is used to place ads on a website, the
visit of a Web page by an end user may trigger a large number of
requests in the background. The final advertisement content is typ-
ically delivered via CDNs [9]. We note that today’s Web advertise-
ment ecosystem is complex and may involve many different types
of back-office traffic, caused by a variety of different actors. In
this paper, we solely focus on RTB-related activity, i.e., back-office
traffic as a result of auctioneers interacting with bidders.

(d) Crawlers: Web crawlers continuously index the Web. To op-
timize crawling, each crawl bot is typically responsible for indexing
a small part of the Web [11]. Indexing involves requesting the Web
page as well as following embedded links [38, 16]. Web crawlers
typically issue an order of magnitude more Web queries than reg-
ular end users. Best practices among the major search engines en-
sure that crawlers have appropriate reverse DNS entries along with
well-specified user agents in order to avoid being blocked by Web
sites.

Hereafter, we refer to back-office Web traffic as all Web traf-
fic that is not exchanged between end users and servers. This in-
cludes traffic exchanged between intermediaries and Web servers
(e.g., traffic between a CDN front-end server and a back-end server
or between a Web proxy and a Web server), as well as traffic ex-
changed between automated hosts such as crawlers or auctioneers
and any other Web server.

3. DATA SETS
In this work we rely on measurements collected at a diverse set

of vantage points.
1The bidders may also contact other entities (i.e., trackers) to get
information regarding the profile of the visitor [33, 59].

IXPs: Packet-sampled traces collected at two Internet eXchange
Points (IXPs), which allow us to study back-office traffic
in an inter-domain environment, as exchanged between hun-
dreds of networks [6].

ISP: Anonymized packet-sampled traces collected from two transat-
lantic links from a Tier-1 ISP, providing a view of back-office
traffic on long-distance links.

Access network: Anonymized packet dumps collected in a resi-
dential network of a Tier-1 ISP, revealing front-office traffic
between end users and servers.

CDN: Web server logs from multiple servers in different locations
within a large commercial CDN. These logs give us an inside
view of back-office traffic created by a CDN.

Active measurements: Probes of IP addresses and DNS reverse
lookups to identify Web servers.

This diverse set of traces allows us to study back-office traffic
in a variety of locations, including between domains, on backbone
links, and within a CDN. Table 1 summarizes the properties of our
data sets.

The IXP traces are collected from the public switching infras-
tructure at two European IXPs. This includes a large IXP (L-IXP)
with around 500 members and a medium-sized IXP (M-IXP) with
around 100 members. Among the member ASes there are many
CDNs, Web hosting services, cloud providers, and large commer-
cial Web sites. We collect sFlow records [51] with a 1 out of 16K
sampling rate. sFlow captures the first 128 bytes of each sampled
Ethernet frame, providing us access to full network- and transport-
layer headers and some initial bytes of the payload, allowing for
deep packet inspection (DPI).

The ISP traces are collected from two transatlantic links on the
backbone of a large European Tier-1 ISP. These links carry mainly
transit traffic. We collect anonymized packet traces with a random
packet sampling rate of 1 out of 1K. We also collect unsampled
anonymized packet dumps in a residential network with about 20K
end users of the same ISP.

The logs from the large commercial CDN encompass the activ-
ity of all servers at one hosting location in each of five large cities.
Each log entry contains TCP summary statistics including endpoint
IPs, number of bytes transferred, and initial TCP handshake round-
trip latency. In addition, we received a complete list of all IP ad-
dresses used by the CDN infrastructure.

We also use active measurement data from the ZMap Project [25].
This data set contains a list of IPs, i.e., servers, that are responsive
to GET requests on port 80 (HTTP) and SSL services on port 443
(HTTPS), spanning the time period from October 2013 to January
2014. In addition, we also make use of the data made public by the

259

“Back office” web traffic:
server-to-server rather than

directly communicating with user

Inter-data center traffic is significant

Back-Office Web Traffic on The Internet

Enric Pujol
TU Berlin

enric@inet.tu-berlin.de

Philipp Richter
TU Berlin

prichter@inet.tu-berlin.de

Balakrishnan Chandrasekaran
Duke University

balac@cs.duke.edu

Georgios Smaragdakis
MIT / TU Berlin / Akamai
gsmaragd@csail.mit.edu

Anja Feldmann
TU Berlin

anja@inet.tu-berlin.de

Bruce Maggs
Duke / Akamai

bmm@cs.duke.edu

Keung-Chi Ng
Akamai

kng@akamai.com

ABSTRACT
Although traffic between Web servers and Web browsers is read-
ily apparent to many knowledgeable end users, fewer are aware of
the extent of server-to-server Web traffic carried over the public
Internet. We refer to the former class of traffic as front-office In-
ternet Web traffic and the latter as back-office Internet Web traffic
(or just front-office and back-office traffic, for short). Back-office
traffic, which may or may not be triggered by end-user activity, is
essential for today’s Web as it supports a number of popular but
complex Web services including large-scale content delivery, so-
cial networking, indexing, searching, advertising, and proxy ser-
vices. This paper takes a first look at back-office traffic, measuring
it from various vantage points, including from within ISPs, IXPs,
and CDNs. We describe techniques for identifying back-office traf-
fic based on the roles that this traffic plays in the Web ecosystem.
Our measurements show that back-office traffic accounts for a sig-
nificant fraction not only of core Internet traffic, but also of Web
transactions in the terms of requests and responses. Finally, we dis-
cuss the implications and opportunities that the presence of back-
office traffic presents for the evolution of the Internet ecosystem.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions.

Keywords
Network measurement; the Web; content delivery; online adver-
tisements; real-time bidding; crawlers.

1. INTRODUCTION
The Web has not only revolutionized the way people publish, ac-

cess, and search for content but, some would argue (e.g., [49]),
has also evolved to become the new “narrow waist” of the Internet.
Indeed, the HTTP protocol provides a common interface that many
popular Internet applications rely on, including video, social net-
working, e-commerce, and software delivery. These applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’14, November 5–7, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-3213-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663716.2663756.

front-office traffic back-office traffic

S1 S2

S3

S4

org. A

org. B

org. C

Figure 1: Front- vs. back-office Internet Web traffic.

are often supported by advertisements, which are also delivered via
HTTP.

Although an end user typically views a Web page as a unit, re-
cent studies [17, 36] demonstrate that a single Web page often con-
tains links to objects that are delivered by a large and diverse set
of servers. For example, the creation of a single Web page may in-
volve several Web companies as, e.g., parts of the Web page may be
under the control of a content provider, a Web advertiser, a video
streamer, a search engine, and/or a social network. Furthermore,
even fetching an individual part of a Web page may involve many
parties. For example, when an end user requests Web content,
the delivery involves not only the servers that receive HTTP re-
quests from the end user’s browser, but also a whole service ecosys-
tem consisting of proxies, content delivery networks (CDNs), ad-
sellers, ad-bidders, back-end servers or databases, crawler bots, etc.

Thus, “there is more to content delivery than is visible to the
eye,” and, consequently, this paper explores the distinction between
front-office and back-office Web traffic. The first refers to the traf-
fic involving end users directly. The second refers to Web traffic
exchanged between machines (e.g., the front-office servers and any
other server which is part of the Web service ecosystem). Figure 1
depicts this distinction. Note that not all back-office Web traffic
travels over the public Internet. Some is carried over private back-
bones or within data centers. In this paper, we focus on back-office
Web traffic on the public Internet. For short, we henceforth use the
term “front-office traffic” to refer to front-office Web traffic carried
on the public Internet and similarly for “back-office traffic.”

In contrast to back-office traffic, front-office traffic has long been
studied, e.g., [8, 14, 17, 26, 27, 45, 47]. While there is some related
work on Machine-to-Machine traffic in specific environments, e.g.,
in cellular networks [52] and within data centers [12, 13, 34], we
are not aware of studies of back-office Web traffic on the public
Internet. Liang et al. studied security-related aspects arising from
CDN back-end communication [44] and for some specific other
services, e.g., DNS, Gao et al. have characterized the correspond-
ing Machine-to-Machine traffic [31].

The reason why previous work has focused mainly on front-
office traffic is that end-user Quality of Experience (QoE) can be
analyzed by observing front-office traffic, but back-office traffic is

257

[IMC 2014]

(d) Crawlers

Web
Crawler

S1 S2

S4S3

HTTP GET

(b) CDN Servers

Front-End
Server

Back-End
Server

Content Origin
Server

CDN

HTTP GET

HTTP GET

(c) Ad Exchanges - Auctioneers and Bidders

Ad Publisher

Advertiser/Bidder A

Advertiser/Bidder B

Advertiser/Bidder C

Ad Exchange
Auctioneer

HTTP
GET/POST

HTTP GET

Web Proxy
S1 S2

S4S3

(a) Proxies/Intermediaries

HTTP GET/POSTHTTP GET/POST

front-office Web requests back-office Web requests

Figure 2: Back-office Web Traffic: typical HTTP requests made by Web proxies, CDNs, ad-exchanges, and crawlers.

overlays to improve end-to-end performance and for task sharing
between front-end and back-end servers are deployed by today’s
CDNs [43, 54, 28, 40, 21].

(c) Ad Exchanges – Auctioneers and Bidders: As shown in
Figure 2(c), advertisement exchanges consist of (i) publishers that
sell advertisement space (ad space) on their Web pages, as well as
(ii) advertisers that buy ad space on these Web pages. An exchange
acts as a common platform to bring publishers and advertisers to-
gether. The matching between offered ad space on a Web site and
interested advertisers is often performed using real-time bidding
(RTB). Once an end user visits a Web page where ad space is avail-
able, the ad exchange auctioneer contacts the potential advertisers
(i.e., the bidders), and provides information about the visitor to start
a bidding process among the interested parties [10, 59, 55, 9].1 A
number of sophisticated tools together with visitor information sup-
pliers optimize the bidding process for both the advertisers and the
publishers. Hence, if RTB is used to place ads on a website, the
visit of a Web page by an end user may trigger a large number of
requests in the background. The final advertisement content is typ-
ically delivered via CDNs [9]. We note that today’s Web advertise-
ment ecosystem is complex and may involve many different types
of back-office traffic, caused by a variety of different actors. In
this paper, we solely focus on RTB-related activity, i.e., back-office
traffic as a result of auctioneers interacting with bidders.

(d) Crawlers: Web crawlers continuously index the Web. To op-
timize crawling, each crawl bot is typically responsible for indexing
a small part of the Web [11]. Indexing involves requesting the Web
page as well as following embedded links [38, 16]. Web crawlers
typically issue an order of magnitude more Web queries than reg-
ular end users. Best practices among the major search engines en-
sure that crawlers have appropriate reverse DNS entries along with
well-specified user agents in order to avoid being blocked by Web
sites.

Hereafter, we refer to back-office Web traffic as all Web traf-
fic that is not exchanged between end users and servers. This in-
cludes traffic exchanged between intermediaries and Web servers
(e.g., traffic between a CDN front-end server and a back-end server
or between a Web proxy and a Web server), as well as traffic ex-
changed between automated hosts such as crawlers or auctioneers
and any other Web server.

3. DATA SETS
In this work we rely on measurements collected at a diverse set

of vantage points.
1The bidders may also contact other entities (i.e., trackers) to get
information regarding the profile of the visitor [33, 59].

IXPs: Packet-sampled traces collected at two Internet eXchange
Points (IXPs), which allow us to study back-office traffic
in an inter-domain environment, as exchanged between hun-
dreds of networks [6].

ISP: Anonymized packet-sampled traces collected from two transat-
lantic links from a Tier-1 ISP, providing a view of back-office
traffic on long-distance links.

Access network: Anonymized packet dumps collected in a resi-
dential network of a Tier-1 ISP, revealing front-office traffic
between end users and servers.

CDN: Web server logs from multiple servers in different locations
within a large commercial CDN. These logs give us an inside
view of back-office traffic created by a CDN.

Active measurements: Probes of IP addresses and DNS reverse
lookups to identify Web servers.

This diverse set of traces allows us to study back-office traffic
in a variety of locations, including between domains, on backbone
links, and within a CDN. Table 1 summarizes the properties of our
data sets.

The IXP traces are collected from the public switching infras-
tructure at two European IXPs. This includes a large IXP (L-IXP)
with around 500 members and a medium-sized IXP (M-IXP) with
around 100 members. Among the member ASes there are many
CDNs, Web hosting services, cloud providers, and large commer-
cial Web sites. We collect sFlow records [51] with a 1 out of 16K
sampling rate. sFlow captures the first 128 bytes of each sampled
Ethernet frame, providing us access to full network- and transport-
layer headers and some initial bytes of the payload, allowing for
deep packet inspection (DPI).

The ISP traces are collected from two transatlantic links on the
backbone of a large European Tier-1 ISP. These links carry mainly
transit traffic. We collect anonymized packet traces with a random
packet sampling rate of 1 out of 1K. We also collect unsampled
anonymized packet dumps in a residential network with about 20K
end users of the same ISP.

The logs from the large commercial CDN encompass the activ-
ity of all servers at one hosting location in each of five large cities.
Each log entry contains TCP summary statistics including endpoint
IPs, number of bytes transferred, and initial TCP handshake round-
trip latency. In addition, we received a complete list of all IP ad-
dresses used by the CDN infrastructure.

We also use active measurement data from the ZMap Project [25].
This data set contains a list of IPs, i.e., servers, that are responsive
to GET requests on port 80 (HTTP) and SSL services on port 443
(HTTPS), spanning the time period from October 2013 to January
2014. In addition, we also make use of the data made public by the

259

 0

 20

 40

 60

 80

 100

Bytes
Requests

Bytes
Requests

Bytes
Requests

Bytes
Requests

%
 b

ac
k-

of
fic

e
w

eb
 tr

af
fic

IPs-CDN
IPs-DPI+Manual - IPs-CDN
IPs-ZMap - IPs-DPI+Manual - IPs-CDN

BBone-2BBone-1M-IXPL-IXP

(a) % of Web traffic which is back-office across vantage points.

 0

 10

 20

 30

 40

 50

 0 24 48 72 96 120 144 168

%
 b

ac
k-

of
fic

e
w

eb
 tr

af
fic

Elapsed hours since 00:00 CET

BBone-1
L-IXP
M-IXP
BBone-2

(b) % of Web traffic which is back-office over time (IPs-ZMap).

Figure 4: Fraction of back-/front-office Web traffic across van-
tage points.

CDN is not active here but most of its traffic is front-office traf-
fic. In terms of requests, the fraction of requests associated with
back-office traffic is even larger with a minimum of 9% when us-
ing the IPs-CDN and IPs-DPI+Manual sets. This points out that
some components of back-office traffic are associated with smaller
transactions. But asymmetric routing—meaning the forward and
return path do not use the same link— are likely the explanation
for the extreme difference at BBone-1, where we see a huge num-
ber of back-office requests but only a relatively small percentage of
back-office bytes. When we include the ZMap server IPs, the per-
centages of back-office traffic increases to more than 10% across
all vantage points.

We next dissect the back-office traffic by type of activity using
the IPs-DPI+Manual and the IPs-ZMap information. We illustrate
our findings in Table 5, where we attribute back-office traffic to
the entity that acts as client. We find that CDPs contribute 11%
and 12% to the back-office requests and bytes in the L-IXP trace.
The crawlers contribute 15% and 10% to the back-office requests
and bytes, respectively. Surprisingly, the auctioneers are the big
contributors to the number of requests with a share of 22% but only
1% of the bytes. The rest of intermediaries contribute more than
76% and 50% of the back-office bytes and requests. The situation
differs for the other vantage points, where CDPs clearly dominate
the share of bytes and requests with at least 50% of the bytes and
65% of the requests.

Figure 4(b) shows how the percentages of back- and front-office
bytes change over time using time bins of one hour. The percent-
ages never decrease below 5% but can even exceed 40%. While
some traffic is triggered by end-user action, activities such as crawl-
ing and cache synchronization are not. We see that, particularly for
the two IXPs, the percentage of back-office traffic increases during
the off-hours. The percentage of back-office traffic for BBone-2
increases on the third day of the trace by more than 10%. This in-

Name % of CDPs Auctioneers Crawlers Other

L-IXP Bytes 12.1% 1.1% 10.3% 76.5%
Requests 11.8% 22.5% 15.1% 50.6%

M-IXP Bytes 73.3% - 1.5% 25.2%
Requests 65.7% - 3.2% 31.1%

BBone-1 Bytes 50.7% - <0.1% 49.2%
Requests 95.3% - <0.1% 4.6%

BBone-2 Bytes 93.6% - <0.1% 6.3%
Requests 73.7% - 4.3% 22%

Table 5: Classification of back-office Web traffic.

crease may be due to (a) a routing change or (b) a change in the
operation of the application infrastructure or (c) a change in the
popularity of a Web application. In addition, we see more variabil-
ity for the individual backbone links than for the IXPs. A likely
explanation for this is that the IXPs aggregate the information from
thousands of different peering links. Similar observations hold for
the percentages of back-/front-office requests and responses (not
shown).

6.2 Across peering links
The two backbone traces illustrate that there can be notable dif-

ferences in terms of percentages of back-office bytes and requests
on different links, suggesting that links should be examined indi-
vidually. Hence, we now take advantage of our ability to dissect
the traffic seen on hundreds of individual AS-AS links at L-IXP.

Figure 5(a) shows the fractions of back-office traffic per AS-AS
link (of the total traffic carried over it), where we sort them by the
fraction of back-office Web traffic. We see that the fractions vary
drastically from 100% to 0%. Indeed, 18.2% (10.9%) of the peer-
ing links carry more than 15% (7%) back-office bytes when relying
on the IPs-ZMap + IPs-DPI+Manual (IPs-DPI+Manual) data set.
On the other hand, 25.5% (40.8%) of the peering links carry no
back-office traffic at all. In order to get a better understanding of
the most important AS-AS links, we inspect more closely the top-
10 traffic-carrying links that have a fraction of back-office traffic
larger than 95%. We find four links between cloud providers and
content providers, three links between search engines and hosting
providers, two links between CDNs and content providers, and one
link between a content provider and an online advertisement com-
pany. This analysis illustrates the diversity of the players contribut-
ing to the back-office Web traffic.

If we aggregate the information to the level of IXP member-
ASes, the overall observation does change a bit, as shown in Fig-
ure 5(b). We do not see member ASes that exchange only back-
office Web traffic. They all have at least 20% front-office Web
traffic. Nevertheless, most have some fraction of back-office traf-
fic. There are 19.2% (18.0%) of the members with more than
15% (7%) back-office bytes for the IPs-ZMap + IPs-DPI+Manual
(IPs-DPI+Manual) data set. Among the networks with the highest
share of back-office traffic are cloud providers, hosting providers,
a search engine, and an advertisement company.

Summary
We find a significant percentage of back-office Web traffic in our
traces, yet this percentage varies from vantage point to vantage
point. Indeed, the back-office traffic carried over the backbone
links is mostly dominated by CDPs. The picture differs when look-
ing at IXPs, where we can monitor multiple links at once. While
most of the back-office traffic there is also due to CDPs and other
intermediaries, real-time-bidding and crawling also contribute a
significant share of bytes and Web requests. Our analysis illus-

264

% of web traffic that is “back office” in 4 ISP, IXP data sets

Google’s WAN (2011)

Figure �: B� worldwide deployment (����).

not a panacea; we summarize our experience with a large-scale B�
outage, pointing to challenges in both SDN and large-scale network
management. While our approach does not generalize to all WANs
or SDNs, we hope that our experience will inform future design in
both domains.

2. BACKGROUND
Before describing the architecture of our so�ware-de�nedWAN,

we provide an overview of our deployment environment and tar-
get applications. Google’s WAN is among the largest in the Internet,
delivering a range of search, video, cloud computing, and enterprise
applications to users across the planet. �ese services run across a
combination of data centers spread across the world, and edge de-
ployments for cacheable content.

Architecturally, we operate two distinct WANs. Our user-facing
network peers with and exchanges tra�c with other Internet do-
mains. End user requests and responses are delivered to our data
centers and edge caches across this network. �e second network,
B�, provides connectivity among data centers (see Fig. �), e.g., for
asynchronous data copies, index pushes for interactive serving sys-
tems, and end user data replication for availability. Well over ���
of internal application tra�c runs across this network.

We maintain two separate networks because they have di�erent
requirements. For example, our user-facing networking connects
with a range of gear and providers, and hence must support a wide
range of protocols. Further, its physical topology will necessarily be
more dense than a network connecting a modest number of data
centers. Finally, in delivering content to end users, it must support
the highest levels of availability.

�ousands of individual applications run across B�; here, we cat-
egorize them into three classes: i) user data copies (e.g., email, doc-
uments, audio/video �les) to remote data centers for availability/-
durability, ii) remote storage access for computation over inherently
distributed data sources, and iii) large-scale data push synchroniz-
ing state across multiple data centers. �ese three tra�c classes are
ordered in increasing volume, decreasing latency sensitivity, and de-
creasing overall priority. For example, user-data represents the low-
est volume on B�, is the most latency sensitive, and is of the highest
priority.

�e scale of our network deployment strains both the capacity
of commodity network hardware and the scalability, fault tolerance,
and granularity of control available from network so�ware. Internet
bandwidth as a whole continues to grow rapidly [��]. However, our
ownWAN tra�c has been growing at an even faster rate.

Our decision to build B� around So�ware De�ned Networking
and OpenFlow [��] was driven by the observation that we could not
achieve the level of scale, fault tolerance, cost e�ciency, and control
required for our network using traditional WAN architectures. A
number of B�’s characteristics led to our design approach:

● Elastic bandwidth demands: �e majority of our data cen-
ter tra�c involves synchronizing large data sets across sites.
�ese applications bene�t from as much bandwidth as they
can get but can tolerate periodic failures with temporary
bandwidth reductions.● Moderate number of sites: While B�must scale among multi-
ple dimensions, targeting our data center deployments meant
that the total number of WAN sites would be a few dozen.● End application control: We control both the applications and
the site networks connected to B�. Hence, we can enforce rel-
ative application priorities and control bursts at the network
edge, rather than through overprovisioning or complex func-
tionality in B�.● Cost sensitivity: B�’s capacity targets and growth rate led to
unsustainable cost projections. �e traditional approach of
provisioningWAN links at ��-��� (or �-�x the cost of a fully-
utilized WAN) to protect against failures and packet loss,
combined with prevailing per-port router cost, would make
our network prohibitively expensive.

�ese considerations led to particular design decisions for B�,
which we summarize in Table �. In particular, SDN gives us a
dedicated, so�ware-based control plane running on commodity
servers, and the opportunity to reason about global state, yielding
vastly simpli�ed coordination and orchestration for both planned
and unplanned network changes. SDN also allows us to leverage
the raw speed of commodity servers; latest-generation servers are
much faster than the embedded-class processor in most switches,
and we can upgrade servers independently from the switch hard-
ware. OpenFlow gives us an early investment in an SDN ecosys-
tem that can leverage a variety of switch/data plane elements. Crit-
ically, SDN/OpenFlow decouples so�ware and hardware evolution:
control plane so�ware becomes simpler and evolves more quickly;
data plane hardware evolves based on programmability and perfor-
mance.
We had several additional motivations for our so�ware de�ned

architecture, including: i) rapid iteration on novel protocols, ii) sim-
pli�ed testing environments (e.g., we emulate our entire so�ware
stack running across the WAN in a local cluster), iii) improved
capacity planning available from simulating a deterministic cen-
tral TE server rather than trying to capture the asynchronous rout-
ing behavior of distributed protocols, and iv) simpli�ed manage-
ment through a fabric-centric rather than router-centricWAN view.
However, we leave a description of these aspects to separate work.

3. DESIGN
In this section, we describe the details of our So�ware De�ned

WAN architecture.

3.1 Overview
Our SDN architecture can be logically viewed in three layers, de-

picted in Fig. �. B� serves multiple WAN sites, each with a num-
ber of server clusters. Within each B� site, the switch hardware
layer primarily forwards tra�c and does not run complex control
so�ware, and the site controller layer consists of Network Control
Servers (NCS) hosting both OpenFlow controllers (OFC) and Net-
work Control Applications (NCAs).
�ese servers enable distributed routing and central tra�c engi-

neering as a routing overlay. OFCs maintain network state based on
NCA directives and switch events and instruct switches to set for-
warding table entries based on this changing network state. For fault
tolerance of individual servers and control processes, a per-site in-

“B4: Experience with a Globally-Deployed Software
Defined WAN”

Jain et al., ACM SIGCOMM 2013

“B4 has been in deployment for three
years, now carries more traffic than
Google’s public facing WAN, and has a
higher growth rate.”

Traditional WAN approach: MPLS

Traditional WAN approach: MPLS

Link-state protocol (OSPF / IS-IS)

Traditional WAN approach: MPLS

Link-state protocol (OSPF / IS-IS)

Also flood available bandwidth info

Fulfill tunnel provisioning requests

Traditional WAN approach: MPLS

Update network state, flood info

Link-state protocol (OSPF / IS-IS)

Also flood available bandwidth info

Fulfill tunnel provisioning requests

Traditional WAN approach: MPLS

Update network state, flood info

Link-state protocol (OSPF / IS-IS)

Also flood available bandwidth info

Fulfill tunnel provisioning requests

Problem 1: inefficiency

Link-state protocol

Also flood available

Fulfill tunnel provisioning

Update network state,
(a)

 0
 0.2
 0.4
 0.6
 0.8

 1
Mean

Peak
Peak-to-mean ratio = 2.17

(b)

tr
affi

c
ra

te Background traffic

(c)

Figure 1: Illustration of poor utilization. (a) Daily tra�c
pattern on a busy link in a production inter-DC WAN.
(b) Breakdown based on tra�c type. (c) Reduction in
peak usage if background tra�c is dynamically adapted.

(a) Local path selection (b) Globally optimal paths

Figure 2: Ine�cient routing due to local allocation.

over- and under-subscription. Figure 1a shows the load over
a day on a busy link in IDN. Assuming capacity matches
peak usage (a common provisioning model to avoid conges-
tion), the average utilization on this link is under 50%. Thus,
half the provisioned capacity is wasted. This ine�ciency is
not fundamental but can be remedied by exploiting tra�c
characteristics. As a simple illustration, Figure 1b separates
background tra�c. Figure 1c shows that the same total traf-
fic can fit in half the capacity if background tra�c is adapted
to use capacity left unused by other tra�c.

Second, the local, greedy resource allocation model of
MPLS TE is ine�cient. Consider Figure 2 in which each
link can carry at most one flow. If the flows arrive in the
order FA, FB , and FC , Figure 2a shows the path assignment
with MPLS TE: FA is assigned to the top path which is one
of the shortest paths; when FB arrives, it is assigned to the
shortest path with available capacity (CSPF); and the same
happens with FC . Figure 2b shows a more e�cient routing
pattern with shorter paths and many links freed up to carry
more tra�c. Such an allocation requires non-local changes,
e.g., moving FA to the lower path when FB arrives.

Partial solutions for such ine�ciency exist. Flows can
be split across two tunnels, which would divide FA across
the top and bottom paths, allowing half of FB and FC to
use direct paths; a preemption strategy that prefers shorter
paths can also help. But such strategies do not address the
fundamental problem of local allocation decisions [27].

Poor sharing: Inter-DC WANs have limited support for
flexible resource allocation. For instance, it is di�cult to
be fair across services or favor some services over certain
paths. When services compete today, they typically obtain
throughput proportional to their sending rate, an undesir-
able outcome (e.g., it creates perverse incentives for service
developers). Mapping each service onto its own queue at
routers can alleviate problems but the number of services
(100s) far exceeds the number of available router queues.
Even if we had infinite queues and could ensure fairness on
the data plane, network-wide fairness is not possible without

(a) Link-level (b) Network-wide

Figure 3: Link-level fairness 6= network-wide fairness.

controlling which flows have access to which paths. Consider
Figure 3 in which each link has unit capacity and each ser-
vice (Si!Di) has unit demand. With link-level fairness,
S
2

!D
2

gets twice the throughput of other services. As we
show, flexible sharing can be implemented with a limited
number of queues by carefully allocating paths to tra�c and
control the sending rate of services.

3. SWAN OVERVIEW AND CHALLENGES
Our goal is to carry more tra�c and support flexible

network-wide sharing. Driven by inter-DC tra�c character-
istics, SWAN supports two types of sharing policies. First,
it supports a small number of priority classes (e.g., Inter-
active > Elastic > Background) and allocates bandwidth
in strict precedence across these classes, while preferring
shorter paths for higher classes. Second, within a class,
SWAN allocates bandwidth in a max-min fair manner.
SWAN has two basic components that address the funda-

mental shortcomings of the current practice. It coordinates
the network activity of services and uses centralized resource
allocation. Abstractly, it works as:

1. All services, except interactive ones, inform the SWAN

controller of their demand between pairs of DCs. In-
teractive tra�c is sent like today, without permission
from the controller, so there is no delay.

2. The controller, which has an up-to-date, global view of
the network topology and tra�c demands, computes
how much each service can send and the network paths
that can accommodate the tra�c.

3. Per SDN paradigm, the controller directly updates the
forwarding state of the switches. We use OpenFlow
switches, though any switch that permits direct pro-
gramming of forwarding state (e.g., MPLS Explicit
Route Objects [3]) may be used.

While the architecture is conceptually simple, we must ad-
dress three challenges to realize this design. First, we need
a scalable algorithm for global allocation that maximizes
network utilization subject to constraints on service prior-
ity and fairness. Best known solutions are computationally
intensive as they solve long sequences of linear programs
(LP) [9, 26]. Instead, SWAN uses a more practical approach
that is approximately fair with provable bounds and close
to optimal in practical scenarios (§6).
Second, atomic reconfiguration of a distributed system of

switches is hard to engineer. Network forwarding state needs
updating in response to changes in the tra�c demand or
network topology. Lacking WAN-wide atomic changes, the
network can drop many packets due to transient congestion
even if both the initial and final configurations are uncon-
gested. Consider Figure 4 in which each flow is 1 unit and
each link’s capacity is 1.5 units. Suppose we want to change
the network’s forwarding state from Figure 4a to 4b, perhaps
to accommodate a new flow from R

2

to R
4

. This change re-
quires changes to at least two switches. Depending on the

Achieving High Utilization with Software-Driven WAN

Chi-Yao Hong (UIUC) Srikanth Kandula Ratul Mahajan Ming Zhang
Vijay Gill Mohan Nanduri Roger Wattenhofer (ETH)

Microsoft

Abstract— We present SWAN, a system that boosts the
utilization of inter-datacenter networks by centrally control-
ling when and how much tra�c each service sends and fre-
quently re-configuring the network’s data plane to match
current tra�c demand. But done simplistically, these re-
configurations can also cause severe, transient congestion
because di↵erent switches may apply updates at di↵erent
times. We develop a novel technique that leverages a small
amount of scratch capacity on links to apply updates in a
provably congestion-free manner, without making any as-
sumptions about the order and timing of updates at individ-
ual switches. Further, to scale to large networks in the face
of limited forwarding table capacity, SWAN greedily selects
a small set of entries that can best satisfy current demand.
It updates this set without disrupting tra�c by leveraging a
small amount of scratch capacity in forwarding tables. Ex-
periments using a testbed prototype and data-driven simu-
lations of two production networks show that SWAN carries
60% more tra�c than the current practice.

Categories and Subject Descriptors: C.2.1 [Computer-

Communication Networks]: Network Architecture and Design

Keywords: Inter-DC WAN; software-defined networking

1. INTRODUCTION
The wide area network (WAN) that connects the data-

centers (DC) is critical infrastructure for providers of online
services such as Amazon, Google, and Microsoft. Many ser-
vices rely on low-latency inter-DC communication for good
user experience and on high-throughput transfers for relia-
bility (e.g., when replicating updates). Given the need for
high capacity—inter-DC tra�c is a significant fraction of
Internet tra�c and rapidly growing [20]—and unique traf-
fic characteristics, the inter-DC WAN is often a dedicated
network, distinct from the WAN that connects with ISPs to
reach end users [15]. It is an expensive resource, with amor-
tized annual cost of 100s of millions of dollars, as it provides
100s of Gbps to Tbps of capacity over long distances.

However, providers are unable to fully leverage this in-
vestment today. Inter-DC WANs have extremely poor ef-
ficiency; the average utilization of even the busier links is
40-60%. One culprit is the lack of coordination among the
services that use the network. Barring coarse, static limits

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

in some cases, services send tra�c whenever they want and
however much they want. As a result, the network cycles
through periods of peaks and troughs. Since it must be pro-
visioned for peak usage to avoid congestion, the network is
under-subscribed on average. Observe that network usage
does not have to be this way if we can exploit the char-
acteristics of inter-DC tra�c. Some inter-DC services are
delay-tolerant. We can tamp the cyclical behavior if such
tra�c is sent when the demand from other tra�c is low.
This coordination will boost average utilization and enable
the network to either carry more tra�c with the same ca-
pacity or use less capacity to carry the same tra�c.1

Another culprit behind poor e�ciency is the distributed
resource allocation model of today, typically implemented
using MPLS TE (Multiprotocol Label Switching Tra�c En-
gineering) [4, 24]. In this model, no entity has a global view
and ingress routers greedily select paths for their tra�c. As
a result, the network can get stuck in locally optimal routing
patterns that are globally suboptimal [27].
We present SWAN (Software-driven WAN), a system that

enables inter-DC WANs to carry significantly more tra�c.
By itself, carrying more tra�c is straightforward—we can let
loose bandwidth-hungry services. SWAN achieves high e�-
ciency while meeting policy goals such as preferential treat-
ment for higher-priority services and fairness among similar
services. Per observations above, its two key aspects are i)
globally coordinating the sending rates of services; and ii)
centrally allocating network paths. Based on current service
demands and network topology, SWAN decides how much
tra�c each service can send and configures the network’s
data plane to carry that tra�c.
Maintaining high utilization requires frequent updates to

the network’s data plane, as tra�c demand or network topol-
ogy changes. A key challenge is to implement these updates
without causing transient congestion that can hurt latency-
sensitive tra�c. The underlying problem is that the updates
are not atomic as they require changes to multiple switches.
Even if the before and after states are not congested, con-
gestion can occur during updates if tra�c that a link is sup-
posed to carry after the update arrives before the tra�c
that is supposed to leave has left. The extent and duration
of such congestion is worse when the network is busier and
has larger RTTs (which lead to greater temporal disparity
in the application of updates). Both these conditions hold

1In some networks, fault tolerance is another reason for low
utilization; the network is provisioned such that there is am-
ple capacity even after (common) failures. However, in inter-
DC WANs, tra�c that needs strong protection is a small
subset of the overall tra�c, and existing technologies can
tag and protect such tra�c in the face of failures (§2).

ACM SIGCOMM, 2013

Time

Utilization

(a)

(b)

(c)

 0
 0.2
 0.4
 0.6
 0.8

 1

tr
affi

c
ra

te

>50% peak reductionPeak after adapting

Peak before adapting

Figure 1: Illustration of poor utilization. (a) Daily tra�c
pattern on a busy link in a production inter-DC WAN.
(b) Breakdown based on tra�c type. (c) Reduction in
peak usage if background tra�c is dynamically adapted.

(a) Local path selection (b) Globally optimal paths

Figure 2: Ine�cient routing due to local allocation.

over- and under-subscription. Figure 1a shows the load over
a day on a busy link in IDN. Assuming capacity matches
peak usage (a common provisioning model to avoid conges-
tion), the average utilization on this link is under 50%. Thus,
half the provisioned capacity is wasted. This ine�ciency is
not fundamental but can be remedied by exploiting tra�c
characteristics. As a simple illustration, Figure 1b separates
background tra�c. Figure 1c shows that the same total traf-
fic can fit in half the capacity if background tra�c is adapted
to use capacity left unused by other tra�c.

Second, the local, greedy resource allocation model of
MPLS TE is ine�cient. Consider Figure 2 in which each
link can carry at most one flow. If the flows arrive in the
order FA, FB , and FC , Figure 2a shows the path assignment
with MPLS TE: FA is assigned to the top path which is one
of the shortest paths; when FB arrives, it is assigned to the
shortest path with available capacity (CSPF); and the same
happens with FC . Figure 2b shows a more e�cient routing
pattern with shorter paths and many links freed up to carry
more tra�c. Such an allocation requires non-local changes,
e.g., moving FA to the lower path when FB arrives.

Partial solutions for such ine�ciency exist. Flows can
be split across two tunnels, which would divide FA across
the top and bottom paths, allowing half of FB and FC to
use direct paths; a preemption strategy that prefers shorter
paths can also help. But such strategies do not address the
fundamental problem of local allocation decisions [27].

Poor sharing: Inter-DC WANs have limited support for
flexible resource allocation. For instance, it is di�cult to
be fair across services or favor some services over certain
paths. When services compete today, they typically obtain
throughput proportional to their sending rate, an undesir-
able outcome (e.g., it creates perverse incentives for service
developers). Mapping each service onto its own queue at
routers can alleviate problems but the number of services
(100s) far exceeds the number of available router queues.
Even if we had infinite queues and could ensure fairness on
the data plane, network-wide fairness is not possible without

(a) Link-level (b) Network-wide

Figure 3: Link-level fairness 6= network-wide fairness.

controlling which flows have access to which paths. Consider
Figure 3 in which each link has unit capacity and each ser-
vice (Si!Di) has unit demand. With link-level fairness,
S
2

!D
2

gets twice the throughput of other services. As we
show, flexible sharing can be implemented with a limited
number of queues by carefully allocating paths to tra�c and
control the sending rate of services.

3. SWAN OVERVIEW AND CHALLENGES
Our goal is to carry more tra�c and support flexible

network-wide sharing. Driven by inter-DC tra�c character-
istics, SWAN supports two types of sharing policies. First,
it supports a small number of priority classes (e.g., Inter-
active > Elastic > Background) and allocates bandwidth
in strict precedence across these classes, while preferring
shorter paths for higher classes. Second, within a class,
SWAN allocates bandwidth in a max-min fair manner.
SWAN has two basic components that address the funda-

mental shortcomings of the current practice. It coordinates
the network activity of services and uses centralized resource
allocation. Abstractly, it works as:

1. All services, except interactive ones, inform the SWAN

controller of their demand between pairs of DCs. In-
teractive tra�c is sent like today, without permission
from the controller, so there is no delay.

2. The controller, which has an up-to-date, global view of
the network topology and tra�c demands, computes
how much each service can send and the network paths
that can accommodate the tra�c.

3. Per SDN paradigm, the controller directly updates the
forwarding state of the switches. We use OpenFlow
switches, though any switch that permits direct pro-
gramming of forwarding state (e.g., MPLS Explicit
Route Objects [3]) may be used.

While the architecture is conceptually simple, we must ad-
dress three challenges to realize this design. First, we need
a scalable algorithm for global allocation that maximizes
network utilization subject to constraints on service prior-
ity and fairness. Best known solutions are computationally
intensive as they solve long sequences of linear programs
(LP) [9, 26]. Instead, SWAN uses a more practical approach
that is approximately fair with provable bounds and close
to optimal in practical scenarios (§6).
Second, atomic reconfiguration of a distributed system of

switches is hard to engineer. Network forwarding state needs
updating in response to changes in the tra�c demand or
network topology. Lacking WAN-wide atomic changes, the
network can drop many packets due to transient congestion
even if both the initial and final configurations are uncon-
gested. Consider Figure 4 in which each flow is 1 unit and
each link’s capacity is 1.5 units. Suppose we want to change
the network’s forwarding state from Figure 4a to 4b, perhaps
to accommodate a new flow from R

2

to R
4

. This change re-
quires changes to at least two switches. Depending on the

(a)

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1

tr
affi

c
ra

te Background traffic
Non-background traffic

(c)

Figure 1: Illustration of poor utilization. (a) Daily tra�c
pattern on a busy link in a production inter-DC WAN.
(b) Breakdown based on tra�c type. (c) Reduction in
peak usage if background tra�c is dynamically adapted.

(a) Local path selection (b) Globally optimal paths

Figure 2: Ine�cient routing due to local allocation.

over- and under-subscription. Figure 1a shows the load over
a day on a busy link in IDN. Assuming capacity matches
peak usage (a common provisioning model to avoid conges-
tion), the average utilization on this link is under 50%. Thus,
half the provisioned capacity is wasted. This ine�ciency is
not fundamental but can be remedied by exploiting tra�c
characteristics. As a simple illustration, Figure 1b separates
background tra�c. Figure 1c shows that the same total traf-
fic can fit in half the capacity if background tra�c is adapted
to use capacity left unused by other tra�c.

Second, the local, greedy resource allocation model of
MPLS TE is ine�cient. Consider Figure 2 in which each
link can carry at most one flow. If the flows arrive in the
order FA, FB , and FC , Figure 2a shows the path assignment
with MPLS TE: FA is assigned to the top path which is one
of the shortest paths; when FB arrives, it is assigned to the
shortest path with available capacity (CSPF); and the same
happens with FC . Figure 2b shows a more e�cient routing
pattern with shorter paths and many links freed up to carry
more tra�c. Such an allocation requires non-local changes,
e.g., moving FA to the lower path when FB arrives.

Partial solutions for such ine�ciency exist. Flows can
be split across two tunnels, which would divide FA across
the top and bottom paths, allowing half of FB and FC to
use direct paths; a preemption strategy that prefers shorter
paths can also help. But such strategies do not address the
fundamental problem of local allocation decisions [27].

Poor sharing: Inter-DC WANs have limited support for
flexible resource allocation. For instance, it is di�cult to
be fair across services or favor some services over certain
paths. When services compete today, they typically obtain
throughput proportional to their sending rate, an undesir-
able outcome (e.g., it creates perverse incentives for service
developers). Mapping each service onto its own queue at
routers can alleviate problems but the number of services
(100s) far exceeds the number of available router queues.
Even if we had infinite queues and could ensure fairness on
the data plane, network-wide fairness is not possible without

(a) Link-level (b) Network-wide

Figure 3: Link-level fairness 6= network-wide fairness.

controlling which flows have access to which paths. Consider
Figure 3 in which each link has unit capacity and each ser-
vice (Si!Di) has unit demand. With link-level fairness,
S
2

!D
2

gets twice the throughput of other services. As we
show, flexible sharing can be implemented with a limited
number of queues by carefully allocating paths to tra�c and
control the sending rate of services.

3. SWAN OVERVIEW AND CHALLENGES
Our goal is to carry more tra�c and support flexible

network-wide sharing. Driven by inter-DC tra�c character-
istics, SWAN supports two types of sharing policies. First,
it supports a small number of priority classes (e.g., Inter-
active > Elastic > Background) and allocates bandwidth
in strict precedence across these classes, while preferring
shorter paths for higher classes. Second, within a class,
SWAN allocates bandwidth in a max-min fair manner.
SWAN has two basic components that address the funda-

mental shortcomings of the current practice. It coordinates
the network activity of services and uses centralized resource
allocation. Abstractly, it works as:

1. All services, except interactive ones, inform the SWAN

controller of their demand between pairs of DCs. In-
teractive tra�c is sent like today, without permission
from the controller, so there is no delay.

2. The controller, which has an up-to-date, global view of
the network topology and tra�c demands, computes
how much each service can send and the network paths
that can accommodate the tra�c.

3. Per SDN paradigm, the controller directly updates the
forwarding state of the switches. We use OpenFlow
switches, though any switch that permits direct pro-
gramming of forwarding state (e.g., MPLS Explicit
Route Objects [3]) may be used.

While the architecture is conceptually simple, we must ad-
dress three challenges to realize this design. First, we need
a scalable algorithm for global allocation that maximizes
network utilization subject to constraints on service prior-
ity and fairness. Best known solutions are computationally
intensive as they solve long sequences of linear programs
(LP) [9, 26]. Instead, SWAN uses a more practical approach
that is approximately fair with provable bounds and close
to optimal in practical scenarios (§6).
Second, atomic reconfiguration of a distributed system of

switches is hard to engineer. Network forwarding state needs
updating in response to changes in the tra�c demand or
network topology. Lacking WAN-wide atomic changes, the
network can drop many packets due to transient congestion
even if both the initial and final configurations are uncon-
gested. Consider Figure 4 in which each flow is 1 unit and
each link’s capacity is 1.5 units. Suppose we want to change
the network’s forwarding state from Figure 4a to 4b, perhaps
to accommodate a new flow from R

2

to R
4

. This change re-
quires changes to at least two switches. Depending on the

Problem 2: inflexible sharing

2x the bandwidth!

B4 key design decisions

[Jain et al., SIGCOMM 2013]

Separate hardware from software

B4 routers custom-built from merchant silicon

Drive links to 100% utilization

Centralized traffic engineering

Google’s B4

“B4: Experience with a Globally-Deployed Software
Defined WAN”

Jain et al., ACM SIGCOMM 2013

Figure �: B� worldwide deployment (����).

not a panacea; we summarize our experience with a large-scale B�
outage, pointing to challenges in both SDN and large-scale network
management. While our approach does not generalize to all WANs
or SDNs, we hope that our experience will inform future design in
both domains.

2. BACKGROUND
Before describing the architecture of our so�ware-de�nedWAN,

we provide an overview of our deployment environment and tar-
get applications. Google’s WAN is among the largest in the Internet,
delivering a range of search, video, cloud computing, and enterprise
applications to users across the planet. �ese services run across a
combination of data centers spread across the world, and edge de-
ployments for cacheable content.

Architecturally, we operate two distinct WANs. Our user-facing
network peers with and exchanges tra�c with other Internet do-
mains. End user requests and responses are delivered to our data
centers and edge caches across this network. �e second network,
B�, provides connectivity among data centers (see Fig. �), e.g., for
asynchronous data copies, index pushes for interactive serving sys-
tems, and end user data replication for availability. Well over ���
of internal application tra�c runs across this network.

We maintain two separate networks because they have di�erent
requirements. For example, our user-facing networking connects
with a range of gear and providers, and hence must support a wide
range of protocols. Further, its physical topology will necessarily be
more dense than a network connecting a modest number of data
centers. Finally, in delivering content to end users, it must support
the highest levels of availability.

�ousands of individual applications run across B�; here, we cat-
egorize them into three classes: i) user data copies (e.g., email, doc-
uments, audio/video �les) to remote data centers for availability/-
durability, ii) remote storage access for computation over inherently
distributed data sources, and iii) large-scale data push synchroniz-
ing state across multiple data centers. �ese three tra�c classes are
ordered in increasing volume, decreasing latency sensitivity, and de-
creasing overall priority. For example, user-data represents the low-
est volume on B�, is the most latency sensitive, and is of the highest
priority.

�e scale of our network deployment strains both the capacity
of commodity network hardware and the scalability, fault tolerance,
and granularity of control available from network so�ware. Internet
bandwidth as a whole continues to grow rapidly [��]. However, our
ownWAN tra�c has been growing at an even faster rate.

Our decision to build B� around So�ware De�ned Networking
and OpenFlow [��] was driven by the observation that we could not
achieve the level of scale, fault tolerance, cost e�ciency, and control
required for our network using traditional WAN architectures. A
number of B�’s characteristics led to our design approach:

● Elastic bandwidth demands: �e majority of our data cen-
ter tra�c involves synchronizing large data sets across sites.
�ese applications bene�t from as much bandwidth as they
can get but can tolerate periodic failures with temporary
bandwidth reductions.● Moderate number of sites: While B�must scale among multi-
ple dimensions, targeting our data center deployments meant
that the total number of WAN sites would be a few dozen.● End application control: We control both the applications and
the site networks connected to B�. Hence, we can enforce rel-
ative application priorities and control bursts at the network
edge, rather than through overprovisioning or complex func-
tionality in B�.● Cost sensitivity: B�’s capacity targets and growth rate led to
unsustainable cost projections. �e traditional approach of
provisioningWAN links at ��-��� (or �-�x the cost of a fully-
utilized WAN) to protect against failures and packet loss,
combined with prevailing per-port router cost, would make
our network prohibitively expensive.

�ese considerations led to particular design decisions for B�,
which we summarize in Table �. In particular, SDN gives us a
dedicated, so�ware-based control plane running on commodity
servers, and the opportunity to reason about global state, yielding
vastly simpli�ed coordination and orchestration for both planned
and unplanned network changes. SDN also allows us to leverage
the raw speed of commodity servers; latest-generation servers are
much faster than the embedded-class processor in most switches,
and we can upgrade servers independently from the switch hard-
ware. OpenFlow gives us an early investment in an SDN ecosys-
tem that can leverage a variety of switch/data plane elements. Crit-
ically, SDN/OpenFlow decouples so�ware and hardware evolution:
control plane so�ware becomes simpler and evolves more quickly;
data plane hardware evolves based on programmability and perfor-
mance.
We had several additional motivations for our so�ware de�ned

architecture, including: i) rapid iteration on novel protocols, ii) sim-
pli�ed testing environments (e.g., we emulate our entire so�ware
stack running across the WAN in a local cluster), iii) improved
capacity planning available from simulating a deterministic cen-
tral TE server rather than trying to capture the asynchronous rout-
ing behavior of distributed protocols, and iv) simpli�ed manage-
ment through a fabric-centric rather than router-centricWAN view.
However, we leave a description of these aspects to separate work.

3. DESIGN
In this section, we describe the details of our So�ware De�ned

WAN architecture.

3.1 Overview
Our SDN architecture can be logically viewed in three layers, de-

picted in Fig. �. B� serves multiple WAN sites, each with a num-
ber of server clusters. Within each B� site, the switch hardware
layer primarily forwards tra�c and does not run complex control
so�ware, and the site controller layer consists of Network Control
Servers (NCS) hosting both OpenFlow controllers (OFC) and Net-
work Control Applications (NCAs).
�ese servers enable distributed routing and central tra�c engi-

neering as a routing overlay. OFCs maintain network state based on
NCA directives and switch events and instruct switches to set for-
warding table entries based on this changing network state. For fault
tolerance of individual servers and control processes, a per-site in-

circa 2011

Google’s B4

“B4: Experience with a Globally-Deployed Software
Defined WAN”

Jain et al., ACM SIGCOMM 2013

Figure �: B� worldwide deployment (����).

not a panacea; we summarize our experience with a large-scale B�
outage, pointing to challenges in both SDN and large-scale network
management. While our approach does not generalize to all WANs
or SDNs, we hope that our experience will inform future design in
both domains.

2. BACKGROUND
Before describing the architecture of our so�ware-de�nedWAN,

we provide an overview of our deployment environment and tar-
get applications. Google’s WAN is among the largest in the Internet,
delivering a range of search, video, cloud computing, and enterprise
applications to users across the planet. �ese services run across a
combination of data centers spread across the world, and edge de-
ployments for cacheable content.

Architecturally, we operate two distinct WANs. Our user-facing
network peers with and exchanges tra�c with other Internet do-
mains. End user requests and responses are delivered to our data
centers and edge caches across this network. �e second network,
B�, provides connectivity among data centers (see Fig. �), e.g., for
asynchronous data copies, index pushes for interactive serving sys-
tems, and end user data replication for availability. Well over ���
of internal application tra�c runs across this network.

We maintain two separate networks because they have di�erent
requirements. For example, our user-facing networking connects
with a range of gear and providers, and hence must support a wide
range of protocols. Further, its physical topology will necessarily be
more dense than a network connecting a modest number of data
centers. Finally, in delivering content to end users, it must support
the highest levels of availability.

�ousands of individual applications run across B�; here, we cat-
egorize them into three classes: i) user data copies (e.g., email, doc-
uments, audio/video �les) to remote data centers for availability/-
durability, ii) remote storage access for computation over inherently
distributed data sources, and iii) large-scale data push synchroniz-
ing state across multiple data centers. �ese three tra�c classes are
ordered in increasing volume, decreasing latency sensitivity, and de-
creasing overall priority. For example, user-data represents the low-
est volume on B�, is the most latency sensitive, and is of the highest
priority.

�e scale of our network deployment strains both the capacity
of commodity network hardware and the scalability, fault tolerance,
and granularity of control available from network so�ware. Internet
bandwidth as a whole continues to grow rapidly [��]. However, our
ownWAN tra�c has been growing at an even faster rate.

Our decision to build B� around So�ware De�ned Networking
and OpenFlow [��] was driven by the observation that we could not
achieve the level of scale, fault tolerance, cost e�ciency, and control
required for our network using traditional WAN architectures. A
number of B�’s characteristics led to our design approach:

● Elastic bandwidth demands: �e majority of our data cen-
ter tra�c involves synchronizing large data sets across sites.
�ese applications bene�t from as much bandwidth as they
can get but can tolerate periodic failures with temporary
bandwidth reductions.● Moderate number of sites: While B�must scale among multi-
ple dimensions, targeting our data center deployments meant
that the total number of WAN sites would be a few dozen.● End application control: We control both the applications and
the site networks connected to B�. Hence, we can enforce rel-
ative application priorities and control bursts at the network
edge, rather than through overprovisioning or complex func-
tionality in B�.● Cost sensitivity: B�’s capacity targets and growth rate led to
unsustainable cost projections. �e traditional approach of
provisioningWAN links at ��-��� (or �-�x the cost of a fully-
utilized WAN) to protect against failures and packet loss,
combined with prevailing per-port router cost, would make
our network prohibitively expensive.

�ese considerations led to particular design decisions for B�,
which we summarize in Table �. In particular, SDN gives us a
dedicated, so�ware-based control plane running on commodity
servers, and the opportunity to reason about global state, yielding
vastly simpli�ed coordination and orchestration for both planned
and unplanned network changes. SDN also allows us to leverage
the raw speed of commodity servers; latest-generation servers are
much faster than the embedded-class processor in most switches,
and we can upgrade servers independently from the switch hard-
ware. OpenFlow gives us an early investment in an SDN ecosys-
tem that can leverage a variety of switch/data plane elements. Crit-
ically, SDN/OpenFlow decouples so�ware and hardware evolution:
control plane so�ware becomes simpler and evolves more quickly;
data plane hardware evolves based on programmability and perfor-
mance.
We had several additional motivations for our so�ware de�ned

architecture, including: i) rapid iteration on novel protocols, ii) sim-
pli�ed testing environments (e.g., we emulate our entire so�ware
stack running across the WAN in a local cluster), iii) improved
capacity planning available from simulating a deterministic cen-
tral TE server rather than trying to capture the asynchronous rout-
ing behavior of distributed protocols, and iv) simpli�ed manage-
ment through a fabric-centric rather than router-centricWAN view.
However, we leave a description of these aspects to separate work.

3. DESIGN
In this section, we describe the details of our So�ware De�ned

WAN architecture.

3.1 Overview
Our SDN architecture can be logically viewed in three layers, de-

picted in Fig. �. B� serves multiple WAN sites, each with a num-
ber of server clusters. Within each B� site, the switch hardware
layer primarily forwards tra�c and does not run complex control
so�ware, and the site controller layer consists of Network Control
Servers (NCS) hosting both OpenFlow controllers (OFC) and Net-
work Control Applications (NCAs).
�ese servers enable distributed routing and central tra�c engi-

neering as a routing overlay. OFCs maintain network state based on
NCA directives and switch events and instruct switches to set for-
warding table entries based on this changing network state. For fault
tolerance of individual servers and control processes, a per-site in-

Google’s B4: view at one site

Data center
network

Cluster
border
routers

WAN routers

iBGP / IS-IS to
other sites

eBGP

Quagga OpenFlow
Controller

eBGP

iBGP / IS-IS to
other sites TE server

Figure 8: Firehose 1.1 deployed as a bag-on-the-side Clos
fabric.

Figure 9: A 128x10G port Watchtower chassis (top left).
The internal non-blocking topology over eight linecards
(bottom left). Four chassis housed in two racks cabled with
fiber (right).

cific intra-cluster tra�c would use the uplinks to Fire-
hose 1.1. Since our four-post cluster employed 1G links,
we only needed to reserve four 1GE ToR ports. We built
a Big Red Button fail-safe to configure the ToRs to avoid
Firehose uplinks in case of catastrophic failure.

3.3 Watchtower: Global Deployment
Our deployment experience with Firehose 1.1 was

largely positive. We showed that services could en-
joy substantially more bandwidth than with traditional
architectures, all with lower cost per unit bandwidth.
Firehose 1.1 went into production with a handful of clus-
ters and remained operational until recently. The main
drawback to Firehose 1.1 was the deployment challenges
with the external copper cabling.

We used these experiences to design Watchtower, our
third-generation cluster fabric. The key idea was to
leverage the next-generation merchant silicon switch
chips, 16x10G, to build a traditional switch chassis with
a backplane. Figure 9 shows the half rack Watchtower

Figure 10: Reducing deployment complexity by bundling
cables. Stages 1, 2 and 3 in the fabric are labeled S1, S2 and
S3, respectively.

Individual cables 15872
S2-S3 bundles (16-way) 512
Normalized cost of fiber/m in 16-way bundle 55%
S2-ToR bundles (8-way) 960
Normalized cost of fiber/m in 8-way bundle 60%
Total cable bundles 1472
Normalized cost of fiber/m with bundling
(capex + opex)

57%

Table 3: Benefits of cable bundling in Watchtower.

chassis along with its internal topology and cabling.
Watchtower consists of eight line cards, each with three
switch chips. Two chips on each linecard have half their
ports externally facing, for a total of 16x10GE SFP+
ports. All three chips also connect to a backplane for
port to port connectivity. Watchtower deployment, as
seen in Figure 9 was substantially easier than the earlier
Firehose deployments. The larger bandwidth density
of the switching silicon also allowed us to build larger
fabrics with more bandwidth to individual servers, a
necessity as servers were employing an ever-increasing
number of cores.
Fiber bundling further reduced the cabling complex-

ity of Watchtower clusters. Figure 10 shows a Watch-
tower fabric deployment without any cable bundling.
Individual fibers of varying length need to be pulled
from each chassis location, leading to significant deploy-
ment overhead. The bottom figure shows how bundling
can substantially reduce complexity. We deploy two
chassis in each rack and co-locate two racks. We can
then pull cable bundles to the midpoint of the co-located
racks, where each bundle is split to each rack and then
further to each chassis.
Finally, manufacturing fiber in bundles is more cost

e↵ective than individual strands. Cable bundling
helped reduce fiber cost (capex + opex) by nearly 40%
and expedited bringup of Watchtower fabric by multi-
ple weeks. Table 3 summarizes the bundling and cost
savings.

188

From “Jupiter Rising: A Decade of Clos Topologies and Centralized
Control in Google’s Datacenter Network”, Singh et al., ACM

SIGCOMM’15

Google’s B4: Traffic engineering

TE server

Vs. Semi-Distributed TE

What aspects of B4 would have been difficult with
MPLS-based TE such as TeXCP?

What aspects of B4 are similar to TeXCP?

Small group discussion

1 How does B4 scale?

• Subsecond centralized scheduling of more traffic than
Google’s public WAN serves!

2 What does B4 assume about network’s traffic?

• In what environments would these assumptions be
violated?

• In what other environments would they be valid?

How does B4 scale?

How does B4 scale?

Hierarchy

• Not a simple contoller-to-
switch design!

Design Decision Rationale/Bene�ts Challenges
B� routers built from
merchant switch silicon

B� apps are willing to trade more average bandwidth for fault tolerance.
Edge application control limits need for large bu�ers. Limited number of B� sites means
large forwarding tables are not required.
Relatively low router cost allows us to scale network capacity.

Sacri�ce hardware fault tolerance,
deep bu�ering, and support for
large routing tables.

Drive links to ����
utilization

Allows e�cient use of expensive long haul transport.
Many applications willing to trade higher average bandwidth for predictability. Largest
bandwidth consumers adapt dynamically to available bandwidth.

Packet loss becomes inevitable
with substantial capacity loss dur-
ing link/switch failure.

Centralized tra�c
engineering

Use multipath forwarding to balance application demands across available capacity in re-
sponse to failures and changing application demands.
Leverage application classi�cation and priority for scheduling in cooperation with edge rate
limiting.
Tra�c engineering with traditional distributed routing protocols (e.g. link-state) is known
to be sub-optimal [��, ��] except in special cases [��].
Faster, deterministic global convergence for failures.

No existing protocols for func-
tionality. Requires knowledge
about site to site demand and im-
portance.

Separate hardware
from so�ware

Customize routing and monitoring protocols to B� requirements.
Rapid iteration on so�ware protocols.
Easier to protect against common case so�ware failures through external replication.
Agnostic to range of hardware deployments exporting the same programming interface.

Previously untested development
model. Breaks fate sharing be-
tween hardware and so�ware.

Table �: Summary of design decisions in B�.

Figure �: B� architecture overview.

stance of Paxos [�] elects one of multiple available so�ware replicas
(placed on di�erent physical servers) as the primary instance.

�e global layer consists of logically centralized applications (e.g.
an SDN Gateway and a central TE server) that enable the central
control of the entire network via the site-levelNCAs.�e SDNGate-
way abstracts details of OpenFlow and switch hardware from the
central TE server. We replicate global layer applications across mul-
tiple WAN sites with separate leader election to set the primary.

Each server cluster in our network is a logical “Autonomous Sys-
tem” (AS)with a set of IP pre�xes. Each cluster contains a set of BGP
routers (not shown in Fig. �) that peerwith B� switches at eachWAN
site. Even before introducing SDN, we ran B� as a single AS pro-
viding transit among clusters running traditional BGP/ISIS network
protocols. We chose BGP because of its isolation properties between
domains and operator familiarity with the protocol.�e SDN-based
B� then had to support existing distributed routing protocols, both
for interoperability with our non-SDN WAN implementation, and
to enable a gradual rollout.

We considered a number of options for integrating existing rout-
ing protocols with centralized tra�c engineering. In an aggressive
approach, we would have built one integrated, centralized service
combining routing (e.g., ISIS functionality) and tra�c engineering.
We instead chose to deploy routing and tra�c engineering as in-
dependent services, with the standard routing service deployed ini-
tially and central TE subsequently deployed as an overlay. �is sep-

aration delivers a number of bene�ts. It allowed us to focus initial
work on building SDN infrastructure, e.g., the OFC and agent, rout-
ing, etc. Moreover, since we initially deployed our network with no
new externally visible functionality such as TE, it gave time to de-
velop and debug the SDN architecture before trying to implement
new features such as TE.
Perhaps most importantly, we layered tra�c engineering on top

of baseline routing protocols using prioritized switch forwarding ta-
ble entries (§ �). �is isolation gave our network a “big red button”;
faced with any critical issues in tra�c engineering, we could dis-
able the service and fall back to shortest path forwarding. �is fault
recovery mechanism has proven invaluable (§ �).
Each B� site consists of multiple switches with potentially hun-

dreds of individual ports linking to remote sites. To scale, the TE ab-
stracts each site into a single node with a single edge of given capac-
ity to each remote site. To achieve this topology abstraction, all traf-
�c crossing a site-to-site edge must be evenly distributed across all
its constituent links. B� routers employ a custom variant of ECMP
hashing [��] to achieve the necessary load balancing.
In the rest of this section, we describe how we integrate ex-

isting routing protocols running on separate control servers with
OpenFlow-enabled hardware switches. § � then describes how we
layer TE on top of this baseline routing implementation.

3.2 Switch Design
Conventional wisdom dictates that wide area routing equipment

must have deep bu�ers, very large forwarding tables, and hardware
support for high availability. All of this functionality adds to hard-
ware cost and complexity. We posited that with careful endpoint
management, we could adjust transmission rates to avoid the need
for deep bu�ers while avoiding expensive packet drops. Further,
our switches run across a relatively small set of data centers, so
we did not require large forwarding tables. Finally, we found that
switch failures typically result from so�ware rather than hardware
issues. By moving most so�ware functionality o� the switch hard-
ware, we can manage so�ware fault tolerance through known tech-
niques widely available for existing distributed systems.
Even so, the main reason we chose to build our own hardware

was that no existing platform could support an SDN deployment,
i.e., one that could export low-level control over switch forwarding
behavior. Any extra costs from using custom switch hardware are
more than repaid by the e�ciency gains available from supporting
novel services such as centralized TE. Given the bandwidth required

5

How does B4 scale?

Hierarchy

• Not a simple contoller-to-
switch design!

Design Decision Rationale/Bene�ts Challenges
B� routers built from
merchant switch silicon

B� apps are willing to trade more average bandwidth for fault tolerance.
Edge application control limits need for large bu�ers. Limited number of B� sites means
large forwarding tables are not required.
Relatively low router cost allows us to scale network capacity.

Sacri�ce hardware fault tolerance,
deep bu�ering, and support for
large routing tables.

Drive links to ����
utilization

Allows e�cient use of expensive long haul transport.
Many applications willing to trade higher average bandwidth for predictability. Largest
bandwidth consumers adapt dynamically to available bandwidth.

Packet loss becomes inevitable
with substantial capacity loss dur-
ing link/switch failure.

Centralized tra�c
engineering

Use multipath forwarding to balance application demands across available capacity in re-
sponse to failures and changing application demands.
Leverage application classi�cation and priority for scheduling in cooperation with edge rate
limiting.
Tra�c engineering with traditional distributed routing protocols (e.g. link-state) is known
to be sub-optimal [��, ��] except in special cases [��].
Faster, deterministic global convergence for failures.

No existing protocols for func-
tionality. Requires knowledge
about site to site demand and im-
portance.

Separate hardware
from so�ware

Customize routing and monitoring protocols to B� requirements.
Rapid iteration on so�ware protocols.
Easier to protect against common case so�ware failures through external replication.
Agnostic to range of hardware deployments exporting the same programming interface.

Previously untested development
model. Breaks fate sharing be-
tween hardware and so�ware.

Table �: Summary of design decisions in B�.

Figure �: B� architecture overview.

stance of Paxos [�] elects one of multiple available so�ware replicas
(placed on di�erent physical servers) as the primary instance.

�e global layer consists of logically centralized applications (e.g.
an SDN Gateway and a central TE server) that enable the central
control of the entire network via the site-levelNCAs.�e SDNGate-
way abstracts details of OpenFlow and switch hardware from the
central TE server. We replicate global layer applications across mul-
tiple WAN sites with separate leader election to set the primary.

Each server cluster in our network is a logical “Autonomous Sys-
tem” (AS)with a set of IP pre�xes. Each cluster contains a set of BGP
routers (not shown in Fig. �) that peerwith B� switches at eachWAN
site. Even before introducing SDN, we ran B� as a single AS pro-
viding transit among clusters running traditional BGP/ISIS network
protocols. We chose BGP because of its isolation properties between
domains and operator familiarity with the protocol.�e SDN-based
B� then had to support existing distributed routing protocols, both
for interoperability with our non-SDN WAN implementation, and
to enable a gradual rollout.

We considered a number of options for integrating existing rout-
ing protocols with centralized tra�c engineering. In an aggressive
approach, we would have built one integrated, centralized service
combining routing (e.g., ISIS functionality) and tra�c engineering.
We instead chose to deploy routing and tra�c engineering as in-
dependent services, with the standard routing service deployed ini-
tially and central TE subsequently deployed as an overlay. �is sep-

aration delivers a number of bene�ts. It allowed us to focus initial
work on building SDN infrastructure, e.g., the OFC and agent, rout-
ing, etc. Moreover, since we initially deployed our network with no
new externally visible functionality such as TE, it gave time to de-
velop and debug the SDN architecture before trying to implement
new features such as TE.

Perhaps most importantly, we layered tra�c engineering on top
of baseline routing protocols using prioritized switch forwarding ta-
ble entries (§ �). �is isolation gave our network a “big red button”;
faced with any critical issues in tra�c engineering, we could dis-
able the service and fall back to shortest path forwarding. �is fault
recovery mechanism has proven invaluable (§ �).

Each B� site consists of multiple switches with potentially hun-
dreds of individual ports linking to remote sites. To scale, the TE ab-
stracts each site into a single node with a single edge of given capac-
ity to each remote site. To achieve this topology abstraction, all traf-
�c crossing a site-to-site edge must be evenly distributed across all
its constituent links. B� routers employ a custom variant of ECMP
hashing [��] to achieve the necessary load balancing.

In the rest of this section, we describe how we integrate ex-
isting routing protocols running on separate control servers with
OpenFlow-enabled hardware switches. § � then describes how we
layer TE on top of this baseline routing implementation.

3.2 Switch Design
Conventional wisdom dictates that wide area routing equipment

must have deep bu�ers, very large forwarding tables, and hardware
support for high availability. All of this functionality adds to hard-
ware cost and complexity. We posited that with careful endpoint
management, we could adjust transmission rates to avoid the need
for deep bu�ers while avoiding expensive packet drops. Further,
our switches run across a relatively small set of data centers, so
we did not require large forwarding tables. Finally, we found that
switch failures typically result from so�ware rather than hardware
issues. By moving most so�ware functionality o� the switch hard-
ware, we can manage so�ware fault tolerance through known tech-
niques widely available for existing distributed systems.

Even so, the main reason we chose to build our own hardware
was that no existing platform could support an SDN deployment,
i.e., one that could export low-level control over switch forwarding
behavior. Any extra costs from using custom switch hardware are
more than repaid by the e�ciency gains available from supporting
novel services such as centralized TE. Given the bandwidth required

5

How does B4 scale?

Hierarchy

• Not a simple contoller-to-
switch design!

Aggregation

• Node = site (data center)
• Link = 100s of links
• Flow group = {src, dst,

QoS} tuple

Design Decision Rationale/Bene�ts Challenges
B� routers built from
merchant switch silicon

B� apps are willing to trade more average bandwidth for fault tolerance.
Edge application control limits need for large bu�ers. Limited number of B� sites means
large forwarding tables are not required.
Relatively low router cost allows us to scale network capacity.

Sacri�ce hardware fault tolerance,
deep bu�ering, and support for
large routing tables.

Drive links to ����
utilization

Allows e�cient use of expensive long haul transport.
Many applications willing to trade higher average bandwidth for predictability. Largest
bandwidth consumers adapt dynamically to available bandwidth.

Packet loss becomes inevitable
with substantial capacity loss dur-
ing link/switch failure.

Centralized tra�c
engineering

Use multipath forwarding to balance application demands across available capacity in re-
sponse to failures and changing application demands.
Leverage application classi�cation and priority for scheduling in cooperation with edge rate
limiting.
Tra�c engineering with traditional distributed routing protocols (e.g. link-state) is known
to be sub-optimal [��, ��] except in special cases [��].
Faster, deterministic global convergence for failures.

No existing protocols for func-
tionality. Requires knowledge
about site to site demand and im-
portance.

Separate hardware
from so�ware

Customize routing and monitoring protocols to B� requirements.
Rapid iteration on so�ware protocols.
Easier to protect against common case so�ware failures through external replication.
Agnostic to range of hardware deployments exporting the same programming interface.

Previously untested development
model. Breaks fate sharing be-
tween hardware and so�ware.

Table �: Summary of design decisions in B�.

Figure �: B� architecture overview.

stance of Paxos [�] elects one of multiple available so�ware replicas
(placed on di�erent physical servers) as the primary instance.

�e global layer consists of logically centralized applications (e.g.
an SDN Gateway and a central TE server) that enable the central
control of the entire network via the site-levelNCAs.�e SDNGate-
way abstracts details of OpenFlow and switch hardware from the
central TE server. We replicate global layer applications across mul-
tiple WAN sites with separate leader election to set the primary.

Each server cluster in our network is a logical “Autonomous Sys-
tem” (AS)with a set of IP pre�xes. Each cluster contains a set of BGP
routers (not shown in Fig. �) that peerwith B� switches at eachWAN
site. Even before introducing SDN, we ran B� as a single AS pro-
viding transit among clusters running traditional BGP/ISIS network
protocols. We chose BGP because of its isolation properties between
domains and operator familiarity with the protocol.�e SDN-based
B� then had to support existing distributed routing protocols, both
for interoperability with our non-SDN WAN implementation, and
to enable a gradual rollout.

We considered a number of options for integrating existing rout-
ing protocols with centralized tra�c engineering. In an aggressive
approach, we would have built one integrated, centralized service
combining routing (e.g., ISIS functionality) and tra�c engineering.
We instead chose to deploy routing and tra�c engineering as in-
dependent services, with the standard routing service deployed ini-
tially and central TE subsequently deployed as an overlay. �is sep-

aration delivers a number of bene�ts. It allowed us to focus initial
work on building SDN infrastructure, e.g., the OFC and agent, rout-
ing, etc. Moreover, since we initially deployed our network with no
new externally visible functionality such as TE, it gave time to de-
velop and debug the SDN architecture before trying to implement
new features such as TE.

Perhaps most importantly, we layered tra�c engineering on top
of baseline routing protocols using prioritized switch forwarding ta-
ble entries (§ �). �is isolation gave our network a “big red button”;
faced with any critical issues in tra�c engineering, we could dis-
able the service and fall back to shortest path forwarding. �is fault
recovery mechanism has proven invaluable (§ �).

Each B� site consists of multiple switches with potentially hun-
dreds of individual ports linking to remote sites. To scale, the TE ab-
stracts each site into a single node with a single edge of given capac-
ity to each remote site. To achieve this topology abstraction, all traf-
�c crossing a site-to-site edge must be evenly distributed across all
its constituent links. B� routers employ a custom variant of ECMP
hashing [��] to achieve the necessary load balancing.

In the rest of this section, we describe how we integrate ex-
isting routing protocols running on separate control servers with
OpenFlow-enabled hardware switches. § � then describes how we
layer TE on top of this baseline routing implementation.

3.2 Switch Design
Conventional wisdom dictates that wide area routing equipment

must have deep bu�ers, very large forwarding tables, and hardware
support for high availability. All of this functionality adds to hard-
ware cost and complexity. We posited that with careful endpoint
management, we could adjust transmission rates to avoid the need
for deep bu�ers while avoiding expensive packet drops. Further,
our switches run across a relatively small set of data centers, so
we did not require large forwarding tables. Finally, we found that
switch failures typically result from so�ware rather than hardware
issues. By moving most so�ware functionality o� the switch hard-
ware, we can manage so�ware fault tolerance through known tech-
niques widely available for existing distributed systems.

Even so, the main reason we chose to build our own hardware
was that no existing platform could support an SDN deployment,
i.e., one that could export low-level control over switch forwarding
behavior. Any extra costs from using custom switch hardware are
more than repaid by the e�ciency gains available from supporting
novel services such as centralized TE. Given the bandwidth required

5

Figure �: B� worldwide deployment (����).

not a panacea; we summarize our experience with a large-scale B�
outage, pointing to challenges in both SDN and large-scale network
management. While our approach does not generalize to all WANs
or SDNs, we hope that our experience will inform future design in
both domains.

2. BACKGROUND
Before describing the architecture of our so�ware-de�nedWAN,

we provide an overview of our deployment environment and tar-
get applications. Google’s WAN is among the largest in the Internet,
delivering a range of search, video, cloud computing, and enterprise
applications to users across the planet. �ese services run across a
combination of data centers spread across the world, and edge de-
ployments for cacheable content.

Architecturally, we operate two distinct WANs. Our user-facing
network peers with and exchanges tra�c with other Internet do-
mains. End user requests and responses are delivered to our data
centers and edge caches across this network. �e second network,
B�, provides connectivity among data centers (see Fig. �), e.g., for
asynchronous data copies, index pushes for interactive serving sys-
tems, and end user data replication for availability. Well over ���
of internal application tra�c runs across this network.

We maintain two separate networks because they have di�erent
requirements. For example, our user-facing networking connects
with a range of gear and providers, and hence must support a wide
range of protocols. Further, its physical topology will necessarily be
more dense than a network connecting a modest number of data
centers. Finally, in delivering content to end users, it must support
the highest levels of availability.

�ousands of individual applications run across B�; here, we cat-
egorize them into three classes: i) user data copies (e.g., email, doc-
uments, audio/video �les) to remote data centers for availability/-
durability, ii) remote storage access for computation over inherently
distributed data sources, and iii) large-scale data push synchroniz-
ing state across multiple data centers. �ese three tra�c classes are
ordered in increasing volume, decreasing latency sensitivity, and de-
creasing overall priority. For example, user-data represents the low-
est volume on B�, is the most latency sensitive, and is of the highest
priority.

�e scale of our network deployment strains both the capacity
of commodity network hardware and the scalability, fault tolerance,
and granularity of control available from network so�ware. Internet
bandwidth as a whole continues to grow rapidly [��]. However, our
ownWAN tra�c has been growing at an even faster rate.

Our decision to build B� around So�ware De�ned Networking
and OpenFlow [��] was driven by the observation that we could not
achieve the level of scale, fault tolerance, cost e�ciency, and control
required for our network using traditional WAN architectures. A
number of B�’s characteristics led to our design approach:

● Elastic bandwidth demands: �e majority of our data cen-
ter tra�c involves synchronizing large data sets across sites.
�ese applications bene�t from as much bandwidth as they
can get but can tolerate periodic failures with temporary
bandwidth reductions.● Moderate number of sites: While B�must scale among multi-
ple dimensions, targeting our data center deployments meant
that the total number of WAN sites would be a few dozen.● End application control: We control both the applications and
the site networks connected to B�. Hence, we can enforce rel-
ative application priorities and control bursts at the network
edge, rather than through overprovisioning or complex func-
tionality in B�.● Cost sensitivity: B�’s capacity targets and growth rate led to
unsustainable cost projections. �e traditional approach of
provisioningWAN links at ��-��� (or �-�x the cost of a fully-
utilized WAN) to protect against failures and packet loss,
combined with prevailing per-port router cost, would make
our network prohibitively expensive.

�ese considerations led to particular design decisions for B�,
which we summarize in Table �. In particular, SDN gives us a
dedicated, so�ware-based control plane running on commodity
servers, and the opportunity to reason about global state, yielding
vastly simpli�ed coordination and orchestration for both planned
and unplanned network changes. SDN also allows us to leverage
the raw speed of commodity servers; latest-generation servers are
much faster than the embedded-class processor in most switches,
and we can upgrade servers independently from the switch hard-
ware. OpenFlow gives us an early investment in an SDN ecosys-
tem that can leverage a variety of switch/data plane elements. Crit-
ically, SDN/OpenFlow decouples so�ware and hardware evolution:
control plane so�ware becomes simpler and evolves more quickly;
data plane hardware evolves based on programmability and perfor-
mance.
We had several additional motivations for our so�ware de�ned

architecture, including: i) rapid iteration on novel protocols, ii) sim-
pli�ed testing environments (e.g., we emulate our entire so�ware
stack running across the WAN in a local cluster), iii) improved
capacity planning available from simulating a deterministic cen-
tral TE server rather than trying to capture the asynchronous rout-
ing behavior of distributed protocols, and iv) simpli�ed manage-
ment through a fabric-centric rather than router-centricWAN view.
However, we leave a description of these aspects to separate work.

3. DESIGN
In this section, we describe the details of our So�ware De�ned

WAN architecture.

3.1 Overview
Our SDN architecture can be logically viewed in three layers, de-

picted in Fig. �. B� serves multiple WAN sites, each with a num-
ber of server clusters. Within each B� site, the switch hardware
layer primarily forwards tra�c and does not run complex control
so�ware, and the site controller layer consists of Network Control
Servers (NCS) hosting both OpenFlow controllers (OFC) and Net-
work Control Applications (NCAs).
�ese servers enable distributed routing and central tra�c engi-

neering as a routing overlay. OFCs maintain network state based on
NCA directives and switch events and instruct switches to set for-
warding table entries based on this changing network state. For fault
tolerance of individual servers and control processes, a per-site in-

4

How does B4 scale?

Hierarchy

• Not a simple contoller-to-
switch design!

Aggregation

• Node = site (data center)
• Link = 100s of links
• Flow group = {src, dst,

QoS} tuple

Algorithms

• Greedy heuristic
approximation algorithm

Figure �: B� worldwide deployment (����).

not a panacea; we summarize our experience with a large-scale B�
outage, pointing to challenges in both SDN and large-scale network
management. While our approach does not generalize to all WANs
or SDNs, we hope that our experience will inform future design in
both domains.

2. BACKGROUND
Before describing the architecture of our so�ware-de�nedWAN,

we provide an overview of our deployment environment and tar-
get applications. Google’s WAN is among the largest in the Internet,
delivering a range of search, video, cloud computing, and enterprise
applications to users across the planet. �ese services run across a
combination of data centers spread across the world, and edge de-
ployments for cacheable content.

Architecturally, we operate two distinct WANs. Our user-facing
network peers with and exchanges tra�c with other Internet do-
mains. End user requests and responses are delivered to our data
centers and edge caches across this network. �e second network,
B�, provides connectivity among data centers (see Fig. �), e.g., for
asynchronous data copies, index pushes for interactive serving sys-
tems, and end user data replication for availability. Well over ���
of internal application tra�c runs across this network.

We maintain two separate networks because they have di�erent
requirements. For example, our user-facing networking connects
with a range of gear and providers, and hence must support a wide
range of protocols. Further, its physical topology will necessarily be
more dense than a network connecting a modest number of data
centers. Finally, in delivering content to end users, it must support
the highest levels of availability.

�ousands of individual applications run across B�; here, we cat-
egorize them into three classes: i) user data copies (e.g., email, doc-
uments, audio/video �les) to remote data centers for availability/-
durability, ii) remote storage access for computation over inherently
distributed data sources, and iii) large-scale data push synchroniz-
ing state across multiple data centers. �ese three tra�c classes are
ordered in increasing volume, decreasing latency sensitivity, and de-
creasing overall priority. For example, user-data represents the low-
est volume on B�, is the most latency sensitive, and is of the highest
priority.

�e scale of our network deployment strains both the capacity
of commodity network hardware and the scalability, fault tolerance,
and granularity of control available from network so�ware. Internet
bandwidth as a whole continues to grow rapidly [��]. However, our
ownWAN tra�c has been growing at an even faster rate.

Our decision to build B� around So�ware De�ned Networking
and OpenFlow [��] was driven by the observation that we could not
achieve the level of scale, fault tolerance, cost e�ciency, and control
required for our network using traditional WAN architectures. A
number of B�’s characteristics led to our design approach:

● Elastic bandwidth demands: �e majority of our data cen-
ter tra�c involves synchronizing large data sets across sites.
�ese applications bene�t from as much bandwidth as they
can get but can tolerate periodic failures with temporary
bandwidth reductions.● Moderate number of sites: While B�must scale among multi-
ple dimensions, targeting our data center deployments meant
that the total number of WAN sites would be a few dozen.● End application control: We control both the applications and
the site networks connected to B�. Hence, we can enforce rel-
ative application priorities and control bursts at the network
edge, rather than through overprovisioning or complex func-
tionality in B�.● Cost sensitivity: B�’s capacity targets and growth rate led to
unsustainable cost projections. �e traditional approach of
provisioningWAN links at ��-��� (or �-�x the cost of a fully-
utilized WAN) to protect against failures and packet loss,
combined with prevailing per-port router cost, would make
our network prohibitively expensive.

�ese considerations led to particular design decisions for B�,
which we summarize in Table �. In particular, SDN gives us a
dedicated, so�ware-based control plane running on commodity
servers, and the opportunity to reason about global state, yielding
vastly simpli�ed coordination and orchestration for both planned
and unplanned network changes. SDN also allows us to leverage
the raw speed of commodity servers; latest-generation servers are
much faster than the embedded-class processor in most switches,
and we can upgrade servers independently from the switch hard-
ware. OpenFlow gives us an early investment in an SDN ecosys-
tem that can leverage a variety of switch/data plane elements. Crit-
ically, SDN/OpenFlow decouples so�ware and hardware evolution:
control plane so�ware becomes simpler and evolves more quickly;
data plane hardware evolves based on programmability and perfor-
mance.
We had several additional motivations for our so�ware de�ned

architecture, including: i) rapid iteration on novel protocols, ii) sim-
pli�ed testing environments (e.g., we emulate our entire so�ware
stack running across the WAN in a local cluster), iii) improved
capacity planning available from simulating a deterministic cen-
tral TE server rather than trying to capture the asynchronous rout-
ing behavior of distributed protocols, and iv) simpli�ed manage-
ment through a fabric-centric rather than router-centricWAN view.
However, we leave a description of these aspects to separate work.

3. DESIGN
In this section, we describe the details of our So�ware De�ned

WAN architecture.

3.1 Overview
Our SDN architecture can be logically viewed in three layers, de-

picted in Fig. �. B� serves multiple WAN sites, each with a num-
ber of server clusters. Within each B� site, the switch hardware
layer primarily forwards tra�c and does not run complex control
so�ware, and the site controller layer consists of Network Control
Servers (NCS) hosting both OpenFlow controllers (OFC) and Net-
work Control Applications (NCAs).
�ese servers enable distributed routing and central tra�c engi-

neering as a routing overlay. OFCs maintain network state based on
NCA directives and switch events and instruct switches to set for-
warding table entries based on this changing network state. For fault
tolerance of individual servers and control processes, a per-site in-

4

Design Decision Rationale/Bene�ts Challenges
B� routers built from
merchant switch silicon

B� apps are willing to trade more average bandwidth for fault tolerance.
Edge application control limits need for large bu�ers. Limited number of B� sites means
large forwarding tables are not required.
Relatively low router cost allows us to scale network capacity.

Sacri�ce hardware fault tolerance,
deep bu�ering, and support for
large routing tables.

Drive links to ����
utilization

Allows e�cient use of expensive long haul transport.
Many applications willing to trade higher average bandwidth for predictability. Largest
bandwidth consumers adapt dynamically to available bandwidth.

Packet loss becomes inevitable
with substantial capacity loss dur-
ing link/switch failure.

Centralized tra�c
engineering

Use multipath forwarding to balance application demands across available capacity in re-
sponse to failures and changing application demands.
Leverage application classi�cation and priority for scheduling in cooperation with edge rate
limiting.
Tra�c engineering with traditional distributed routing protocols (e.g. link-state) is known
to be sub-optimal [��, ��] except in special cases [��].
Faster, deterministic global convergence for failures.

No existing protocols for func-
tionality. Requires knowledge
about site to site demand and im-
portance.

Separate hardware
from so�ware

Customize routing and monitoring protocols to B� requirements.
Rapid iteration on so�ware protocols.
Easier to protect against common case so�ware failures through external replication.
Agnostic to range of hardware deployments exporting the same programming interface.

Previously untested development
model. Breaks fate sharing be-
tween hardware and so�ware.

Table �: Summary of design decisions in B�.

Figure �: B� architecture overview.

stance of Paxos [�] elects one of multiple available so�ware replicas
(placed on di�erent physical servers) as the primary instance.

�e global layer consists of logically centralized applications (e.g.
an SDN Gateway and a central TE server) that enable the central
control of the entire network via the site-levelNCAs.�e SDNGate-
way abstracts details of OpenFlow and switch hardware from the
central TE server. We replicate global layer applications across mul-
tiple WAN sites with separate leader election to set the primary.

Each server cluster in our network is a logical “Autonomous Sys-
tem” (AS)with a set of IP pre�xes. Each cluster contains a set of BGP
routers (not shown in Fig. �) that peerwith B� switches at eachWAN
site. Even before introducing SDN, we ran B� as a single AS pro-
viding transit among clusters running traditional BGP/ISIS network
protocols. We chose BGP because of its isolation properties between
domains and operator familiarity with the protocol.�e SDN-based
B� then had to support existing distributed routing protocols, both
for interoperability with our non-SDN WAN implementation, and
to enable a gradual rollout.

We considered a number of options for integrating existing rout-
ing protocols with centralized tra�c engineering. In an aggressive
approach, we would have built one integrated, centralized service
combining routing (e.g., ISIS functionality) and tra�c engineering.
We instead chose to deploy routing and tra�c engineering as in-
dependent services, with the standard routing service deployed ini-
tially and central TE subsequently deployed as an overlay. �is sep-

aration delivers a number of bene�ts. It allowed us to focus initial
work on building SDN infrastructure, e.g., the OFC and agent, rout-
ing, etc. Moreover, since we initially deployed our network with no
new externally visible functionality such as TE, it gave time to de-
velop and debug the SDN architecture before trying to implement
new features such as TE.

Perhaps most importantly, we layered tra�c engineering on top
of baseline routing protocols using prioritized switch forwarding ta-
ble entries (§ �). �is isolation gave our network a “big red button”;
faced with any critical issues in tra�c engineering, we could dis-
able the service and fall back to shortest path forwarding. �is fault
recovery mechanism has proven invaluable (§ �).

Each B� site consists of multiple switches with potentially hun-
dreds of individual ports linking to remote sites. To scale, the TE ab-
stracts each site into a single node with a single edge of given capac-
ity to each remote site. To achieve this topology abstraction, all traf-
�c crossing a site-to-site edge must be evenly distributed across all
its constituent links. B� routers employ a custom variant of ECMP
hashing [��] to achieve the necessary load balancing.

In the rest of this section, we describe how we integrate ex-
isting routing protocols running on separate control servers with
OpenFlow-enabled hardware switches. § � then describes how we
layer TE on top of this baseline routing implementation.

3.2 Switch Design
Conventional wisdom dictates that wide area routing equipment

must have deep bu�ers, very large forwarding tables, and hardware
support for high availability. All of this functionality adds to hard-
ware cost and complexity. We posited that with careful endpoint
management, we could adjust transmission rates to avoid the need
for deep bu�ers while avoiding expensive packet drops. Further,
our switches run across a relatively small set of data centers, so
we did not require large forwarding tables. Finally, we found that
switch failures typically result from so�ware rather than hardware
issues. By moving most so�ware functionality o� the switch hard-
ware, we can manage so�ware fault tolerance through known tech-
niques widely available for existing distributed systems.

Even so, the main reason we chose to build our own hardware
was that no existing platform could support an SDN deployment,
i.e., one that could export low-level control over switch forwarding
behavior. Any extra costs from using custom switch hardware are
more than repaid by the e�ciency gains available from supporting
novel services such as centralized TE. Given the bandwidth required

5

What assumptions about traffic?

Design makes what assumption about traffic to
approach 100% utilization on some links?

• High priority traffic is in the minority
• Elastic traffic is the majority (backups, offline data

analytics, ...)

We tolerate high utilization by di�erentiating among di�erent tra�c
classes.

�e two graphs in Fig. �� show tra�c on all links between two
WAN sites. �e top graph shows how we drive utilization close to
���� over a ��-hour period. �e second graph shows the ratio of
high priority to low priority packets, and packet-drop fractions for
each priority. A key bene�t of centralized TE is the ability to mix
priority classes across all edges. By ensuring that heavily utilized
edges carry substantial low priority tra�c, local QoS schedulers can
ensure that high priority tra�c is insulated from loss despite shallow
switch bu�ers, hashing imperfections and inherent tra�c bursti-
ness. Our low priority tra�c tolerates loss by throttling transmis-
sion rate to available capacity at the application level.

(a)

(b)

Figure ��: Utilization and drops for a site-to-site edge.

Site-to-site edge utilization can also be studied at the granular-
ity of the constituent links of the edge, to evaluate B�’s ability to
load-balance tra�c across all links traversing a given edge. Such
balancing is a prerequisite for topology abstraction in TE (§�.�).
Fig. �� shows the uniform link utilization of all links in the site-to-
site edge of Fig. �� over a period of �� hours. In general, the results
of our load-balancing scheme in the �eld have been very encour-
aging across the B� network. For at least ��� of site-to-site edges,
the max:min ratio in link utilization across constituent links is �.��
without failures (i.e., �� from optimal), and �.� with failures. More
e�ective load balancing during failure conditions is a subject of our
ongoing work.

Figure ��: Per-link utilization in a trunk, demonstrating the e�ec-
tiveness of hashing.

7. EXPERIENCE FROM AN OUTAGE
Overall, B� system availability has exceeded our expectations.

However, it has experienced one substantial outage that has been
instructive both inmanaging a largeWAN in general and in the con-
text of SDN in particular. For reference, our public facing network
has also su�ered failures during this period.

�e outage started during a planned maintenance operation, a
fairly complex move of half the switching hardware for our biggest
site from one location to another. One of the new switches was in-
advertently manually con�gured with the same ID as an existing
switch. �is led to substantial link �aps. When switches received
ISIS Link State Packets (LSPs) with the same ID containing di�erent
adjacencies, they immediately �ooded new LSPs through all other
interfaces.�e switcheswith duplicate IDswould alternate respond-
ing to the LSPs with their own version of network topology, causing
more protocol processing.

Recall that B� forwards routing-protocols packets through so�-
ware, from Quagga to the OFC and �nally to the OFA. �e OFC
to OFA connection is the most constrained in our implementation,
leading to substantial protocol packet queueing, growing to more
than ���MB at its peak.

�e queueing led to the next chain in the failure scenario: normal
ISIS Hello messages were delayed in queues behind LSPs, well past
their useful lifetime. �is led switches to declare interfaces down,
breaking BGP adjacencies with remote sites. TE Tra�c transiting
through the site continued to work because switches maintained
their last known TE state. However, the TE server was unable to
create new tunnels through this site. At this point, any concurrent
physical failures would leave the network using old broken tunnels.

With perfect foresight, the solution was to drain all links from
one of the switches with a duplicate ID. Instead, the very reasonable
response was to reboot servers hosting the OFCs. Unfortunately,
the high system load uncovered a latent OFC bug that prevented
recovery during periods of high background load.

�e system recovered a�er operators drained the entire site, dis-
abled TE, and �nally restarted the OFCs from scratch. �e outage
highlighted a number of important areas for SDN andWANdeploy-
ment that remain active areas of work:

�. Scalability and latency of the packet IO path between the
OFC and OFA is critical and an important target for evolving
OpenFlow and improving our implementation. For exam-
ple, OpenFlow might support two communication channels,
high priority for latency sensitive operations such as packet
IO and low priority for throughput-oriented operations such
as switch programming operations. Credit-based�ow control
would aid in bounding the queue buildup. Allowing certain
duplicate messages to be dropped would help further, e.g.,
consider that the earlier of two untransmitted LSPs can sim-
ply be dropped.

�. OFA should be asynchronous and multi-threaded for more
parallelism, speci�cally in a multi-linecard chassis where
multiple switch chips may have to be programmed in parallel
in response to a single OpenFlow directive.

�. We require additional performance pro�ling and reporting.
�erewere a number of “warning signs” hidden in system logs
during previous operations and it was no accident that the
outage took place at our largest B� site, as it was closest to its
scalability limits.

�. Unlike traditional routing control systems, loss of a control
session, e.g., TE-OFC connectivity, does not necessarily in-
validate forwarding state. With TE, we do not automati-
cally reroute existing tra�c around an unresponsive OFC

12

What assumptions about traffic?

Design makes what assumption about traffic to
approach 100% utilization on some links?

• High priority traffic is in the minority
• Elastic traffic is the majority (backups, offline data

analytics, ...)

When would that assumption be violated?

• Google’s user-facing wide area network

