SDN WAN Applications

Brighten Godfrey CS 538 March 1, 2017

Initial "Killer apps"

Cloud virtualization

- Create separate virtual networks for tenants
- Allow flexible placement and movement of VMs

WAN traffic engineering

- Drive utilization to near 100% when possible
- Protect critical traffic from congestion

Key characteristics of the above

- Special-purpose deployments with less diverse hardware
- Existing solutions aren't just annoying, they don't work!

How large online services work

How large online services work

Why multiple data centers?

Data availability

Load balancing

Latency

Local data laws

Hybrid public-private operation

IEEE INFOCOM, 2011

A First Look at Inter-Data Center Traffic Characteristics via Yahoo! Datasets

Yingying Chen¹, Sourabh Jain¹, Vijay Kumar Adhikari¹, Zhi-Li Zhang¹, and Kuai Xu²

¹University of Minnesota-Twin Cities ²Arizona State University

IEEE INFOCOM, 2011

A First Look at Inter-Data Center Traffic Characteristics via Yahoo! Datasets

Yingying Chen¹, Sourabh Jain¹, Vijay Kumar Adhikari¹, Zhi-Li Zhang¹, and Kuai Xu²

¹University of Minnesota-Twin Cities ²Arizona State University

[IMC 2014]

"Back office" web traffic: server-to-server rather than directly communicating with user

[IMC 2014]

% of web traffic that is "back office" in 4 ISP, IXP data sets

Google's WAN (2011)

"B4: Experience with a Globally-Deployed Software Defined WAN"

Jain et al., ACM SIGCOMM 2013

"B4 has been in deployment for three years, now carries more traffic than Google's public facing WAN, and has a higher growth rate."

Problem 1: inefficiency

ACM SIGCOMM, 2013

Achieving High Utilization with Software-Driven WAN

Chi-Yao Hong (UIUC) Srikanth Kandula Ratul Mahajan Ming Zhang Vijay Gill Mohan Nanduri Roger Wattenhofer (ETH)

Microsoft

Time

Problem 2: inflexible sharing

B4 key design decisions

[Jain et al., SIGCOMM 2013]

Separate hardware from software

B4 routers custom-built from merchant silicon

Drive links to 100% utilization

Centralized traffic engineering

Google's B4

"B4: Experience with a Globally-Deployed Software Defined WAN"

Jain et al., ACM SIGCOMM 2013

Google's B4

"B4: Experience with a Globally-Deployed Software Defined WAN" Jain et al., ACM SIGCOMM 2013

Google's B4: view at one site

Google's B4: Traffic engineering

Vs. Semi-Distributed TE

What aspects of B4 would have been difficult with MPLS-based TE such as TeXCP?

What aspects of B4 are similar to TeXCP?

Small group discussion

1 How does B4 scale?

 Subsecond centralized scheduling of more traffic than Google's public WAN serves!

2 What does B4 assume about network's traffic?

- In what environments would these assumptions be violated?
- In what other environments would they be valid?

Hierarchy

 Not a simple contoller-toswitch design!

Figure 2: B4 architecture overview.

Hierarchy

 Not a simple contoller-toswitch design!

Figure 2: B4 architecture overview.

Hierarchy

 Not a simple contoller-toswitch design!

Aggregation

- Node = site (data center)
- Link = 100s of links
- Flow group = {src, dst, QoS} tuple

Figure 2: B4 architecture overview.

Figure 1: B4 worldwide deployment (2011).

Hierarchy

 Not a simple contoller-toswitch design!

Aggregation

- Node = site (data center)
- Link = 100s of links
- Flow group = {src, dst, QoS} tuple

Comment of the control of the contro

Figure 1: B4 worldwide deployment (2011).

Algorithms

 Greedy heuristic approximation algorithm

Figure 2: B4 architecture overview.

What assumptions about traffic?

Design makes what assumption about traffic to approach 100% utilization on some links?

- High priority traffic is in the minority
- Elastic traffic is the majority (backups, offline data analytics, ...)

What assumptions about traffic?

Design makes what assumption about traffic to approach 100% utilization on some links?

- High priority traffic is in the minority
- Elastic traffic is the majority (backups, offline data analytics, ...)

When would that assumption be violated?

Google's user-facing wide area network