
Software-Defined
Networking
Architecture

Brighten Godfrey
CS 538 February 27 2017

slides ©2010-2017 by Brighten Godfrey

The Problem

Networks are complicated

• Just like any computer system
• Worse: it’s distributed
• Even worse: no clean programming APIs, only “knobs and

dials”

http://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-458050.html

http://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-458050.html

Source:
haneke.net

http://haneke.net

The Problem

Networks are complicated

• Just like any computer system
• Worse: it’s distributed
• Even worse: no clean programming APIs, only “knobs and

dials”

Network equipment is proprietary

• Integrated solutions (software, configuration, protocol
implementations, hardware) from major vendors

Result: Hard to innovate and modify networks

Traditional network

Traditional network

device software

device software

device software

device software

device softwaredevice software

protocols

protocols

protocols

protocols

protocols

protocols

Software-defined network

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

Data plane API

Logically centralized
controller

software
abstractions

app app
“Network OS”

Example

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup_user_vlan(dp, user, port, host):
 vlanid = user_to_vlan_function(user)

 # For packets from the user, add a VLAN tag
 attr_out[IN_PORT] = port
 attr_out[DL_SRC] = nox.reverse_resolve(host).mac
 action_out = [(nox.OUTPUT, (0, nox.FLOOD)),
 (nox.ADD_VLAN, (vlanid))]
 install_datapath_flow(dp, attr_out, action_out)

 # For packets to the user with the VLAN tag, remove it
 attr_in[DL_DST] = nox.reverse_resolve(host).mac
 attr_in[DL_VLAN] = vlanid
 action_in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL_VLAN)]
 install_datapath_flow(dp, attr_in, action_in)

nox.register_for_user_authentication(setup_user_vlan)

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

Example

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup_user_vlan(dp, user, port, host):
 vlanid = user_to_vlan_function(user)

 # For packets from the user, add a VLAN tag
 attr_out[IN_PORT] = port
 attr_out[DL_SRC] = nox.reverse_resolve(host).mac
 action_out = [(nox.OUTPUT, (0, nox.FLOOD)),
 (nox.ADD_VLAN, (vlanid))]
 install_datapath_flow(dp, attr_out, action_out)

 # For packets to the user with the VLAN tag, remove it
 attr_in[DL_DST] = nox.reverse_resolve(host).mac
 attr_in[DL_VLAN] = vlanid
 action_in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL_VLAN)]
 install_datapath_flow(dp, attr_in, action_in)

nox.register_for_user_authentication(setup_user_vlan)

Match specific set of
packets

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

Example

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup_user_vlan(dp, user, port, host):
 vlanid = user_to_vlan_function(user)

 # For packets from the user, add a VLAN tag
 attr_out[IN_PORT] = port
 attr_out[DL_SRC] = nox.reverse_resolve(host).mac
 action_out = [(nox.OUTPUT, (0, nox.FLOOD)),
 (nox.ADD_VLAN, (vlanid))]
 install_datapath_flow(dp, attr_out, action_out)

 # For packets to the user with the VLAN tag, remove it
 attr_in[DL_DST] = nox.reverse_resolve(host).mac
 attr_in[DL_VLAN] = vlanid
 action_in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL_VLAN)]
 install_datapath_flow(dp, attr_in, action_in)

nox.register_for_user_authentication(setup_user_vlan)

Match specific set of
packets

Construct action

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

Example

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup_user_vlan(dp, user, port, host):
 vlanid = user_to_vlan_function(user)

 # For packets from the user, add a VLAN tag
 attr_out[IN_PORT] = port
 attr_out[DL_SRC] = nox.reverse_resolve(host).mac
 action_out = [(nox.OUTPUT, (0, nox.FLOOD)),
 (nox.ADD_VLAN, (vlanid))]
 install_datapath_flow(dp, attr_out, action_out)

 # For packets to the user with the VLAN tag, remove it
 attr_in[DL_DST] = nox.reverse_resolve(host).mac
 attr_in[DL_VLAN] = vlanid
 action_in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL_VLAN)]
 install_datapath_flow(dp, attr_in, action_in)

nox.register_for_user_authentication(setup_user_vlan)

Match specific set of
packets

Construct action

Install (match, action)
in a specific switch

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

Example

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup_user_vlan(dp, user, port, host):
 vlanid = user_to_vlan_function(user)

 # For packets from the user, add a VLAN tag
 attr_out[IN_PORT] = port
 attr_out[DL_SRC] = nox.reverse_resolve(host).mac
 action_out = [(nox.OUTPUT, (0, nox.FLOOD)),
 (nox.ADD_VLAN, (vlanid))]
 install_datapath_flow(dp, attr_out, action_out)

 # For packets to the user with the VLAN tag, remove it
 attr_in[DL_DST] = nox.reverse_resolve(host).mac
 attr_in[DL_VLAN] = vlanid
 action_in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL_VLAN)]
 install_datapath_flow(dp, attr_in, action_in)

nox.register_for_user_authentication(setup_user_vlan)

Match specific set of
packets

Construct action

Install (match, action)
in a specific switch

Common primitives:

• Match packets, execute actions
(rewrite, forward packet)

• Topology discovery
• Monitoring

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

Evolution of SDN

[Graphic: José-Manuel Benitos]

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

Logically centralized
controller

software
abstractions

app app
“Network OS”

Flexible Data Planes

Label switching / MPLS (1997)

• “Tag Switching Architecture Overview”, [Rekhter, Davie,
Rose, Swallow, Farinacci, Katz, Proc. IEEE, 1997]

• Set up explicit paths for classes of traffic

Active Networks (1999)

• Packet header carries (pointer to) program code

Logically Centralized Control

Routing Control Platform (2005)

• [Caesar, Caldwell, Feamster, Rexford, Shaikh, van der
Merwe, NSDI 2005]

• Centralized computation of BGP routes, pushed to
border routers via iBGP

RCP�

eBGP�
iBGP�

P�h�y�s�i�c�a�l�
P�e�e�r�i�n�g�

Figure 1: Routing Control Platform (RCP) in an AS

the same BGP route that its clients would have chosen
in a full-mesh configuration. Unfortunately, the routers
along a path through the AS may be assigned differ-
ent BGP routes from different route reflectors, leading
to inconsistencies [5]. These inconsistencies can cause
protocol oscillation [6, 7, 8] and persistent forwarding
loops [6]. To prevent these problems, operators must en-
sure that route reflectors and their clients have a consis-
tent view of the internal topology, which requires config-
uring a large number of routers as route reflectors. This
forces large backbone networks to have dozens of route
reflectors to reduce the likelihood of inconsistencies.

1.2 Routing Control Platform (RCP)

RCP provides both the intrinsic correctness of a full-
mesh iBGP configuration and the scalability benefits of
route reflectors. RCP selects BGP routes on behalf of the
routers in an AS using a complete view of the available
routes and IGP topology. As shown in Figure 1, RCP
has iBGP sessions with each of the routers; these ses-
sions allow RCP to learn BGP routes and to send each
router a routing decision for each destination prefix. Un-
like a route reflector, RCP may send a different BGP
route to each router. This flexibility allows RCP to as-
sign each router the route that it would have selected in
a full-mesh configuration, while making the number of
iBGP sessions at each router independent of the size of
the network. We envision that RCP may ultimately ex-
change interdomain routing information with neighbor-
ing domains, while still using iBGP to communicate with
its own routers. Using the RCP to exchange reachability
information across domains would enable the Internet’s
routing architecture to evolve [1].

To be a viable alternative to today’s iBGP solutions,
RCP must satisfy two main design goals: (i) consis-
tent assignment of routes even when the functionality is
replicated and distributed for reliability and (ii) fast re-
sponse to network events, such as link failures and exter-
nal BGP routing changes, even when computing routes
for a large number of destination prefixes and routers.
This paper demonstrates that RCP can be made fast and
reliable enough to supplant today’s iBGP architectures,

without requiring any changes to the implementation of
the legacy routers. After a brief overview of BGP rout-
ing in Section 2, Section 3 presents the RCP architec-
ture and describes how to compute consistent forward-
ing paths, without requiring any explicit coordination be-
tween the replicas. In Section 4, we describe a proto-
type implementation, built on commodity hardware, that
can compute and disseminate routing decisions for a net-
work with hundreds of routers. Section 5 demonstrates
the effectiveness of our prototype by replaying BGP and
OSPF messages from a large backbone network; we also
discuss the challenges of handling OSPF-induced BGP
routing changes and evaluate one potential solution. Sec-
tion 6 summarizes the contributions of the paper.

1.3 Related Work
We extend previous work on route monitoring [9, 10] by
building a system that also controls the BGP routing de-
cisions for a network. In addition, RCP relates to re-
cent work on router software [11, 12, 13], including the
proprietary systems used in today’s commercial routers;
in contrast to these efforts, RCP makes per-router rout-
ing decisions for an entire network, rather than a single
router. Our work relates to earlier work on applying rout-
ing policy at route servers at the exchange points [14],
to obviate the need for a full mesh of eBGP sessions;
in contrast, RCP focuses on improving the scalability
and correctness of distributing and selecting BGP routes
within a single AS. The techniques used by the RCP for
efficient storage of the per-router routes are similar to
those employed in route-server implementations [15].

Previous work has proposed changes to iBGP that pre-
vent oscillations [16, 7]; unlike RCP, these other pro-
posals require significant modifications to BGP-speaking
routers. RCP’s logic for determining the BGP routes for
each router relates to previous research on network-wide
routing models for traffic engineering [17, 18]; RCP fo-
cuses on real-time control of BGP routes rather than
modeling the BGP routes in today’s routing system. Pre-
vious work has highlighted the need for a system that
has network-wide control of BGP routing [1, 2]; in this
paper, we present the design, implementation, and eval-
uation of such a system. For an overview of architec-
ture and standards activities on separating routing from
routers, see the related work discussions in [1, 2].

2 Interoperating With Existing Routers

This section presents an overview of BGP routing inside
an AS and highlights the implications on how RCP must
work to avoid requiring changes to the installed base of
IP routers.

Logically Centralized Control

Routing Control Platform (2005)

4D architecture (2005)

• A Clean Slate 4D Approach to Network Control and
Management [Greenberg, Hjalmtysson, Maltz, Myers,
Rexford, Xie, Yan, Zhan, Zhang, CCR Oct 2005]

• Logically centralized “decision plane” separated from
data plane

Data

Dissemination

Decision

Discovery

network−level objectives

direct
control

network−wide
views

Figure 3: New 4D architecture with network-level objectives,
network-wide views, and direct control

3.2 New 4D Network Architecture
Although the three principles could be satisfied in many ways,

we have deliberately made the 4D architecture an extreme design
point where all control and management decisions are made in a
logically centralized fashion by servers that have complete control
over the network elements. The routers and switches only have
the ability to run network discovery protocols and accept explicit
instructions that control the behavior of the data plane, resulting in
network devices that are auto-configurable. Our architecture has
the following four components, as illustrated in Figure 3:
Decision plane: The decision plane makes all decisions driv-

ing network control, including reachability, load balancing, access
control, security, and interface configuration. Replacing today’s
management plane, the decision plane operates in real time on a
network-wide view of the topology, the traffic, and the capabili-
ties and resource limitations of the routers/switches. The decision
plane uses algorithms to turn network-level objectives (e.g., reacha-
bility matrix, load-balancing goals, and survivability requirements)
directly into the packet-handling state that must be configured into
the data plane (e.g., forwarding table entries, packet filters, queuing
parameters). The decision plane consists of multiple servers called
decision elements that connect directly to the network.
Dissemination plane: The dissemination plane provides a ro-

bust and efficient communication substrate that connects routers/switches
with decision elements. While control information may traverse
the same set of physical links as the data packets, the dissemination
paths are maintained separately from the data paths so they can
be operational without requiring configuration or successful estab-
lishment of paths in the data plane. In contrast, in today’s networks,
control and management data are carried over the data paths, which
need to be established by routing protocols before use. The dissem-
ination plane moves management information created by the deci-
sion plane to the data plane and state identified by the discovery
plane to the decision plane, but does not create state itself.
Discovery plane: The discovery plane is responsible for discov-

ering the physical components in the network and creating logi-
cal identifiers to represent them. The discovery plane defines the
scope and persistence of the identifiers, and carries out the au-
tomatic discovery and management of the relationships between
them. This includes box-level discovery (e.g., what interfaces are
on this router? How many FIB entries can it hold?), neighbor dis-
covery (e.g., what other routers does this interface connect to?),
and discovery of lower-layer link characteristics (e.g., what is the
capacity of the interface?). The decision plane uses the information
learned from the discovery plane to construct network-wide views.
In contrast, in today’s IP networks, the only automatic mechanism
is neighbor discovery between two preconfigured and adjacent IP
interfaces; physical device discovery and associations between en-
tities are driven by configuration commands and external inventory

databases.
Data plane: The data plane handles individual packets based on

the state that is output by the decision plane. This state includes
the forwarding table, packet filters, link-scheduling weights, and
queue-management parameters, as well as tunnels and network ad-
dress translation mappings. The data plane may also have fine-
grain support for collecting measurements [9] on behalf of the dis-
covery plane.
The 4D architecture embodies our three principles. The decision-

plane logic operates on a network-wide view of the topology and
traffic, with the help of the discovery plane in collecting the mea-
surement data, to satisfy network-level objectives. The decision
plane has direct control over the operation of the data plane, obvi-
ating the need to model and invert the actions of the control plane.
Pulling much of the control state and logic out of the routers en-
ables both simpler protocols, which do not have to embed decision-
making logic, and more powerful decision algorithms for imple-
menting sophisticated goals.

3.3 Advantages of the 4D Architecture
Our 4D architecture offers several important advantages over to-

day’s division of functionality:
Separate networking logic from distributed systems issues:

The 4D architecture does not and cannot eliminate all distributed
protocols, as networks fundamentally involve routers/switches dis-
tributed in space. Rather, the 4D proposes separating the logic that
controls the network, such as route computation, from the proto-
cols that move information around the network. This separation
creates an architectural force opposing the box-centric nature of
protocol design and device configuration that causes so much com-
plexity today. The 4D tries to find the interfaces and functionality
we need to manage complexity—those that factor out issues that are
not unique to networking and enable the use of existing distributed
systems techniques and protocols to solve those problems.
Higher robustness: By simplifying the state and logic for net-

work control, and ensuring the internal consistency of the state,
our architecture greatly reduces the fragility of the network. The
4D architecture raises the level of abstraction for managing the
network, allowing network administrators to focus on specifying
network-level objectives rather than configuring specific protocols
and mechanisms on individual routers and switches. Network-wide
views provide a conceptually-appealing way for people and sys-
tems to reason about the network without regard for complex pro-
tocol interactions among a group of routers/switches. Moving the
state and logic out of the network elements also facilitates the cre-
ation of new, more sophisticated algorithms for computing the data-
plane state that are easier to maintain and extend.
Better security: Security objectives are inherently network-level

goals. For example, the decision plane can secure the network
perimeter by installing packet filters on all border routers. Man-
aging network-level objectives, rather than the configuration of in-
dividual routers, reduces the likelihood of configuration mistakes
that can compromise security.
Accommodating heterogeneity: The same 4D architecture can

be applied to different networking environments but with customized
solutions. For example, in an ISP backbone with many optimiza-
tion criteria and high reliability requirements, the decision plane
may consist of several high-end servers deployed in geographi-
cally distributed locations. A data-center environment with Eth-
ernet switches may require only a few inexpensive PCs, and still
achieve far more sophisticated capabilities (e.g., traffic engineering
with resilience) than what spanning tree or static VLAN configura-
tion can provide today.

Logically Centralized Control

Routing Control Platform (2005)

4D architecture (2005)

Ethane (2007)

• [Casado, Freedman, Pettit, Luo, McKeown, Shenker,
SIGCOMM 2007]

• Centralized controller enforces enterprise network
Ethernet forwarding policy using existing hardware

Logically Centralized Control

Routing Control Platform (2005)

4D architecture (2005)

Ethane (2007)

• [Casado, Freedman, Pettit, Luo, McKeown, Shenker,
SIGCOMM 2007]

• Centralized controller enforces enterprise network
Ethernet forwarding policy using existing hardware

Switch has been configured with the Controller’s credentials and
theController with theSwitches’ credentials.
If aSwitch findsashorter path to theController, it attempts two-

way authentication with it before advertising that path as a valid
route. Therefore, theminimum spanning tree grows radially from
theController, hop-by-hop aseach Switch authenticates.
Authentication isdoneusing thepreconfigured credentials to en-

sure that amisbehaving nodecannot masqueradeas theController
or another Switch. If authentication is successful, the Switch cre-
atesan encrypted connectionwith theController that isused for all
communication between thepair.
By design, theController knows theupstream Switch and phys-

ical port to which each authenticating Switch is attached. After a
Switch authenticates and establishes a secure channel to the Con-
troller, it forwardsall packets it receives for which it doesnot have
aflow entry to theController, annotated with the ingressport. This
includes the traffic of authenticating Switches.
Therefore, theController canpinpoint theattachment point to the

spanning tree of all non-authenticated Switches and hosts. Once
a Switch authenticates, the Controller will establish a flow in the
network between itself and theSwitch for thesecurechannel.

4. THE POL-ETH POLICY LANGUAGE
Pol-Eth is a language for declaring policy in an Ethanenetwork.

While Ethane doesn’ t mandate a particular language, we describe
Pol-Eth as an example, to illustrate what’s possible. We have im-
plemented Pol-Eth and use it in our prototypenetwork.

4.1 Overview
InPol-Eth, network policy isdeclared asaset of rules, each con-

sisting of acondition and acorresponding action. For example, the
rule to specify that user bob is allowed to communicate with the
web server (using HTTP) is the following:

[(usrc="bob")^(protocol="http")^(hdst="websrv")]:allow;
Conditions. Conditions are a conjunction of zero or more pred-
icates which specify the properties a flow must have in order for
the action to be applied. From the preceding example rule, if the
user initiating the flow is “bob” and the flow protocol is “HTTP”
and theflow destination ishost “websrv,” then theflow isallowed.
The left hand sideof apredicatespecifies thedomain, and theright
hand side gives the entities to which it applies. For example, the
predicate (usrc=“bob”) applies to all flows in which the source
is user bob. Valid domains include {usrc, udst, hsrc, hdst, apsrc,
apdst, protocol} , which respectively signify the user, host, and ac-
cesspoint sourcesand destinationsand theprotocol of theflow.
In Pol-Eth, the values of predicates may include single names

(e.g., “bob”), list of names (e.g., [“bob” ,“ linda”]), or group inclu-
sion (e.g., in(“workstations”)). All namesmust be registered with
theController or declared asgroups in thepolicy file, asdescribed
below.

Actions. Actions include allow, deny, waypoints, and outbound-
only (for NAT-like security). Waypoint declarations include a list
of entities to route the flow through, e.g., waypoints(“ids”,“web-
proxy”).

4.2 Rule and Action Precedence
Pol-Eth rules are independent and don’ t contain an intrinsic or-

dering; thus, multiple rules with conflicting actions may be satis-
fied by thesameflow. Conflictsareresolved by assigning priorities
based on declaration order. If one ruleprecedesanother in thepol-
icy file, it isassigned ahigher priority.

Groups—
desktops= ["griffin","roo"];
laptops= ["glaptop","rlaptop"];
phones= ["gphone","rphone"];
server = ["http_server","nfs_server"];
private= ["desktops","laptops"];
computers= ["private","server"];
students= ["bob","bill","pete"];
profs= ["plum"];
group = ["students","profs"];
waps= ["wap1","wap2"];
%%
#Rules—
[(hsrc=in("server")^(hdst=in("private"))] : deny;
Do not allow phonesand privatecomputers to communicate
[(hsrc=in("phones")^(hdst=in("computers"))] : deny;
[(hsrc=in("computers")^(hdst=in("phones"))] : deny;
NAT-likeprotection for laptops
[(hsrc=in("laptops")] : outbound-only;
No restrictionson desktopscommunicating with each other
[(hsrc=in("desktops")^(hdst=in("desktops"))] : allow;
For wireless, non-groupmemberscan usehttp through
aproxy. Groupmembershaveunrestricted access.
[(apsrc=in("waps"))^(user=in("group"))] :allow;
[(apsrc=in("waps"))^(protocol="http)] : waypoints("http-proxy");
[(apsrc=in("waps"))] : deny;
[]: allow; # Default-on: by default allow flows

Figure 4: A sample policy file using Pol-Eth

Unfortunately, in today’smulti-user operating systems, it is dif-
ficult from a network perspective to attribute outgoing traffic to a
particular user. InEthane, if multipleusersarelogged into thesame
machine(and not identifiable fromwithin thenetwork), Ethaneap-
plies the least restrictive action to each of the flows. This is an
obvious relaxation of the security policy. To address this, we are
exploring integration with trusted end-host operating systems to
provide user-isolation and identification (for example, by provid-
ing each user with avirtual machinehaving auniqueMAC).

4.3 Policy Example
Figure 4 contains a derivative of the policy which governs con-

nectivity for our university deployment. Pol-Eth policy filesconsist
of two parts—group declarations and rules—separated by a ‘%%’
delimiter. In this policy, all flows which do not otherwise match
a rule are permitted (by the last rule). Servers are not allowed to
initiateconnections to the rest of thenetwork, providing protection
similar to DMZs today. Phones and computers can never commu-
nicate. Laptops are protected from inbound flows (similar to the
protectionprovidedby NAT), whileworkstationscancommunicate
with each other. Guest users from wirelessaccesspointsmay only
use HTTP and must go through a web proxy, while authenticated
usershaveno such restrictions.

4.4 Implementation
Given how frequently new flows are created—and how fast de-

cisions must be made—it is not practical to interpret the network
policy. Instead, we need to compile it. But compiling Pol-Eth is
non-trivial because of the potentially huge namespace in the net-
work: Creating a lookup table for all possibleflowsspecified in the
policy would be impractical.
Our Pol-Eth implementation combines compilation and just-in-

time creation of search functions. Each rule is associated with the
principles to which it applies. This isaone-timecost, performed at
startup and on each policy change.
Thefirst timeasender communicateswith anew receiver, acus-

tom permission check function iscreated dynamically to handleall

Logically Centralized Control

Routing Control Platform (2005)

4D architecture (2005)

Ethane (2007)

OpenFlow (2008)

• [McKeown, Anderson, Balakrishnan, Parulkar, Peterson,
Rexford, Shenker, Turner, CCR 2008]

• Thin, standardized interface to data plane
• General-purpose programmability at controller

Evolution of SDN:

Routing Control Platform (2005)

4D architecture (2005)

Ethane (2007)

OpenFlow (2008)

NOX (2008)

• [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker,
CCR 2008]

• First OF controller: centralized network view provided
to multiple control apps as a database

• Behind the scenes, handles state collection & distribution

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

We argue for an affirmative answer to this question via proof-
by-example; herein we describe a network operating system
called NOX (freely available at http://www.noxrepo.org)
that achieves the goals outlined above.

Given the space limitations, we only give a cursory descrip-
tion of NOX, starting with an overview (Section 2), followed
by a sketch of NOX’s programmatic interface (Section 3) and
a discussion of a few NOX-based management applications
(Section 4). We discuss related work in Section 5, but be-
fore going further we want to emphasize NOX’s intellectual
indebtedness to the 4D project [3, 8, 14] and to the SANE
[7] and Ethane [6] designs. NOX is also similar in spirit, but
complementary in emphasis, to the Maestro system [4] which
was developed in parallel.

2 NOX Overview
We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.

Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in a
database running on one of the servers).4 The network view
contains the results of NOX’s network observations; appli-
cations use this state to make management decisions. For
NOX to control network traffic, it must manipulate network
switches; for this purpose we have chosen to use switches
that support the OpenFlow (OF) switch abstraction [1, 12],
which we describe later in this section.

Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
4For resilience, this database can be replicated, but these
replicas must be kept consistent (as can be done using tradi-
tional replicated database techniques).

observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, subsequent packets with the same header are
treated in the same way. With this flow-based granularity, we
were able to build a system that can scale to large networks
while still providing flexible control.

Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.

Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and

5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

Evolution of SDN

Industry explosion (~2010+)

Opportunities

Open data plane interface

• Hardware: Easier for operators to change hardware, and
for vendors to enter market

• Software: Can more directly access device behavior

Centralized controller

• Direct programmatic control of network

Software abstractions on the controller

• Solve dist. sys. problems once, then just write algorithms
• Libraries/languages to help programmers write net apps
• Systems to write high level policy instead of

programming

Opportunities

Open data plane interface

• Hardware: easier for operators to change hardware, and
for vendors to enter market

• Software: can finally directly access device behavior

Centralized controller

• Direct programmatic control of network

Software abstractions on the controller

• Solve distributed systems problems only once, then just
write algorithms

• Libraries/languages to help programmers write net apps

All active areas of current research!

Challenges for SDN

Performance and scalability

Distributed system challenges still present

• Resilience of “logically centralized” controller
• Imperfect knowledge of network state
• Consistency issues between controllers

Challenges for SDN

Reaching agreement on data plane protocol

• OpenFlow? NFV functions? Whitebox switching?
Programmable data planes?

Devising the right control abstractions

• Programming OpenFlow: far too low level
• But what are the right high-level abstractions to cover

important use cases?

Q: When do you control the net?

When does the SDN controller send instructions to
switches?

• ...in the OpenFlow paper?
• ...other options?

Q: When do you control the net?

When does the SDN controller send instructions to
switches?

• ...in the OpenFlow paper? Reactive (when packet arrives
needing forwarding rule)

• ...other options? Proactive (in advance of need)

Q: How does SDN affect reliability?

More bugs in the network, or fewer?

From SDN to Fabric

[Casado,Koponen,Shenker,Tootoonchian, HotSDN’12]

Separate interfaces:

• Host-network (external-to-internal data plane)
• Operator-network
• Packet-switch (internal data plane)

between practicality (support matching on standard headers)
and generality (match on all headers). However, this requires
switch hardware to support lookups over hundreds of bits;
in contrast, core forwarding with MPLS need only match
over some tens of bits. Thus, with respect to the forwarding
hardware alone, an OpenFlow switch is clearly far from the
simplest design achievable.

• Second, it does not provide sufficient flexibility. We expect
host requirements to continue to evolve, leading to increasing
generality in the Host-Network interface, which in turn means
increasing the generality in the matching allowed and the
actions supported. In the current OpenFlow design paradigm,
this additional generality must be present on every switch. It
is inevitable that, in OpenFlow’s attempt to find a sweet spot
in the practicality vs generality tradeoff, needing functionality
to be present on every switch will bias the decision towards a
more limited feature set, reducing OpenFlow’s generality.

• Third, it unnecessarily couples the host requirements to the
network core behavior. This point is similar to but more
general than the point above. If there is a change in the
external network protocols (e.g., switching from IPv4 to IPv6)
which necessitates a change in the matching behavior (because
the matching must be done over different fields), this requires
a change in the packet matching even in the network core.

Thus, our goal is to extend the SDN model in a way that avoids
these limitations yet still retains SDN’s great control plane flexibility.
To this end, it must retain its programmatic control plane interface
(so that it provides a general Operator-Network interface), while
cleanly distinguishing between the Host-Network and Packet-Switch
interfaces (as is done in MPLS). We now describe such a design.

3 Extending SDN
3.1 Overview
In this section we explore how the SDN architectural framework
might be extended to better meet the goals listed in the introduction.
Our proposal is centered on the introduction of a new conceptual
component which we call the “network fabric”. While a common
term, for our purposes we limit the definition to refer to a collection
of forwarding elements whose primary purpose is packet transport.
Under this definition, a network fabric does not provide more
complex network services such as filtering or isolation.

The network then has three kinds of components (see Figure
1): hosts, which act as sources and destinations of packets; edge
switches, which serve as both ingress and egress elements; and the
core fabric. The fabric and the edge are controlled by (logically)
separate controllers, with the edge responsible for complex network
services while the fabric only provides basic packet transport. The
edge controller handles the Operator-Network interface; the ingress
edge switch, along with its controller, handle the Host-Network
interface; and the switches in the fabric are where the Packet-Switch
interface is exercised.

The idea of designing a network around a fabric is well understood
within the community. In particular, there are many examples of
limiting the intelligence to the network edge and keeping the core
simple.4 Thus, our goal is not to claim that a network fabric is
4This is commonly done for example in datacenters where
connectivity is provided by a CLOS topology running an IGP and
ECMP. It is also reflected in WANs where interdomain policies are
implemented at the provider edge feeding packets into a simpler
MPLS core providing connectivity across the operator network.

Fabric
Elements

Fabric Controller

Src
Host

Dst
Host

Edge Controller

Ingress
Edge Switch

Egress
Edge Switch

Figure 1: The source host sends a packet to an edge switch, which
after providing network services, sends it across the fabric for the
egress switch to deliver it to the destination host. Neither host sees
any internals of the fabric. The control planes of the edge and fabric
are similarly decoupled.

a new concept but rather we believe it should be included as an
architectural building block within SDN. We now identify the key
properties for these fabrics.

Separation of Forwarding. In order for a fabric to remain decou-
pled from the edge it should provide a minimal set of forwarding
primitives without exposing any internal forwarding mechanisms
that would be visible from the end system if the fabric were
replaced. We describe this in more detail below but we believe
it is particularly important that external addresses are not used in
forwarding decisions within the fabric both to simplify the fabric
forwarding elements, but also to allow for independent evolution of
fabric and edge.

Separation of Control. While there are multiple reasons to keep
the fabric and the edge’s control planes separate, the one we would
like to focus on is that they are solving two different problems. The
fabric is responsible for packet transport across the network, while
the edge is responsible for providing more semantically rich services
such as network security, isolation, and mobility. Separating the
control planes allows them each to evolve separately, focusing on
the specifics of the problem. Indeed, a good fabric should be able
to support any number of intelligent edges (even concurrently) and
vice versa.

Note that fabrics offer some of the same benefits as SDN.
In particular, if the fabric interfaces are clearly defined and
standardized, then fabrics offer vendor independence, and (as we
describe in more detail later) limiting the function of the fabric to
forwarding enables simpler switch implementations.

3.2 Fabric Service Model

Under our proposed model, a fabric is a system component which
roughly represents raw forwarding capacity. In theory, a fabric
should be able to support any number of edge designs including
different addressing schemes and policy models. The reverse should
also be true; that is, a given edge design should be able to take
advantage of any fabric regardless of how it was implemented
internally.

The design of a modern router/switch chassis is a reasonably
good analogy for an SDN architecture that includes a fabric. In
a chassis, the line cards contain most of the intelligence and they
are interconnected by a relatively dumb, but very high bandwidth,
backplane. Likewise, in an SDN architecture with a fabric, the edge
will implement the network policy and manage end-host addressing,
while the fabric will effectively interconnect the edge as fast and
cheaply as possible.

The chassis backplane therefore provides a reasonable starting

87

Fabric discussion

Q: “Host-Network and Packet-Switch interfaces were
identical” in the Internet. How is this a simplification?

Q: Does OF meet the net’s goals of:

• Simplified hardware
• Vendor-neutral hardware
• “Future-proof” hardware
• Flexible software

Q: Drivers of early deployment?

What drove early deployment of OpenFlow & SDN?

Access control in enterprises? Net research?

• Good ideas, are already valuable
• But not the “killer apps” for initial large-scale deployment

The first “Killer Apps” for SDN

Inter-datacenter traffic engineering

• Drive utilization to near 100% when possible
• Protect critical traffic from congestion

Cloud virtualization

• Create separate virtual networks for tenants
• Allow flexible placement and movement of VMs

Key characteristics of the above use cases

• Special-purpose deployments with less diverse hardware
• Existing solutions aren’t just inconvenient, they don’t work!

Next up

Wednesday: SDN in the WAN

Monday: SDN in the virtualized data center

