Software-Defined
Networking

Architecture

Brighten Godfrey
CS 538 February 27 2017

The Problem

Networks are complicated

® Just like any computer system
® Worse:it’s distributed

® Even worse: no clean programming APls, only “knobs and
dials™

Change
Initiator

Change Change

(Pian Change>< et

Teat and
Validate Change

d

y

l

Create Change

Proposal {optional)

Document RFC

l

Create RFC

!

Technical Review
and Signoff

Management Implementation
:) 4 0 =
3 @ -
+Y
Assess and
| Evaluate RFC B pmmm
|
| ¥
| N Y 3
| £ #| PBnUpdates | g g
| T
: : 5
(Impement MGH 8
&
3
Y oM
SKCESST > et g
N &)
Implementation |« | Back Out Change | —sgfeiie-
ReIiew
(OloseChengD e
e

http://www.cisco.com/c/en/us/products/collateral/services/high-availability/white _paper_c11-458050.html

http://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-458050.html

 —
[I[I[Iﬂ[l[l.

http://haneke.net

Networks are complicated

® Just like any computer system
® Worse:it’s distributed
® Even worse: no clean programming APls, only “knobs and

dials”

Network equipment is proprietary

® [ntegrated solutions (software, configuration, protocol
implementations, hardware) from major vendors

Result: Hard to innovate and modify networks

Traditional network

hostname bgBdA
password zebra
I

router bgp 8000
bgp router-id 10.1.4.2

! for the 1ink between A and B
neighbor 10.1.2.3 remote-as 8000
neighbor 10.1.2.3 update-source 100

network 10.0.0.0/7

! for the 1ink between A and C
neighbor 10.1.3.3 remote-as 7000
neighbor 10.1.3.3 ebgp-multiho
neighbor 10.1. 3.3 next-hop-sel
neighbor 10.1.3.3 route-map PP out

! for link between A and D
neighbor 10.1.4.3 remote-as 6000
neighbor 10.1.4.3 ebgp-multiho
neighbor 10.1.4.3 next-hop-sel
neighbor 10.1.4.3 route-map TagD in

! route update filtering
ip community-1ist 1 permit 8000:1000

raditional network

device software

: device software
device software protocols

protocols device software plgeldelelol N

device software

protocols

Software-defined network

mﬂ “Network OS”
software
abstractions

Logically centralized
controller

Data plane API

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port
attr out[DL SRC] = nox.reverse resolve(host).mac
action out = [(nox.OUTPUT, (0, nox.FLOOD)),

(nox.ADD VLAN, (vlanid))]
install datapath flow(dp, attr out, action out)

For packets to the user with the VLAN tag, remove it

attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL VLAN)]

install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port Match specific set of
attr out[DL SRC] = nox.reverse resolve(host).mac packets
action out = [(nox.OUTPUT, (0, nox.FLOOD)),

(nox.ADD VLAN, (vlanid))]
install datapath flow(dp, attr out, action out)

For packets to the user with the VLAN tag, remove it

attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL VLAN)]

install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port Match specific set of
attr out[DL SRC] = nox.reverse resolve(host).mac packets
action out = [(nox.OUTPUT, (0, nox.FLOOD)), Construct action

(nox.ADD VLAN, (vlanid))]
install datapath flow(dp, attr out, action out)

For packets to the user with the VLAN tag, remove it

attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL VLAN)]

install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port Match specific set of

attr out[DL SRC] = nox.reverse resolve(host).mac packets

action out = [(nox.OUTPUT, (0, nox.FLOOD)), Construct action
(nox.ADD VLAN, (vlanid))]

install datapath flow(dp, attr out, action out) Install (match,action)

in a specific switch
For packets to the user with the VLAN tag, remove it
attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL VLAN)]
install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

From NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)

For packets from the user, add a VLAN tag

attr out[IN PORT] = port Match specific set of

attr out[DL SRC] = nox.reverse resolve(host).mac packets

action out = [(nox.OUTPUT, (0, nox.FLOOD)), Construct action
(nox.ADD VLAN, (vlanid))]

install datapath flow(dp, attr out, action out) Install (match,action)

in a specific switch

For packets to the user with the VLAN
attr in[DL DST] = nox.reverse resolve(h Common primitives:
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLooD " Match packets, execute actions
install datapath flow(dp, attr in, acti (rewrite forward packet)
B B - - Topology discovery
nox.register for user authentication(setup =~ Hionitoring

T — R

Evolution of SDN

“Network OS”
software
abstractions
w_ Logically centralized
controller

[Graphic: José-Manuel Benitos]

Flexible Data Planes

Label switching / MPLS (1997)

e “Tag Switching Architecture Overview”, [Rekhter, Davie,
Rose, Swallow, Farinacci, Katz, Proc. IEEE, 1997]
e Set up explicit paths for classes of traffic

Active Networks (1999)

® Packet header carries (pointer to) program code

Logically Centralized Control

Routing Control Platform (2005)

e [Caesar, Caldwell, Feamster, Rexford, Shaikh, van der
Merwe, NSDI 2005]

® Centralized computation of BGP routes, pushed to
border routers via iBGP

. RCP |

Routing Control Platform (2005)

4D architecture (2005)

® A Clean Slate 4D Approach to Network Control and
Management | Greenberg, Hjalmtysson, Maltz, Myers,
Rexford, Xie,Yan, Zhan, Zhang, CCR Oct 2005]

® | ogically centralized “decision plane” separated from
data Plan e network—leiel objectives

A Decision

) 1SS ation .
network—wide direct

Routing Control Platform (2005)
4D architecture (2005)
Ethane (2007)

e [Casado, Freedman, Pettit, Luo, McKeown, Shenker,

SIGCOMM 2007}
® Centralized controller enforces enterprise network

Ethernet forwarding policy using existing hardware

Routing Control Platform (2005)

4D architecture (2005)
Ethane (2007)

® [Casado, Freedman, Pettit, L
SIGCOMM 2007/]

® (Centralized controller enfo
Ethernet forwarding policy

Groups —

desktops = ["griffin","ro0"];

laptops = ["glaptop"," rlaptop"];

phones = ["gphone","rphone"];

server = ["http_server","nfs_server"];

private = ["desktops'," laptops'];

computers = ["private","server'];

students = ["bob","bill"," pete"];

profs = ["plum"];

group = ["students’,"profs'];

WapS - ["Wap1 n ,"Wap2"] ,

%%

Rules —

[(hsrc=in("server") A(hdst=in("private"))] : deny;

Do not alow phones and private computers to communicate
[(hsrc=in("phones') A(hdst=in("computers'))] : deny;
[(hsre=in("computers') A (hdst=in("phones'))] : deny;

NAT-like protection for laptops

[(hsre=in("laptops')] : outbound-only;

No restrictions on desktops communicating with each other
[(hsre=in("desktops') A (hdst=in("desktops'))] : allow;

For wireless, non-group members can use http through

aproxy. Group members have unrestricted access.
[(apsrc=in("waps"))A(user=in("group"))] :allow;
[(apsrc=in("waps"))A(protocol="http)] : waypoi nts("http proxy");
[(apsrc=in("waps"))] : deny;

[]: allow; # Default-on: by default alow flows

Figure 4: A sample policy file using Pol-Eth

L — T

Routing Control Platform (2005)
4D architecture (2005)

Ethane (2007)

OpenFlow (2008)

® [McKeown,Anderson, Balakrishnan, Parulkar, Peterson,
Rexford, Shenker, Turner, CCR 2008]

® Thin, standardized interface to data plane

® General-purpose programmability at controller

Routing Control Platform (2005)

4D architecture (2005) ——

(app3

_ NOX Controller

Ethane (2007)

OpenFlow (2008) :
NOX (2008)
® [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker,
CCR 2008]

® First OF controller: centralized network view provided
to multiple control apps as a database
® Behind the scenes, handles state collection & distribution

Evolution of SDN

Industry explosion (~2010+)

arch tools
More * O°

Open data plane interface

® Hardware: Easier for operators to change hardware, and
for vendors to enter market

® Software: Can more directly access device behavior

Centralized controller

® Direct programmatic control of network

Software abstractions on the controller

® Solve dist. sys. problems once, then just write algorithms

® Libraries/languages to help programmers write net apps

e Systems to write high level policy instead of
programming

Open data plane interface

® Hardware: easier for operators to change hardware, and
for vendors to enter market
® Software: can finally directly access device behavior

Centralized controller

® Direct programmatic control of network

Software abstractions on the cont

® Solve distributed systems proble
write algorithms
® |ibraries/languages to help progrz:

Performance and scalability

Distributed system challenges still present

® Resilience of “logically centralized” controller
® |mperfect knowledge of network state
e (Consistency issues between controllers

Reaching agreement on data plane protocol

o OpenFlow! NFV functions!? Whitebox switching!?
Programmable data planes?

Devising the right control abstractions

® Programming OpenFlow: far too low level
e But what are the right high-level abstractions to cover
important use cases!

Q: When do you control the net? | [

When does the SDN controller send instructions to
switches!?

e _..in the OpenFlow paper?
e _..other options!

Q: When do you control the net? | [

When does the SDN controller send instructions to
switches!?

® _..in the OpenFlow paper? Reactive (when packet arrives
needing forwarding rule)
e _..other options! Proactive (in advance of need)

Q: How does SDN affect reliability? | [

More bugs in the network, or fewer?

From SDN to Fabric

[Casado,Koponen,Shenker, Tootoonchian, HotSDN’ | 2]

Separate interfaces:

® Host-network (external-to-internal data plane)
® Operator-network
® Packet-switch (internal data plane)

Edge Controller

Fabric Controller
= E——

Src > Fabric Dst
Host Elements Host

Ingress Egress
Edge Switch Edge Switch

I

Q:“Host-Network and Packet-Switch interfaces were
identical” in the Internet. How is this a simplification?

Q: Does OF meet the net’s goals of:

e Simplified hardware

® Vendor-neutral hardware
® “Future-proof” hardware
® Flexible software

I

What drove early deployment of OpenFlow & SDN?

Access control in enterprises! Net research!?

® Good ideas, are already valuable
® But not the “killer apps” for initial large-scale deployment

Inter-datacenter traffic engineering

® Drive utilization to near 100% when possible
® Protect critical traffic from congestion

Cloud virtualization

® (Create separate virtual networks for tenants
® Allow flexible placement and movement of VMs

Key characteristics of the above use cases

® Special-purpose deployments with less diverse hardware
® Existing solutions aren’t just inconvenient, they don’t work!

Next up

Wednesday: SDN in the WAN

Monday: SDN in the virtualized data center

