
Intradomain Routing
Brighten Godfrey

CS 538 February 20 2017

slides ©2010-2017 by Brighten Godfrey unless otherwise noted

Routing

Often defined as the job of Layer 3 (IP). But...

• Ethernet spanning tree protocol (Layer 2)
• Distributed hash tables, content delivery overlays, ...

(Layer 4+)

Choosing paths along which messages will travel
from source to destination.

Problems for intradomain routing

Distributed path finding

React to dynamics

High reliability even with failures

Scale

Optimize link utilization (traffic engineering)

The two classic approaches

Distance Vector & Link State

Far from the only two approaches!

Distance vector routing

Original ARPANET: distance vector routing

Remember vector of distances to each destination
and exchange this vector with neighbors

• Initially: distance 0 from myself
• Upon receipt of vector: my distance to each destination

= min of all my neighbors’ distances + 1

Send packet to neighbor with lowest dist.

Slow convergence and looping problems

• E.g., consider case of disconnection from destination
• Fix for loops in BGP: store path instead of distance

Link state routing

Protocol variants

• ARPANET: McQuillan, Richer, Rosen 1980; Perlman 1983
• Intermediate System-to-Intermediate System (IS-IS)
• Open Shortest Path First (OSPF)

Algorithm

• Broadcast the entire topology to everyone
• Forwarding at each hop:

- Compute shortest path (e.g., Dijkstra’s algorithm)
- Send packet to neighbor along computed path

We have a network...

Question

x y

A link fails. How many total units of message does x
send in immediate response?

Question

x y
X

...using distance vector? ...using link state?

Question

x y
X

...using distance vector? ...using link state?

20 2“My distance to y changed!
My distance to a changed!
My distance to b changed!
...
My distance to i changed!”
...to each of 2 neighbors

a
b

c

d
e

fg

h
i

“Oh hey, link x-y failed”
...to each of 2 neighbors

A link fails. How many total units of message does x
send in immediate response?

Link state vs. distance vector

Disadvantages of LS

• Need consistent computation of shortest paths
- Same view of topology
- Same metric in computing routes

• Slightly more complicated protocol

Advantages of LS

• Faster convergence
• Gives unified global view

- Useful for other purposes, e.g., building MPLS tables

Q: Can link state have forwarding loops?

LS variant: Source routing

Algorithm:

• Broadcast the entire topology to everyone
• Forwarding at source:

- Compute shortest path (Dijkstra’s algorithm)
- Put path in packet header

• Forwarding at source and remaining hops:
- Follow path specified by source

Q: Can this result in forwarding loops?

Source routing vs. link state

Advantages

• Essentially eliminates loops
• Compute route only once rather than every hop
• Forwarding table (FIB) size = #neighbors (not #nodes)
• Flexible computation of paths at source

Disadvantages

• Computation of paths at source
• Header size: ≥ log2(#nodes)•|Path|

- Can use local rather than global next-hop identifiers
- Then, size drops to ≥ log2(#neighbors)•|Path|

• Source needs to know topology
• Harder to redirect packets in flight (to avoid a failure)

Traffic engineering

Key task of intradomain routing: optimize utilization

No TE: Shortest path routing

• How well does this work?

A start: Equal Cost Multipath Protocol (ECMP)

• Each router splits traffic across equally short next-hops
• Hash header to pin flow to a pseudorandom path (why?)
• When do you think this works well?

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

Traffic engineering: the classics

Key task of intradomain routing: optimize utilization

Approach 1: Optimize OSPF weights

• e.g. OSPF-TE
• Need to propagate everywhere: can’t change often
• Artificial constraints make it difficult to optimize

- Same weights apply to all traffic
- So all traffic at one ingress follows same paths

Approach 2: Allocate traffic to explicit MPLS paths

• Control protocol like RSVP-TE reserves capacity and
constructs MPLS tunnels at each router along path

• Tradeoff: path choice vs. little state in routers

TeXCP [Kandula et al 2005]

Pre-construct small set of paths between every
ingress-egress pair

• 10 MPLS tunnels in implementation

Dynamically at each ingress node:

• Probe utilization, latency of each path
• Dynamically reallocate traffic between paths

Walking the Tightrope: Responsive Yet Stable
Traffic Engineering

Srikanth Kandula
MIT CSAIL

kandula@mit.edu

Dina Katabi
MIT CSAIL
dk@mit.edu

Bruce Davie
Cisco Systems

bdavie@cisco.com

Anna Charny
Cisco Systems

acharny@cisco.com

ABSTRACT
Current intra-domain Traffic Engineering (TE) relies on offline
methods, which use long term average traffic demands. It can-
not react to realtime traffic changes caused by BGP reroutes, di-
urnal traffic variations, attacks, or flash crowds. Further, current
TE deals with network failures by pre-computing alternative rout-
ings for a limited set of failures. It may fail to prevent congestion
when unanticipated or combination failures occur, even though the
network has enough capacity to handle the failure.
This paper presents TeXCP, an online distributed TE protocol

that balances load in realtime, responding to actual traffic demands
and failures. TeXCP uses multiple paths to deliver demands from
an ingress to an egress router, adaptively moving traffic from over-
utilized to under-utilized paths. These adaptations are carefully de-
signed such that, though done independently by each edge router
based on local information, they balance load in the whole net-
work without oscillations. We model TeXCP, prove the stability of
the model, and show that it is easy to implement. Our extensive
simulations show that, for the same traffic demands, a network us-
ing TeXCP supports the same utilization and failure resilience as a
network that uses traditional offline TE, but with half or third the
capacity.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols; C.2.3 [Computer Communication Networks]: Network
Operations—Network Management

General Terms
Algorithms, Design, Management, Reliability, Performance.

Keywords
TeXCP, Traffic Engineering, Responsive, Online, Distributed, Sta-
ble.

1. INTRODUCTION
Intra-domain Traffic Engineering (TE) is an essential part of

modern ISP operations. The TE problem is typically formalized as
minimizing the maximum utilization in the network [5, 6, 15, 26].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-04/05/0008 ...$5.00.

A B

Boston

New
York

Seattle

San
Diego

Figure 1: For each Ingress-Egress (IE) pair, there is a TeXCP agent at
the ingress router, which balances the IE traffic across available paths
in an online, distributed fashion.

This allows the ISP to balance the load and avoid hot spots and fail-
ures, which increases reliability and improves performance. Fur-
thermore, ISPs upgrade their infrastructure when the maximum
link utilization exceeds a particular threshold (about 40% utiliza-
tion [20]). By maintaining lower network utilization for the same
traffic demands, traffic engineering allows the ISP to make do with
existing infrastructure for a longer time, which reduces cost.
Recent years have witnessed significant advancements in traf-

fic engineering methods, from both the research and operational
communities [6, 12, 15, 40]. TE methods like the OSPF weight op-
timizer (OSPF-TE) [15, 16] and the MPLS multi-commodity flow
optimizer [26] have shown significant reduction in maximum uti-
lization over pure shortest path routing. Nonetheless, because of its
offline nature, current TE has the following intrinsic limitations:

• It might create a suboptimal or even inadequate load distribution
for the realtime traffic. This is because offline TE attempts to
balance load given the long term traffic demands averaged over
multiple days (potentially months). But the actual traffic may
differ from the long term demands due to BGP re-routes, external
or internal failures, diurnal variations, flash crowds, or attacks.

• Its reaction to failures is suboptimal. Offline TE deals with net-
work failures by pre-computing alternative routings for a lim-
ited set of failures [16]. Since the operator cannot predict which
failure will occur, offline TE must find a routing that works rea-
sonably well under a large number of potential failures. Such a
routing is unlikely to be optimal for any particular failure. As
a result, current TE may fail to prevent congestion when unan-
ticipated or combination failures occur, even though the network
may have enough capacity to handle the failure.

The natural next step is to use online traffic engineering, which
reacts to realtime traffic demands and failures. Currently, online
TE research is still in its infancy. Indeed it is challenging to build a
distributed scheme that responds quickly to changes in traffic, yet
does not lead to oscillations, as demonstrated by the instability of
the early ARPAnet routing [23]. Prior online TE methods are either
centralized [9, 10] or assume an oracle that provides global knowl-
edge of the network [12], and most lack a stability analysis [34,39].
There is a need for an online TE protocol that combines practical

[Kandula et al, “Walking the Tightrope”,
SIGCOMM 2005]

ISP(AS#) # of paths used
avg std

Ebone(1755) 4.275 1.717
Exodus(3967) 4.769 1.577
Abovenet(6461) 4.653 2.038
Genuity(1) 4.076 1.806
Sprint(1239) 4.175 1.935
Tiscali(3257) 4.525 1.980
AT&T(7018) 3.976 1.785

Table 4: Though a TeXCP agent
is configured with a maximum of
K =10 paths, it achieves near-
optimal max-utilization using many
fewer paths.

Technique Description Distributed? Reacts to changes
in traffic?

Robust to fail-
ures?

Oracle LP based on multi-
commodity

No No No

TeXCP in §3.3 and §3.4 Yes Yes Yes
OSPF-TEBase Optimal Link weights

for a TM [15]
No No No

OSPF-TEF ailures Opt. weights for few
critical failures [16]

No No Limited number of
anticipated failures

OSPF-TEMulti−TM Opt. weights over
multiple TMs [15]

No Optimizes over
multiple demands

No

MATE in [12] Sim. needs global
knowledge

Yes Yes

InvCap Common Practice - No No

Table 5: Various load balancing techniques.

5. PERFORMANCE
We evaluate TeXCP and compare it with prior work.

5.1 Topologies & Traffic Demands
ISPs regard their topologies and traffic demands as proprietary

information. Thus, similar to prior work [6, 29], we use the Rock-
etfuel topologies in Table 3. To obtain approximate PoP to PoP
topologies, we collapse the topologies so that “nodes” correspond
to “cities”. Rocketfuel does not provide link capacities; so we
assign capacities to links as follows. There is a marked knee in
the degree distribution of cities–i.e., cities are either highly con-
nected (high-degree) or not. The high degree cities are probably
Level-1 PoPs [20], with the rest being smaller PoPs. We assume
that links connecting Level-1 PoPs have high capacity (10Gb/s) and
that the others have smaller capacity (2.5Gb/s). This is in line with
recent ISP case studies [1, 20].
Similarly to [6], we use the gravity model to compute estimated

traffic matrices. This approach assumes that the incoming traffic at
a PoP is proportional to the combined capacity of its outgoing links.
Then it applies the gravity model [33] to extrapolate a complete
TM. The TMs used in our experiments lead to max. utilizations in
the range 25-75%. For lack of space, we omit similar results for
bimodal TMs [6] and topologies generated using GT-ITM [19].

5.2 Metric
As in [6], we compare the performance of various load balancing

techniques with respect to a particular topology and traffic matrix
(TM) using the ratio of the max-utilization under the studied tech-
nique to the max-utilization obtained by an oracle, i.e.:

Metric =
max-utilization Tech.

max-utilization Oracle
.

5.3 Simulated TE Techniques
We compare the following techniques (see Table 5):

(a) Oracle: As the base case for all our comparisons, we use Mat-
lab’s linprog solver to compute the optimal link utilization for any
topology and traffic matrix. This is the standard off-line central-
ized oracle which uses instantaneous traffic demands and solves
the multi-commodity flow optimization problem [26].
(b) TeXCP: We have implemented TeXCP in ns2 [27]. The im-
plementation uses Eqs. 5,12. The TeXCP probe timer is set to
Tp = 0.1s, and thus Td = 0.5s. TeXCP uses the constants α = 0.4
and β = 0.225 as per Theorem 4.1. The processing time of a probe
at a core router is uniformly distributed in [0,2]ms, consistent with
Internet measurements of the delay jitter for packets processed on
the slow path [18]. Packet size is 1KB, and buffers store up to 0.1s.

1

1.2

1.4

1.6

1.8

2

2.2

Ebone Exodus Abovenet Genuity Sprint Tiscali AT&TRa
tio

 o
f M

ax
-U

til
iz

at
io

n
to

 O
pt

im
al

InvCap OSPF-TE_base TeXCP

Figure 4: When traffic matches TM, TeXCP results in a max-utilization
within a few percent of the optimal, and much closer to optimal than
OSPF-TE or InvCap. Figure shows both average (thick bars) and max-
imum (thin bars) taken over 40 TMs.

(c) OSPF-TE: We implemented 3 versions of the OSPF weight
optimizer. The first, which we call OSPF-TEBase, is from [15].
Given a traffic matrix, it searches for link weights that result in low
max-utilization.6 The second, OSPF-TEF ailures, computes link
weights that result in low max-utilization even when few critical
failures happen [16]. The third, OSPF-TEMulti−TM , simultane-
ously optimizes weights for multiple traffic matrices. Our imple-
mentation gives results consistent with those in [15, 16].
(d) MATE:We compare the performance of TeXCP with MATE,
a prior online TE protocol [12]. MATE’s simulation code is propri-
etary. Therefore, we compare TeXCP against MATE’s published
results [12], after consulting with the authors to ensure that the sim-
ulation environments are identical.
(e) InvCap: A common practice sets a link weight to the inverse of
its capacity and runs OSPF [11].

5.4 Comparison With the OSPF Optimizer
We would like to understand the performance gap between on-

line and offline traffic engineering. No prior work provides a quan-
titative comparison of these two approaches. Hence, in this section,
we compare TeXCP with the OSPF weight optimizer (OSPF-TE),
one of the more sophisticated and highly studied offline TE tech-
niques [15, 16]. Given a topology and a traffic matrix, OSPF-TE
computes a set of link weights, which when used in the OSPF
intra-domain routing protocol produce a routing with low max-
utilization. We also compare against InvCap, a common practice
that sets link weights to the inverse of link capacity.
(a) Static Traffic: First, we investigate the simplest case in

which IE traffic demands are static, i.e., the actual realtime traffic
completely matches the long term demands in the TM.

6It minimizes the total cost in the network; where cost is assigned to each link based
on a piece-wise linear function of the link utilization [15].

TeXCP results

Q: In OSPF-TE, “Finding optimal link weights that
minimize the max-utilization is NP-hard”. Why is this
harder than finding the best possible (non-OSPF)
solution?

Background: Segment Routing

Idea: source routing by
composing path segments

• Segment identifies
- link or service (local)
- router (global)

• Associated actions at router:
- Push a new segment onto

front of packet
- Continue forwarding along a

specified segment
- Go to Next segment in

packet
• Can be implemented with MPLS

which can leverage the benefits of SR without the need of an
MPLS implementation. Authors propose a new IPv6 Extension
Header to encode the SR header in [9]. We depict the currently
proposed format for the header in Figure 2.

Next
Header

Hdr
Ext Len

Routing
Type

Segments
Left

First
Segment

HMAC
Key Id Flags

Segment List [0] (128 bits IPv6 Address)

…

Segment List [n] (128 bits IPv6 Address)

Policy List [0] (128 bits IPv6 Address, Optional)

Policy List [1] (128 bits IPv6 Address, Optional)

Policy List [2] (128 bits IPv6 Address, Optional)

Policy List [3] (128 bits IPv6 Address, Optional)

HMAC (256 bits, Optional)

~ ~

Fig. 2. IPv6 header for SR [9].

B. SR control-plane
The control-plane of SR defines how the segment ID in-

formation is communicated among devices in the network. In
a SR network, Node and Adjacency SIDs will be advertised
via the link state IGP protocol. ISIS and OSPF, the most
popular IGP protocols in service provider networks, were
extended to support the distribution of segment IDs [10][11].
The extensions of IGP protocols would allow any router to
maintain a database of all nodes and adjacency segments.
Also, by leveraging the sub-second convergence properties
of both IGPs, the segment database on each router can be
quickly updated after any topology change. Note that using
these extensions, end-to-end encapsulation can be performed
in the network without requiring enabling and management of
another protocol, such as LDP.

Another element of the control-plane of SR deals with how
an ingress router is instructed to select the SR path that a
packet should follow. The following methods can be used for
this purpose:

1) Distributed Constrained SPF (CSPF) calculation. In
this approach, an ingress router calculates the shortest
path for a destination, under the constraint that this path
matches some criteria. It then computes a sequence of
node and adjacency segments that encodes this path.

2) SDN controller based approach. SR provides a scal-
able and resilient data-plane while allowing the flexi-
bility of control commonly assumed for SDN environ-
ments. This aspect led to the planned support of SR into
designs of some SDN oriented controllers. For example,
OpenDaylight supports the control of SR using the Path
Computation Element Protocol (PCEP) [12].

3) Statically defined by the operator. Static configuration
of the tunnels might be used for specific purposes such
as testing or troubleshooting, but it is typically not
recommended for network operation in the long term,
due to evident scaling, resiliency, and management
limitations.

R1 R2

R5

R3

9001$ 9002$

9005$

9003$

R4 R6

PE3 PE2

9004$ 9006$

9008$9007$

Firewall
1003$

PE1

2023$ 2032$

PE4

PE5

9009$

Low BW,
Low delay

High BW,
high delay

Link A
High BW

High delay

Link B
Low BW
Low delay

1002$

DPI

9010$

High BW,
Low delay

High BW,
High delay

9000$

Fig. 3. Sample network for service chaining and traffic engineering use cases.

An operator can choose any of these methods, based on
the applications and scenarios that they want to support. Note
that the three strategies can coexist in the same network. Static
tunnels could be used for troubleshooting or specific, but infre-
quent, purposes. The CSPF method provides a balance between
connectivity optimization and automation. The great flexibility
delivered by centralized approaches makes it compelling for
networks with TE objectives for which conflicting decisions
could be taken when performed in a distributed way (e.g.
demand placement for capacity engineering purposes).

III. SEGMENT ROUTING USE CASES

In this section, we describe various use cases that can
leverage SR to obtain maximum benefit.

A. Traffic Engineering using SR Tunnels
Nowadays, networks support a variety of applications, with

their respective constraints on how resources are used to
serve them. It is prevalent for service providers to ensure that
traffic flows transported between same devices, with different
resource requirements, follow optimal, maybe dissimilar paths.
SR can give control over traffic-engineered paths without
increasing control-plane overhead at the transit nodes.

We use the network topology of Figure 3 to illustrate
how traffic engineering can be implemented with SR. Let us
consider 2 types of application traffic entering the domain via
PE1 that should be processed by the Deep Packet Inspection
(DPI) service function before egressing the domain: Voice
service and high demanding bandwidth service. Voice traffic
should be steered over a short latency path, which is PE1-
R1-R2-LinkB-R5-PE3-DPI. Large bandwidth flow should be
steered over high bandwidth path PE1-R1-R2-LinkA-R5-PE3-
DPI.

For the voice traffic, PE1 would place the segment list
{9002, 2032, 9008, 1002} in the SR header, and forward to
R1. Note that since a Node SID instructs a device to forward
a packet using the shortest paths to a destination, PE1 does
not require to define the path hop-by-hop. After receiving the
packet, R1 will perform a CONTINUE operation on the SR

DEFO [Hartert et al 2015]

DEFO

Connectivity Layer

Optimization Layer

Operator

e.g. IS-IS

e.g. Segment
 Routing

Physical Layer e.g. Routers

Figure 1: Proposed architecture.

2. ARCHITECTURE
In this section, we detail the role of every component

of our architecture, which is illustrated in Fig. 1.
The right part of the figure highlights that two log-

ical layers are installed on top of the physical network
topology (routers and links). The underlying connec-
tivity layer is responsible for the default forwarding be-
havior and for network-wide connectivity. It defines
connectivity paths between all pairs of routers, hence
for any traffic flow possibly traversing the network. In
contrast, the optimization layer defines exceptions to
this default routing behavior. It implements optimized
paths used for a subset of the traversing flows (e.g., a
subset of router pairs). Optimized paths overwrite con-
nectivity ones: Whenever an optimized path is defined,
the corresponding flows always use it. While connectiv-
ity and optimization layers represent a logic separation,
they can also be implemented by different protocols run-
ning on the routers. This provides a cleaner design and
comes with a set of advantages. For example, it enables
changes in the optimization layer (expected to be fre-
quent) without any impact on the connectivity one. It
also simplifies the assessment of the impact of changes
in the connectivity layer (e.g., consequently to less fre-
quent events like failures). Finally, it ensures that con-
troller failures do not disrupt forwarding paths.
The connectivity layer is configured (possibly once in

the network lifetime) by operators. This choice is moti-
vated by several reasons. First, it maximizes the utility
of the operators’ domain knowledge (expected traffic
matrix, capacity of links, etc.) to provide a good basis
for network optimization. Second, it leaves operators
with a mean to take back the control of the network,
e.g., in the case of major problems on the controller or
for maintenance operations that cannot be supported
by DEFO (e.g., router physical replacement). Third, it
facilitates progressive deployment of our proposal.
DEFO controls the optimization layer to fine-tune

forwarding. It receives high-level goals from operators,
and automatically translates them into optimized paths,
e.g., configurations of the optimization-layer protocol.
Since optimized paths are preferred over connectivity
ones, DEFO decides the actual forwarding paths used
for any traffic flow crossing the network. DEFO can
perform this goal-to-path translation for any change of
connectivity paths, traffic flows or physical topology,
e.g., for online traffic engineering.

function DSL syntax semantics

max load d.load
maximum load of any link
in F (d)

max delay d.delay
maximum delay of source-
destination paths in F (d)

deviations d.deviations
number of deviations from
connectivity paths in F (d)

traversal d passThrough S
true if F (d) crosses any
node in S, false otherwise

sequencing
d passThrough S1 true if F (d) sequentially

crosses nodes in S1 . . . Skthen S2 . . . then Sk

avoid d avoid S
true if no node in S is also
in F (d), false otherwise

d, F (d) and S, S1, . . . , Sk respectively represent any demand,
the forwarding paths for d, and sets of network nodes.

Figure 2: Constructs of the current DEFO DSL.

3. EXPRESSING NETWORK GOALS
DEFO exposes a high-level interface, based on a small

Scala DSL [16]. It enables operators to intuitively de-
clare desired characteristics of forwarding paths.
The central abstractions used in the interface are the

concepts of demand, forwarding function and goal. A
demand is an aggregate of flows. In the following, we fo-
cus on demands at the granularity of source-destination
pairs, for simplicity. A forwarding function maps a set
of links to the value of a parameter (e.g., maximum
load) associated to them. Our DSL includes constructs
for pre-defined forwarding functions. It permits for-
warding functions to be applied to sets of links, to paths
or to demands. In the latter case, a forwarding function
maps a demand to the value of a parameter associated
to the forwarding paths for that demand. Fig. 2 details
the forwarding functions currently supported by DEFO
(when applied to demands). A goal is defined by for-
warding functions applied to demands. Those functions
can be composed as (i) constraints that restrict the set
of forwarding paths for given demands; and (ii) objec-
tive functions specifying parameters to be optimized.
In the following, we show examples of DEFO goal def-

initions. They illustrate both usage of forwarding func-
tions and practically-meaningful compositions of them.
The examples include standard Scala keywords like val
for value declaration and <- for variable assignment in
a loop. Variables storing parameters not determined by
DEFO, like the network topology (topology variable)
or sets of traffic demands (Demands, LowDelayDemands
and SecDemands variables), are dynamically initialized
at runtime, e.g., reading from preconfigured input files
provided by operators or routing daemons.

Classic Traffic Engineering Goals. The use of re-
sources often needs to be optimized in carrier-grade net-
works. For example, the classic MinMaxLoad goal con-
sists in minimizing the load of the maximally loaded
link, e.g., to avoid performance bottlenecks. It can be
declared in DEFO in two lines.

var MaxLoad = max(for(l<-topology.links){yield l.load})
val goal = new Goal(topology){ minimize(MaxLoad) }

17

Tactical Traffic Engineering Goals. To limit traf-
fic disruptions, operators are often reluctant to change
many forwarding paths, and can prefer sub-optimal con-
figurations to an unbounded number of path changes.
DEFO forwarding functions can be combined to express
those tactical goals. As an example, the following code
instructs DEFO to find the best solution bringing all
link utilization under a certain threshold with at most
2 deviations from connectivity paths.

val goal = new Goal(topology){
for(d<-Demands) add(d.deviations <= 2)
for(l<-topology.links) add(l.load <= 0.9 l.capacity)
minimize(MaxLoad)}

Refined Goals. Operators often have to accommodate
specific (e.g., per-customer) needs. In DEFO, goals in-
cluding arbitrary combinations of the forwarding func-
tions in Fig. 2 are supported by adding constraints and
changing the objective function. The following exam-
ple shows how to define a delay-respectful goal, that is,
a variant of MinMaxLoad with constraints on the max-
imum delay experienced by specific demands. In the
example, the latency of every network path is assumed
to be known by DEFO, e.g., as a result of few active
measurements. Our DSL also permits to define other
delay-respectful goals, e.g., with delay constraints ex-
pressed as a percentage of their current values or delays
for given demands in the objective function.

val goal = new Goal(topology){
for(d <- LowDelayDemands) add(d.latency <= 10.ms)
minimize(MaxLoad)}

DEFO also supportsmulti-objective goals [17]. The next
snippet shows a goal in which both the maximum link
load and the average latency have to be optimized.

val goal = new Goal(topology){
minimize(MaxLoad, AvgLatency)}

Support for New Applications. Many operators
have lately shown interest for service chaining, i.e., the
ability to steer packets through a sequence of services.
In the example below, each demand in SecDemands is
forced to pass first through one firewall in FirewallSet
(whose position is assumed to be known by the opera-
tor) and through either IPS1 or IPS2 after.

val goal = new Goal(topology){
for(d <- SecDemands){
add(d passThrough FirewallSet then (’IPS1, ’IPS2))}

minimize(MaxLoad)}

The avoid and passThrough constructs can also be
used to specify anycast goals, in which a set of routers
must be avoided or forcedly used. This meets the needs
of operators that have to comply with political or busi-
ness rules, like preventing or ensuring that given traffic
flows cross a specific country.

Finally, operators can run DEFO to achieve the de-
clared goal, possibly specifying an upper bound for its
computation time.

DEFOptimizer(goal).solve(30.sec)

Note that infeasible goals can be defined in our DSL,
e.g., trying to force a demand through an isolated node
or requiring a link utilization that cannot be achieved
on the given topology and input demands. In our im-
plementation, DEFO discards unsatisfiable constraints,
computes a solution satisfying the other ones, and re-
turns a warning to the operator. Similarly, if DEFO
does not terminate in the specified time, it returns the
best solution found during that time.

4. OPTIMIZED PATH COMPUTATION
In this section, we describe how DEFO computes

forwarding paths. Namely, we detail how it tackles
the challenges posed by the need for (i) supporting a
wide variety of possible input goals (defined by arbitrary
combinations of forwarding functions in Fig. 2), and
(ii) fast computation of solutions to computationally-
hard (translation) problems. First, we present the Mid-
dlepoint Routing model, internally used by DEFO for
a compact representation of paths (§4.1). Then, we
overview DEFO formal representation of input goals in
terms of Middlepoint Routing instances (§4.2). Finally,
we describe the optimization algorithm that it runs to
compute compliant optimized paths (§4.3).

4.1 The Middlepoint Routing Model
DEFO relies on the Middlepoint Routing (MR) model.

MR is similar to the pathlet routing model [18, 19] in
that it represents paths as concatenations of sub-paths.
In contrast to pathlet routing, however, MR is based on
forwarding graphs rather than single paths. This gener-
alization enables to incorporate equal-cost multipath in
the model, and to provide a compact representation of
several distinct paths between any source-destination
pair. Moreover, we use MR to represent forwarding
paths rather than for routing protocol design.
An MR instance represents acyclic paths from any

source s to any destination d as sequences of acyclic
graphs S = G1, . . . , Gn, with n ≥ 1. In S, any pair of
consecutive graphs Gi and Gi+1 (with i = 1, . . . , n− 1)
share a single common node mi, which is the sink of
Gi and the root of Gi+1. We refer to any graph in S
as partial forwarding graph (PFG), and to any shared
node between two consecutive PFGs as middlepoint. Of
course, a PFG can represent a single path. In an MR
instance, a source-destination pair is associated to one
or more sequences S1, . . . ,SN of PFGs. As an illustra-
tion, consider Fig. 3. Circles and arrows respectively
represent routers and corresponding forwarding next-
hops, while dashed squares identify PFGs. The MR
representation of the paths from s to t is then given by
sequences S1 = [G(s,m), G(m,t)] and S2 = [G(s,t)].

18

s t

m

Figure 3: MR representations of s− t paths.

In the specific case of our two-layer architecture, each
PFG represents connectivity paths. Since PFGs are
defined by the connectivity layer, we can simplify the
representation of optimized paths as a set of middle-
point sequences. The right part of Fig. 3 also reports
the simplified MR representation of s − t paths, which
is {[m], []}, under the assumption G(s,t) represents the
connectivity paths from s to t.
Intuitively, DEFO uses the compact representation

of paths provided by MR to limit the number of deci-
sion variables in the forwarding optimization. Indeed,
it associates decision variables to the sequences of mid-
dlepoints to be used for a given traffic flow. In Fig. 3,
for instance, DEFO uses 2 variables (for the two mid-
dlepoint sequences from s to t) instead of 8 (as needed
if variables were associated to single paths) or 23 (as
needed to represent traversed links and paths, like in
classic linear programming formulations). In the fol-
lowing, we explain how DEFO computes the value for
middlepoint sequences.

4.2 Network Goal Formalization
DEFO formalizes an input goal as an (initially empty)

MR instance with associated constraints and optimiza-
tion functions. This formalization is based on the Con-
straint Programming (CP) optimization framework [14].
A CP problem is defined by a set of variables, each
having its own finite domain of possible values, and a
set of constraints that apply to them. Contrary to lin-
ear programming, constraints are implemented by algo-
rithms that preserve consistency between variable do-
mains. For this reason, CP supports high-level, inde-
pendent and easily composable constraints. An objec-
tive function can also be added to a CP problem.
We now describe novel variables, data structures and

constraints used for goal formalization in DEFO. Con-
sistently with §3, we assume that topology, demands
and parameters (like path delays) independent from
DEFO computations are provided as an input. More
details on our CP formalization are reported in [20].

Middlepoint variables model the MR representation
of per-demand forwarding paths. Every input demand
is mapped to a middlepoint variable, representing a set

of middlepoint sequences. We say that a middlepoint
variable is assigned to a value when all the represented
sequences end with the destination of the correspond-
ing demand. If this condition does not hold, we say
that the middlepoint variable is unassigned. For exam-
ple, the forwarding paths for the demand from s to t in
Fig. 3 are represented by an assigned middlepoint vari-
able {[t], [m, t]}. Middlepoint variables represent the
decision variables of the optimizations performed by
DEFO. When forwarding paths need to be optimized,
the middlepoint variables are re-initialized to an empty
value. Then, they are progressively assigned to values
according to the algorithm described in §4.3.

Forwarding function algorithms guarantee the sat-
isfaction of constraints defined on forwarding functions.
Every supported forwarding function implemented by
a specific algorithm, specialized for that function. For
example, the load and delay forwarding functions are
supported by different algorithms. Forwarding function
algorithms (i) extract the value of the associated for-
warding function (for example, the load of the maxi-
mally loaded link for the load forwarding function al-
gorithm) from a set of links or from forwarding paths
corresponding to the value of a middlepoint variable;
(ii) compare the extracted value with a configured thresh-
old, to assess if the represented constraint is satisfied;
and (iii) reduce the domain of middlepoint variables by
excluding values that violate a constraint on the as-
sociated forwarding function. The thresholds checked
by those algorithms are initialized by the constraints
of the input goal. For example, a constraint l.link <
l.capacity defined on a link l initializes the value to be
checked on l by the load forwarding function algorithm
to the link capacity provided by the input topology.

4.3 Middlepoint Selection
We propose an efficient algorithm to solve CP prob-

lems corresponding to DEFO input goals. By assigning
values to middlepoint variables, our algorithms com-
pute which middlepoints to use in the optimized paths
of which traffic flow. The same algorithm can also be
used to compute backup paths (e.g., to be pre-installed
in routers as in well-known fast reroute techniques [21]).
Unfortunately, selecting middlepoints is a hard prob-

lem. Indeed, we proved [20] that middlepoint selection
problems are NP-hard, even if only link capacity con-
straints have to be respected. Additional constraint or
specific objective function can make the corresponding
selection problem even harder. Despite this, our algo-
rithms are required to be efficient and scalable, for the
controller to quickly react to events (failures, demand
and goal changes, etc.) in large-scale networks.
To quickly compute good solutions, we then propose a

heuristic approach, mixing a pure CP solution with a lo-
cal search technique called Large Neighborhood Search
(LNS). Intuitively, we use CP to compute the best solu-
tion in a given portion of the search space, and we rely

19

… for each ingress-egress
traffic bundle

DEFO [Hartert et al 2015]

s t

m

Figure 3: MR representations of s− t paths.

In the specific case of our two-layer architecture, each
PFG represents connectivity paths. Since PFGs are
defined by the connectivity layer, we can simplify the
representation of optimized paths as a set of middle-
point sequences. The right part of Fig. 3 also reports
the simplified MR representation of s − t paths, which
is {[m], []}, under the assumption G(s,t) represents the
connectivity paths from s to t.
Intuitively, DEFO uses the compact representation

of paths provided by MR to limit the number of deci-
sion variables in the forwarding optimization. Indeed,
it associates decision variables to the sequences of mid-
dlepoints to be used for a given traffic flow. In Fig. 3,
for instance, DEFO uses 2 variables (for the two mid-
dlepoint sequences from s to t) instead of 8 (as needed
if variables were associated to single paths) or 23 (as
needed to represent traversed links and paths, like in
classic linear programming formulations). In the fol-
lowing, we explain how DEFO computes the value for
middlepoint sequences.

4.2 Network Goal Formalization
DEFO formalizes an input goal as an (initially empty)

MR instance with associated constraints and optimiza-
tion functions. This formalization is based on the Con-
straint Programming (CP) optimization framework [14].
A CP problem is defined by a set of variables, each
having its own finite domain of possible values, and a
set of constraints that apply to them. Contrary to lin-
ear programming, constraints are implemented by algo-
rithms that preserve consistency between variable do-
mains. For this reason, CP supports high-level, inde-
pendent and easily composable constraints. An objec-
tive function can also be added to a CP problem.
We now describe novel variables, data structures and

constraints used for goal formalization in DEFO. Con-
sistently with §3, we assume that topology, demands
and parameters (like path delays) independent from
DEFO computations are provided as an input. More
details on our CP formalization are reported in [20].

Middlepoint variables model the MR representation
of per-demand forwarding paths. Every input demand
is mapped to a middlepoint variable, representing a set

of middlepoint sequences. We say that a middlepoint
variable is assigned to a value when all the represented
sequences end with the destination of the correspond-
ing demand. If this condition does not hold, we say
that the middlepoint variable is unassigned. For exam-
ple, the forwarding paths for the demand from s to t in
Fig. 3 are represented by an assigned middlepoint vari-
able {[t], [m, t]}. Middlepoint variables represent the
decision variables of the optimizations performed by
DEFO. When forwarding paths need to be optimized,
the middlepoint variables are re-initialized to an empty
value. Then, they are progressively assigned to values
according to the algorithm described in §4.3.

Forwarding function algorithms guarantee the sat-
isfaction of constraints defined on forwarding functions.
Every supported forwarding function implemented by
a specific algorithm, specialized for that function. For
example, the load and delay forwarding functions are
supported by different algorithms. Forwarding function
algorithms (i) extract the value of the associated for-
warding function (for example, the load of the maxi-
mally loaded link for the load forwarding function al-
gorithm) from a set of links or from forwarding paths
corresponding to the value of a middlepoint variable;
(ii) compare the extracted value with a configured thresh-
old, to assess if the represented constraint is satisfied;
and (iii) reduce the domain of middlepoint variables by
excluding values that violate a constraint on the as-
sociated forwarding function. The thresholds checked
by those algorithms are initialized by the constraints
of the input goal. For example, a constraint l.link <
l.capacity defined on a link l initializes the value to be
checked on l by the load forwarding function algorithm
to the link capacity provided by the input topology.

4.3 Middlepoint Selection
We propose an efficient algorithm to solve CP prob-

lems corresponding to DEFO input goals. By assigning
values to middlepoint variables, our algorithms com-
pute which middlepoints to use in the optimized paths
of which traffic flow. The same algorithm can also be
used to compute backup paths (e.g., to be pre-installed
in routers as in well-known fast reroute techniques [21]).

Unfortunately, selecting middlepoints is a hard prob-
lem. Indeed, we proved [20] that middlepoint selection
problems are NP-hard, even if only link capacity con-
straints have to be respected. Additional constraint or
specific objective function can make the corresponding
selection problem even harder. Despite this, our algo-
rithms are required to be efficient and scalable, for the
controller to quickly react to events (failures, demand
and goal changes, etc.) in large-scale networks.

To quickly compute good solutions, we then propose a
heuristic approach, mixing a pure CP solution with a lo-
cal search technique called Large Neighborhood Search
(LNS). Intuitively, we use CP to compute the best solu-
tion in a given portion of the search space, and we rely

19

ECMP

EC
MP

DEFO discussion

What’s the benefit of using a middlepoint instead of
an explicit path?

What are the advantages & disadvantages of DEFO
compared to TeXCP?

Announcements

Wednesday

Project proposals and assignments returned

Readings

• BGP routing policies in ISP networks (Caesar and
Rexford, IEEE Network Magazine, Nov/Dec 2005)

• Anatomy of a Large European IXP (Ager et al.,
SIGCOMM 2012)

