Congestion Control

Brighten Godfrey
CS 538 February 1 2017

Based in part on slides by Ion Stoica

Announcements

Assignment #1 released

Part |:Internet BGP Routing Traces
Part 2: OpenFlow in a network emulator

Due end of next week

Next week

Lecture recordings

® (Coordinating with |IT support

Next week

e Monday

= Congestion control in the network
® Wednesday

= Lecture cancelled due to travel

= Focus on Assignment & project proposals
® Friday

= Assignment due

A starting point:
the sliding window protocol

Make sure receiving end can handle data
Negotiated end-to-end, with no regard to network

Ends must ensure that no more than W packets are in
flight if buffer has size W

® Receiver ACKs packets
® When sender gets an ACK, it knows packet has arrived

Sliding window-based flow control

At the sender...

Sent and all Window: Sent but
ACKs received leftmost not yet ack'd

ﬁ %
no ack’d no ack’d ackd
ack ack

Not yet sent

Sliding window-based flow control

At the receiver...

Window: ready to
Received receive but leftmost
missing

not not recd recd not
recd | rec'd rec’d

Not ready
to receive

D S———

Last ACKed (without gap) Last received (without gap) h

I

What is the throughput in terms of RTT and window
size!?

® Throughput is ~ (W/RTT)

Sender has to buffer all unacknowledged packets,
because they may require retransmission

Receiver may be able to accept out-of-order packets,
but only up to its buffer limits

Getting to equilibrium: Slow Start

® |nitial rate is slow: very conservative starting point
® But acceleration is high
e .. .orisit? Maybe too conservative now

= http://research.google.com/pubs/pub36640.html

Conservation: Round-Trip Timing

Congestion Avoidance

http://research.google.com/pubs/pub36640.html

Round-trip timing

Must retransmit packets that were dropped

To do this efficiently

e Keep transmitting whenever possible
® Detect dropped packets and retransmit quickly

Requires:

® Timeouts (with good timers)
® Other hints that packet were dropped

I

T(n) = measured RTT of

\ this packet

mean:| A(n) = b*A(n-1) + (1 — b)*T(n)

Timeout(n) = 2*A(n)

Is twice the mean what we really want!?

e No:want outliers
® 2A(n) a poor estimate of outliers
® |dea: measure deviation from mean

I

T(n) = measured RTT of

\ this packet

mean:| A(n) = b*A(n-1) + (1 — b)*T(n)
deviation:] D(n) = b*D(n-1) + (1 — b)*(T(n) — A(n))
Timeout(n) = A(n) + 4D(n)

Questions:

® Measure T(n) only for original transmissions. VWhy?
® Double Timeout after a timeout happens.Why!?
® |[s deviation what we really want! Really?

What do we REALLY want!?

e Estimate whether Pr[packet lost] is high
® |s timing the only way?

Another way: Duplicate ACKs

Receiver sends an ACK whenever a packet arrives
ACK has seq. # of last consecutively received packet

Duplicate ACKs suggest missing packet (assumptions?)
Modern TCPs: Fast Retransmit after 3 dup-ACKs

Does this eliminate need for timers?

® No:What if we get no packets from receiver?
® But, makes them less important

ACK every packet, giving its sequence number

Use negative ACKs (NACKS), indicating which packet
did not arrive

Use cumulative ACK, where an ACK for number n
implies ACKS for all k <n

Use selective ACKs (SACKSs), indicating those that did
and did not arrive, even if not in order

Congestion

Can the network handle the rate of data?

Determined end-to-end, but TCP is making guesses
about the state of the network

Two papers:

® Good science vs great engineering

Knee — point after which . liff Pﬁ)‘;‘;et
5 - ——
® Throughput increases very %
slowly 3 congestion
® Delay increases quickly = }Ilapse
Cliff — point after which
Load

® Throughput starts to
decrease very fast to zero
(congestion collapse)

® Delay approaches infinity

Delay

In an M/M/1 queue

Load

® Delay = |/(] — utilization)

Cong. control vs. cong. avoidance | [

Congestion control goal

® Stay left of cliff

Congestion avoidance goal

® Stay left of knee knee cliff

congestion
collapse

Throughput

User 1 \\i:‘
X)

User2 mp > —p in>Xg

j;//’
User n

oal

Simple, yet powerful model

Explicit binary signal of congestion

Possible choices

‘a, +b,x.(t) increase
Xl. (t + 1) = < s
a, +b,x (t)decrease

* Multiplicative increase, additive decrease

- a=0, b>1, ap<0, bp=1

* Additive increase, additive decrease

- a0, b=1, ap<0, bp=1 Wthh ShOUId

ick?
= Multiplicative increase, multiplicative decrease we PICk°

- a=0, b>1, ap=0, 0<bp<I

= Additive increase, multiplicative decrease

- a0, b=l, ap=0, 0<bp<l

* Does not
converge to
fairness

" (Additive
decrease
worsens
fairness)

fairness
J/ line

User 2:x,

efficiency
line

User |:x,

24

AQC

I

£ - - an - . . . o 7~ - ~
(XI h+aD+a|), , failli‘rr::ss
Reaches Xphtapta)) il

stable cycle,
but does not
converge to
fairness

User 2:x,

efficiency
line

User |:x,

25

* Converges
to stable
cycle, but is
not fair

fairness
/ line

User 2:x,

efficiency
line

User |:x,

26

A.. a

* Converges
to stable and

fair cycle

fairness
/ line

(X1hX2n) //
o (bpxpta, /

bnX,.ta /
DX2h |)/

User 2:x,

efficiency
line

User |:x,

27

Critical to understanding complex systems

¢ [C]J89] model relevant after nearly 30 years, 10° increase
in bandwidth, 1000x increase in number of users

Criteria for good models

® Two conflicting goals: reality and simplicity

® Realistic, complex model = too hard to understand, too
limited in applicability

® Unrealistic, simple model = can be misleading

28

Putting the pieces together

TCP congestion control

[C)89] provides theoretical basis for basic congestion
avoidance mechanism

Must turn this into real protocol

Maintains three variables:

® cwnd: congestion window
e flow win: flow window; receiver advertised window
® ssthresh: threshold size (used to update cwnd)

For sending, use: win = min(flow_win, cwnd)

Goal: reach knee quickly

Upon starting (or restarting):

® Set cwnd =|
® FEach time a segment is acknowledged, increment cwnd
by one (cwnd++).

Starts slow but accelerates quickly

® cwnd increases exponentially

Slow start example

The congestion
window size grows
very rapidly

TCP slows down
the increase of
cwnd when

cwnd = ssthresh

cwnd = 1

cwnd = 2

cwnd =4

cwnd =8

segment 1

segment 2

ke

—>

segment 3

segment 4

.

vy

segment 5

segment 6

segment 7

e

]
]

Slow down ““‘Slow Start”

ssthresh variable is lower-bound guess about location
of knee

If cwnd > ssthresh then
each time a segment is acknowledged,
increment cwnd by |/cwnd (cwnd += |/cwnd).

Result: cwnd is increased by one after a full window of
segments have been acknowledged

Slow start/cong. avoidance exampl

Cwnd (in segments)

= Assume that

12

ssthresh = 8
////
/

S & &P L L

Roundtrip times

cwnd = 1

cwnd =2

cwnd =4

cwnd =8

cwnd =9

cwnd = 10 -

All together: TCP pseudocode

Initially:
cwnd = 1 while (next < unack + win)
ssthresh = infinite: transmit next packet;
New ack received:
if (cwnd < ssthresh) where win = min(cwnd,
* Slow Start*/ flow_win);

cwnd = cwnd + [;

else
/* Additive increase */ seq# unack next
cwnd = cwnd + |/cwnd; — l_
Timeout:
/* Multiplicative decrease */ win

ssthresh = cwnd/2;

cwnd = |;

The big picture (so far)

cwnd

Timeout

Congestion
Avoidance

Slow Start /

Time

Fast retransmait

Resend a
segment after 3

duplicate ACKs

Avoids waiting
for timeout to
discover loss

cwnd = 1

cwnd = 2

cwnd =4

3 duplicate {
ACKs

segment 1
—>
ACK 2
segment 2
segment 3 —»
ACK 3 —”
ACK 4 —
segment 4
segment 5 9< 4
segment 6
ACK A . _segment7 :I
TR
ACK 4
ACK 4

After a fast-retransmit set cwnd to ssthresh/2

® je.,don’treset cwndto |

But when RTO expires still do cwnd = |

Fast Retransmit and Fast Recovery

® |mplemented by TCP Reno & other variants

Lesson: avoid RTOs at all costs!

cwnd

Congestion

/ Avoidance
SlOW Start /

Retransmit after 3 duplicated acks

Time

® prevent expensive timeouts

No need to slow start again

At steady state, cwnd oscillates around the optimal
window size

Discussion

I

Great engineering by Jacobson and others built useful
protocol

e TCP Reno, etc.

Good science by Chiu, Jain and others

® Basis for understanding why it works so well

Limitations of TCP CC

In what ways is TCP congestion control broken or
suboptimal?

A partial list...

Efficiency

Tends to fill queues

® creates latency and loss

Slow to converge

® for short flows or links with high bandwidthedelay
product

Loss # congestion

Often does not fully utilize bandwidth

Fairness

Unfair to large-RTT flows (less throughput)
Unfair to short flows if ssthresh starts small
Equal rates isn’t necessarily “fair” or best

Vulnerable to selfish & malicious behavior

e TCP assumes everyone is running TCP!

