
CS 538 Spring 2017

CS 538: Advanced Computer Networks Spring 2017

Assignment 1: Experimental Data and Tools

Assignment 1 Due: 11:00 AM CT, Friday February 10, 2017

1 Introduction

The main goal of this assignment is to get hands-on experience with tools for experimental networking
research. In addition, the assignment will hopefully remind you about some core networking material.
Specifically we will get our hands dirty in two parts:

• Analysis of public Internet BGP routing traces (§2)

• OpenFlow functionality with Mininet, a network emulator (§3)

You may choose one of the above two parts to do for this assignment, according to your interests. We
encourage you, however, to check them both out. We’re providing them because they should be useful for
research projects in this class, and checking out what experiments you can do may also give you ideas about
what research you might want to do.

Data. The package is available for download at https://courses.engr.illinois.edu/cs538/sp2017/

assignments/a1.zip. Inside, you will find two folders: a1/bgp for the BGP part (§2) and a1/openflow for
the OpenFlow part (§3).

Submission instructions. This assignment is due at the time listed above. To submit your solutions,
please email the TA (Mo Dong, modong2@illinois.edu) with a tar or zip file containing all relevant materi-
als. Please name the submission email and attachment file as “CS538-HW1-NetID”(Replace
<NetID> with your NetID.) . Acceptable formats are PDF (preferred), or plain text, with attached figures
and code files. (Word .doc is not preferred. Please export to PDF.)

Collaboration policy. You’re encouraged to discuss the assignment, solution strategies, and coding strate-
gies with your classmates. However, your solution and submission must be coded and written yourself. Please
see the policy on academic honesty and cheating stated in the course syllabus.

2 The Global Internet

On January 25, 2011, a popular uprising began in Egypt that would ultimately bring an end to the 29-year
regime of Hosni Mubarak. On January 27, 2011, attempting to inhibit the Facebook- and Twitter-organized
protests, the Egyptian government shut off essentially all Internet service to the country of 82 million people
— a unique event in the history of the Internet.

Your mission is to answer the question, How long did it take to sever all global networked communications
of the 15th largest country in the world? Because of the open and decentralized nature of the Internet, you
can answer this question using publicly-available Internet routing information.

1

https://courses.engr.illinois.edu/cs538/sp2017/assignments/a1.zip
https://courses.engr.illinois.edu/cs538/sp2017/assignments/a1.zip


CS 538 Spring 2017

This document guides you through the process, including a sample parser for the BGP data. However,
the main point of this section is to get a feel for the BGP data by visualizing an interesting event in the data
set. If you would like to write your own parser rather than using ours, or explore an interesting aspect of
the data other than what we suggest, or even explore a completely different event (there are many besides
the Egyptian disconnection), you are welcome to do so. Check with us first if you have any doubts about
appropriateness.

2.1 Getting started

The Route Views Project maintains data of routing behavior on the live Internet, and stores these traces
for later analysis. Multiple years of data sets are available. To produce the data, Route Views maintains a
number of collectors. Each collector has BGP connections to several ISPs’ routers. The collectors log two
types of data:

• occasional snapshots of the collector’s entire routing table (Routing Information Base, or RIB); and

• continuous logs of the BGP update messages received from the neighboring routers.

You can download Route Views data from: http://archive.routeviews.org/

You will find a tool called libbgpdump under the folder a1/bgp. This tool processes both kinds of Route
Views data; they both use the “MRT” format. Compile this by running ./configure and then make in the
libbgpdump-1.4.99.11 directory. This builds a program called bgpdump, which, when given some input
file (./bgpdump routeviews data file) will produce a human-readable text version of the data. Note the
input file can be either a bzipped (.bz2) MRT file like you will get directly from the Route Views repository,
or an un-bzipped MRT file. Take bgpdump and the Route Views data for a spin as follows:

1. From Route Views, download the first RIB snapshot from January 27, 2011, from the London Internet
Exchange (LINX) collector.

2. Run bgpdump on the RIB snapshot. What does each field mean?

3. Search the bgpdump output to find any1 RIB entry associated with your computer’s public IP address.
(Hint: you could do this by finding associated IP prefixes or AS numbers. You can use a whois database
(e.g., http://whois.arin.net/ui/) to find the IP prefix and origin AS number associated with an IP
address.)

4. Can you use the above entry to determine the sequence of ISPs through which packets will flow when
traveling from one of the LINX routers in London to your personal computer?

What to submit:

1. Brief explanation of the “ORIGIN” attribute in BGP entry and how preference is decided among
different origin types.

2. The sequence of ISPs (AS numbers and/or business names) from the last step.

1There may be multiple RIB entries for a single IP prefix, because each Route Views collector reports prefix advertisements
received from multiple routers.

2

http://archive.routeviews.org/
http://whois.arin.net/ui/


CS 538 Spring 2017

2.2 Measuring Egyptian route withdrawals

Next, we want to use the Route Views data to figure out how long it took Egypt to leave the Internet. To
do this, we will use an imperfect but simple approach: We will count how many Egyptian-related prefix
withdrawals we have seen over time. Due to the dynamic nature of the Internet, there are continually
announcements and withdrawals even under normal conditions. But we’ll see one period of time with a
very high rate of Egyptian withdrawals, and that period will correspond to Egypt’s disconnection from the
Internet.

Although you’re welcome to write your own parser if you prefer (or use the libbgpdump library), we have
written an incomplete parser for you. In the folder a1/bgp, you’ll find a program called simple bgp parse.c.
This program expects to receive, on its standard input, the output of bgpdump. It scans through the BGP
RIB entries or updates, and does two things. First, when it sees “interesting” entries, it remembers that
the associated IP prefixes are interesting. Second, it keeps track of how many withdrawals of “interesting”
prefixes it has seen, and prints out a running total.

What is “interesting” is a matter of opinion. The default version of the program is quite dull and thinks
nothing is interesting. As described below, you will need to decide how to pick out the “interesting” entries,
in order to learn which prefixes are associated with Egypt.

1. From Route Views, download the London Internet Exchange (LINX) collector’s Updates data, from
near the time of Egypt’s departure from the net. That happened sometime between 21:00 and 23:00
UTC on January 27, 2011, so you’ll want to grab all the LINX Updates data at least in that interval.
Process these files with bgpdump, and send the output of all that to the (unmodified) simple bgp parse

program. It should output the total number of updates seen. (For your own interest: In the data you
downloaded, what time did the first and last update messages occur, and what was the average rate
of updates per second during this period?)

Tip: You might find the command bzcat useful. For new Unix users: to send multiple files to a
program’s standard input, you can run a command like: cat file1 file2 file3 | my program.

2. Modify simple bgp parse so that it thinks BGP RIB entries for advertisements that originated at
Egyptian ASes are “interesting”. (Hint 1: this only takes a few lines of code. Hint 2: the following
Autonomous System (AS) numbers belong to Egyptian ISPs: 5536, 8452, 24835, 24863, and 36992.
Hint 3: Think about what part of the BGP RIB entry information you can use to figure out which
advertisements were originated by Egyptian ASes.)

3. Now, run your modified simple bgp parse. This time, on standard input, feed it the output of bgpdump
from the RIB file that you downloaded, concatenated with the output of bgpdump on the Update files.
(The RIB output lets us learn which prefixes are interesting, and then we can count the occurrences
of interesting withdrawals in the updates.) Note that the output of bgpdump from the RIB file is large
(about 2 GB), so if you are running on university machines, you might want to put this in /tmp rather
than in your home directory. And clean up when you’re done.

The output should now be a list of pairs of numbers; read the comment near the end of simple bgp parse.c

for a description. Using that data, draw a plot showing time on the x axis, and total number of Egyptian
prefix withdrawals seen so far on the y axis.

You can use any plotting tool you want, but we have included an example of how to use Gnuplot in the
package of code included with this problem set. Gnuplot is very useful and easy to get started with.
In the a1/gnuplot example directory, run the command gnuplot example.gpl which will produce
example.pdf. You should be able to inspect example.dat and example.gpl and modify them to suit
your purposes.

What to submit: Your plot from the last step. If everything worked, it should show a slowly increasing
number of withdrawals seen, and then it should increase quickly for a period — a “withdrawal storm”,
corresponding to the disconnection of Egypt from the Internet – and then the rate of withdrawals should
slow down again. Based on your plot, how long did that high-rate “withdrawal storm” last?

3



CS 538 Spring 2017

3 OpenFlow functionality with Mininet

Experimentation is an important part of networking research. However, large-scale experiments can some-
times be hard to achieve, e.g., due to lack of machines. In this section, you will learn how to use Mininet2,
a relatively new experimental platform that can scale to hundreds or more emulated “nodes” running on a
single machine. Mininet takes advantage of Linux support for network namespaces3 to virtualize the network
on a single machine, so that different processes on the same machine can see their own network environments
(like network interfaces, ARP tables, routing tables, etc.), distinct from other processes. Combined with the
Mininet software, this enables a single machine to emulate a network of switches and hosts. The emulated
processes, however, do see the same real/physical file system.

Mininet is designed with OpenFlow4 in mind. In this exercise, you will gain a basic understanding of
OpenFlow and create a custom OpenFlow controller to control your switches. Quite simply, OpenFlow
allows for “programmable” network devices, e.g., switches. With Mininet, each switch will connect to the
controller specified when the switch is launched. When the switch receives an Ethernet frame, it consults
its forwarding table for what to do with the frame. If it cannot determine what to do with the frame, the
switch sends the frame (and some extra information such as the input switch port) to the controller, which
will then instruct the switch on what to do with the frame. To avoid this extra work on every such frame,
the controller can install a new rule/match in the switch’s forwarding table, so that the switch can forward
future similar frames without having to contact the controller.

3.1 Prepare the Mininet VM and OpenFlow Controller

1. Install VirtualBox from https://www.virtualbox.org/wiki/Downloads. VMware should also work;
adjust your VM configurations accordingly. (It is possible to install Mininet directly on your Linux
system, but for simplicity we’ll use the virtual machine here.)

2. Download and unzip the VM with Mininet already installed from http://onlab.vicci.org/mininet-vm/

mininet-2.2.1-150420-ubuntu-14.04-server-amd64.zip

3. In VirtualBox, import the “ovf” template just unzipped. For the newly imported machine, go to
“Settings” → “Network” and make “Adapter 1” a “NAT” (Network Address Translation). If your
VM is allowed to obtain an IP address from your local network, you can alternatively use “Bridge
Adapter.” For more information on networking with VirtualBox, see http://www.virtualbox.org/

manual/ch06.html

4. Start the VM

5. Log in with mininet for both username and password

6. Make sure eth0 is up:

(a) run the command:
ifconfig eth0

(b) check the inet addr field. If it does not have an IP address, then run the command:
sudo dhclient eth0

and repeat step (a).

7. The downloaded image should have POX preinstalled. POX is a platform that allows you to write your
own OpenFlow controller using Python. Please check home folder and see if there is a folder called
“pox”. If not, please do:
git clone https://github.com/noxrepo/pox

For more information on POX, see https://openflow.stanford.edu/display/ONL/POX+Wiki

2http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
3http://lwn.net/Articles/219794/
4http://www.openflow.org/

4

https://www.virtualbox.org/wiki/Downloads
http://onlab.vicci.org/mininet-vm/mininet-2.2.1-150420-ubuntu-14.04-server-amd64.zip
http://onlab.vicci.org/mininet-vm/mininet-2.2.1-150420-ubuntu-14.04-server-amd64.zip
http://www.virtualbox.org/manual/ch06.html
http://www.virtualbox.org/manual/ch06.html
https://openflow.stanford.edu/display/ONL/POX+Wiki
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
http://lwn.net/Articles/219794/
http://www.openflow.org/


CS 538 Spring 2017

8. Install a GUI in the VM:

(a) Install the GUI
sudo apt-get update

sudo apt-get install openbox xinit -y

(b) Start it
startx

(c) To create a new terminal, right-click on the desktop and select “Terminal emulator”

Alternately you may use SSH to log in to the VM remotely, with GUI (X11) forwarding. With
SSH, you will need to enable X-forwarding (e.g., ssh -X on *NIX hosts) when you ssh into the VM.
NOTE: this requires you have an X server running on the host. See a description of how to do this
on various platforms at http://www.openflow.org/wk/index.php/OpenFlow_Tutorial#Download_

Files. Alternative for some versions of Mac OS X: install the Developer Tools (a free download from
the App Store) and open /Applications/Utilities/X11.

3.2 Create a hub in Mininet using POX

In this exercise you will create a Mininet network with 3 hosts connecting via a switch. Using POX, you will
program the switch to behave like a hub, which simply forwards incoming packets to every port except the
one on which it entered.

First, you can familiarize yourself with Mininet by following http://yuba.stanford.edu/foswiki/bin/

view/OpenFlow/MininetWalkthrough. To start Mininet with the topology we want:

• First clean up the network:
sudo mn -c

• Then create a network with the topology we want:
sudo mn --topo single,3 --mac --switch ovsk --controller remote

This will create a network with the following topology:

host h1 ------switch s1 ---- controller c0

host h2 -------/ /

host h3 --------/

After you create this network, you will be entering the Mininet console. You can type help in the console
to see a list of commands provided by Mininet. We will later use some of these commands.

Now let’s run POX controller. Create another terminal (right-click on the desktop and select “Terminal
emulator”). Go to the directory you installed POX in this new terminal, and then start POX with basic hub
function:

pox/pox.py log.level --DEBUG forwarding.hub

The argument log.level --DEBUG enables verbose logging and forwarding.hub asks POX to start the
hub component. It takes up to 15 seconds for switches to connect to the controller. When a OpenFlow
switch has connected, POX will print something like:

5

http://www.openflow.org/wk/index.php/OpenFlow_Tutorial#Download_Files
http://www.openflow.org/wk/index.php/OpenFlow_Tutorial#Download_Files
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/MininetWalkthrough
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/MininetWalkthrough


CS 538 Spring 2017

INFO:openflow.of 01:[00-00-00-00-00-01 1] connected

INFO:forwarding.hub:Hubifying 00-00-00-00-00-01

To verify the hub behavior, we use tcpdump, a common packet analyzer that intercepts and prints packet
information. To do this, we first create an xterm (terminal emulator in X Window System) for each host
in Mininet and view packets in each. To start an xterm for each host, type the following command in the
Mininet console:

xterm h1 h2 h3

You may want to arrange xterms properly so that you can see them on the screen at once. You may need
to reduce the terminal height to fit a laptop screen. In the xterms for h1 and h2, run tcpdump to capture
and print all the packets:

tcpdump -XX -n -i h1-eth0

and

tcpdump -XX -n -i h2-eth0

In the xterm for h3, send a ping to h1:

ping -c1 10.0.0.1

The ping packets are going to the controller, which floods the packet out all interfaces but the received
one. Because of this hub behavior, you should see identical ARP and ICMP packets in both xterms running
tcpdump.

Question #1: What will happen if you ping a non-existent host that doesn’t reply ICMP requests? For
example, do the following command in the xterm for h3:

ping -c1 10.0.0.9

Submit and explain the results.

Now let’s take a look at the hub code at pox/pox/forwarding/hub.py. Make sure to get familiar with
the code because many POX API functions used here will help you answer the later questions. We describe
several important API functions here, and you can find more information about POX APIs at https:

//openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-POXAPIs.

• connection.send() function sends an OpenFlow message to a switch.
When the connection between a switch and the controller established, the code will invoke handle ConnectionUp()

function that implements the hub logic.

• ofp flow mod OpenFlow message
This tells a switch to install a flow entry, which matches some fields of incoming packet headers and
executes some actions on matching packets. Important fields include:

– actions: A list of actions that apply to matching packets (e.g., ofp action output described
below).

– match: An ofp match object (described below).

– priority: When a packet matches on more than one non-exact flow entry, only the highest
priority entry will be used. Here, higher values are higher priority.

6

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-POXAPIs
https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-POXAPIs


CS 538 Spring 2017

• ofp action output class
This is an action for use with of.ofp flow mod. You can use it to assign a switch port that you want
to send the packet out of. It can also take “special” port numbers, e.g., we use OFPP FLOOD to send
the packet out all ports but the received one.

• ofp match class (not used in the hub code but is useful in the assignment) This is an object that
specifies packet header fields and input port to match on. All fields here are optional, i.e., if you do
not specify a field, it becomes a “wildcard” field and will match on anything. Some important objects
in this class:

– dl src: The data link layer (MAC) source address

– dl dst: The data link layer (MAC) destination address

– in port: The packet input switch port

Example to match packets with source MAC address 00:00:00:00:00:01 in a OpenFlow message msg:
msg.match.dl src = EthAddr("00:00:00:00:00:01")

3.3 Create a firewall

A firewall is used as a barrier to protect networked computers by blocking the malicious network traffic
generated by viruses and worms. In this assignment, you are asked to implement a data link layer firewall
to block certain traffic.

To start this, you will find a skeleton class file at a1/openflow/firewall.py. This skeleton class is
currently not blocking any traffic and you will need to modify this skeleton code to add your own logic later.
To test the firewall, put the firewall.py in the pox/pox/misc directory and run the POX controller:

./pox.py log.level --DEBUG forwarding.hub misc.firewall

After the connection between the controller and the switch is established, we can verify the connectivity
between all pairs of hosts by typing pingall in the Mininet console. Note that when ping cannot get through
a pair of hosts, you need to wait for the timeout, which takes about 10 seconds.

Question #2: Modify the firewall (firewall.py) to block traffic with source MAC address 00:00:00:00:00:02
and destination MAC address 00:00:00:00:00:03. To show the result, you can use the command pingall and
copy the output to your report. (Hint 1: this only takes a few lines of code. Hint 2: if you did not specify
any action in a OpenFlow message, then matching packets will be dropped.)

What to submit:

1. Your completed firewall.py

2. Results and your interpretation/explanation for both questions.

Note:

1. To get your files off the VM, you can scp or ftp them to some other machine. Or you can install the
GUI (instructions in PDF) and then ”sudo apt-get install firefox” and then launch the GUI and use
firefox to upload/email the files off the machine.

7


	Introduction
	The Global Internet
	Getting started
	Measuring Egyptian route withdrawals

	OpenFlow functionality with Mininet
	Prepare the Mininet VM and OpenFlow Controller
	Create a hub in Mininet using POX
	Create a firewall


