Data Plane Verification: Anteater and VeriFlow

Brighten Godfrey University of Illinois at Urbana-Champaign

Work with Ahmed Khurshid, Haohui Mai, Kelvin Zou, Wenxuan Zhou, Rachit Agarwal, Matthew Caesar, and Sam King

December 5, 2013

Managing networks is challenging

Production networks are complex

- Security policies
- Traffic engineering
- Legacy devices
- Protocol inter-dependencies
- •

- Even well-managed networks have downtime & security vulnerabilities
- Few good tools to ensure all networking components working together correctly

A real example from UIUC

Previously, an intrusion detection and prevention (IDP) device inspected all traffic to/from dorms

IDP couldn't handle load; added bypass

- IDP only inspected traffic between dorm and campus
- Seemingly simple changes

How do you know if it worked?

Understanding your network

Flow monitoring

Screenshot from Scrutinizer NetFlow & sFlow analyzer, snmp.co.uk/scrutinizer/

```
hostname bgpdA
password zebra
router bgp 8000
 bgp router-id 10.1.4.2
! for the link between A and B
  neighbor 10.1.2.3 remote-as 8000
 neighbor 10.1.2.3 update-source 100
 network 10.0.0.0/7
! for the link between A and C
  neighbor 10.1.3.3 remote-as 7000
 neighbor 10.1.3.3 ebgp-multihop
 neighbor 10.1.3.3 next-hop-self
  neighbor 10.1.3.3 route-map PP out
! for link between A and D
  neighbor 10.1.4.3 remote-as 6000
 neighbor 10.1.4.3 ebgp-multihop
 neighbor 10.1.4.3 next-hop-self
 neighbor 10.1.4.3 route-map TagD in
! route update filtering
  ip community-list 1 permit 8000:1000
```

Configuration verification

Past approach: Config. verification

e.g.: RCC for BGP

[Feamster & Balakrishnan, NSDI'05]

Margrave for firewalls
[Nelson, Barratt, Dougherty, Fisler, Krishnamurthi,

LISA'10]

Data plane verification

Our approach: Verify the network as close as possible to its actual behavior

Data plane verification

Our approach: Verify the network as close as possible to its actual behavior

Architecture overview

Invariants from library or custom

2

Diagnosis

Confirmation of correctness, or violated invariants & counterexamples (vulnerabilities)

Veriflow Network Verification Layer

Construct formal model of network behavior Check queried invariants against model

Network

Routers, switches, firewalls, ...

Our Two Tools

Anteater

- [Mai, Khurshid, Agarwal, Caesar, Godfrey, King, SIGCOMM 2011]
- Offline verification of data plane

VeriFlow

- [Khurshid, Zhou, Caesar, Godfrey, HotSDN 2012 (best paper)]
- [Khurshid, Zou, Zhou, Caesar, Godfrey, NSDI 2013]
- Online real-time verification of data plane
- Interoperates with OpenFlow controller

VeriFlow's mission

Is it possible to check network-wide invariants in real time as the network evolves?

network evolves!

THE TOTAL CHIEF AS THE

Not so simple

Challenge #1: Obtaining real time view of network

Solution: interpose between Software Defined
 Networking (SDN) controller and routers/switches

Challenge #2: Verification speed

- Past tools too slow and/or not incremental
- Solution: Algorithms:-)

VeriFlow architecture

VeriFlow architecture

Verifying invariants quickly

Find only equivalence classes affected by the update via a multidimensional trie data structure

Verifying invariants quickly

All the info to answer queries!

Verifying invariants quickly

Diagnosis report

- Type of invariant violation
- Affected set of packets

Evaluation

Simulated network

- Real-world BGP routing tables (RIBs) from RouteViews totaling 5 million RIB entries
- Injected into 172-router network (AS 1755 topology)

Measure time to process each forwarding change

- 90,000 updates from Route Views
- Check for loops and black holes

Microbenchmark latency

97.8% of updates verified within I ms

UIUC deployment

Deployed Anteater and VeriFlow in University of Illinois campus backbone

- 244 routers, serving 70,000+ machines
- Predominantly OSPF, BGP, and static routing
- State collected via vty scripts

Forwarding loops

IDP was overloaded, operator introduced bypass

 IDP only inspected traffic for campus

bypass routed campus traffic to IDP through static routes

Introduced 9 loops

Errors discovered

Loops in internal network

Externally-exploitable DoS vulnerability

Packet loss due to 'stale' configs

Inconsistent security policy: over-exposure of router management interface

Duplicate IP addresses on router interfaces

Router vendor software error: faulty config output

Related work

Configuration verification

 [Al-Shaer2004, Bartal 1999, Benson2009, Feamster2005, Yuan2006]

Data plane verification

- Static reachability in IP networks [Bush'03, Xie'05]
- FlowChecker [Al-Shaer, Al-Haj, SafeConfig '10]
- ConfigChecker [Al-Shaer, Al-Saleh, SafeConfig'll]
- Header Space Analysis [Kazemian, Varghese, and McKeown, NSDI '12]
- NetPlumber [Kazemian, Chang, Zeng, Varghese, McKeown, Whyte, NSDI '13]

What we've seen

Data plane verification is valuable

- Unified network-wide analysis across protocols
- Demonstrated effectiveness in large campus network

Real-time verification is feasible

• millisecond timescales enabled by SDN + algorithms

