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this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.
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Early controllers

NOX [Gude, Koponen, Pettit, Pfaff, Casado, McKeown, Shenker, CCR 2008]	



• First OF controller: centralized network view provided 
to multiple control apps as a database	



• Behind the scenes, handles state collection & distribution	


• Control “language” is low-level flow rules (almost OF)

NOX Controller
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Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

We argue for an affirmative answer to this question via proof-
by-example; herein we describe a network operating system
called NOX (freely available at http://www.noxrepo.org)
that achieves the goals outlined above.

Given the space limitations, we only give a cursory descrip-
tion of NOX, starting with an overview (Section 2), followed
by a sketch of NOX’s programmatic interface (Section 3) and
a discussion of a few NOX-based management applications
(Section 4). We discuss related work in Section 5, but be-
fore going further we want to emphasize NOX’s intellectual
indebtedness to the 4D project [3, 8, 14] and to the SANE
[7] and Ethane [6] designs. NOX is also similar in spirit, but
complementary in emphasis, to the Maestro system [4] which
was developed in parallel.

2 NOX Overview
We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.

Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in a
database running on one of the servers).4 The network view
contains the results of NOX’s network observations; appli-
cations use this state to make management decisions. For
NOX to control network traffic, it must manipulate network
switches; for this purpose we have chosen to use switches
that support the OpenFlow (OF) switch abstraction [1, 12],
which we describe later in this section.

Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
4For resilience, this database can be replicated, but these
replicas must be kept consistent (as can be done using tradi-
tional replicated database techniques).

observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, subsequent packets with the same header are
treated in the same way. With this flow-based granularity, we
were able to build a system that can scale to large networks
while still providing flexible control.

Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

hheader : counters, actionsi

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.

Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and

5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.



NOX code example (from paper)

# On user authentication, statically setup VLAN tagging	


# rules at the user’s first hop switch	


def setup_user_vlan(dp, user, port, host):	


	

 vlanid = user_to_vlan_function(user)	


	

 # For packets from the user, add a VLAN tag	


	

 attr_out[IN_PORT] = port	


	

 attr_out[DL_SRC] = nox.reverse_resolve(host).mac	


	

 action_out = [(nox.OUTPUT, (0, nox.FLOOD)),	


	

 	

 (nox.ADD_VLAN, (vlanid))]	


	

 install_datapath_flow(dp, attr_out, action_out)	


	

 # For packets to the user with the VLAN tag, remove it	


	

 attr_in[DL_DST] = 	

 nox.reverse_resolve(host).mac	


	

 attr_in[DL_VLAN] = vlanid	


	

 action_in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL_VLAN)] 	


	

 install_datapath_flow(dp, attr_in, action_in)	


nox.register_for_user_authentication(setup_user_vlan)

Match specific	


set of packets



NOX code example (from paper)

# On user authentication, statically setup VLAN tagging	


# rules at the user’s first hop switch	


def setup_user_vlan(dp, user, port, host):	


	

 vlanid = user_to_vlan_function(user)	


	

 # For packets from the user, add a VLAN tag	


	

 attr_out[IN_PORT] = port	


	

 attr_out[DL_SRC] = nox.reverse_resolve(host).mac	


	

 action_out = [(nox.OUTPUT, (0, nox.FLOOD)),	


	

 	

 (nox.ADD_VLAN, (vlanid))]	


	

 install_datapath_flow(dp, attr_out, action_out)	


	

 # For packets to the user with the VLAN tag, remove it	


	

 attr_in[DL_DST] = 	

 nox.reverse_resolve(host).mac	


	

 attr_in[DL_VLAN] = vlanid	


	

 action_in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL_VLAN)] 	


	

 install_datapath_flow(dp, attr_in, action_in)	


nox.register_for_user_authentication(setup_user_vlan)

Match specific	


set of packets
Construct action



NOX code example (from paper)

# On user authentication, statically setup VLAN tagging	


# rules at the user’s first hop switch	


def setup_user_vlan(dp, user, port, host):	


	

 vlanid = user_to_vlan_function(user)	


	

 # For packets from the user, add a VLAN tag	


	

 attr_out[IN_PORT] = port	


	

 attr_out[DL_SRC] = nox.reverse_resolve(host).mac	


	

 action_out = [(nox.OUTPUT, (0, nox.FLOOD)),	


	

 	

 (nox.ADD_VLAN, (vlanid))]	


	

 install_datapath_flow(dp, attr_out, action_out)	


	

 # For packets to the user with the VLAN tag, remove it	


	

 attr_in[DL_DST] = 	

 nox.reverse_resolve(host).mac	


	

 attr_in[DL_VLAN] = vlanid	


	

 action_in = [(nox.OUTPUT, (0, nox.FLOOD)), (nox.DEL_VLAN)] 	


	

 install_datapath_flow(dp, attr_in, action_in)	


nox.register_for_user_authentication(setup_user_vlan)

Match specific	


set of packets
Construct action

Apply flow entry	


to specific switch



Pyretic: higher-level abstractions

Composing SDNs [Monsanto, Reich, Foster, Rexford, Walker, NSDI 2013]	



Key idea: modularize software	



• Write specific functionality in each module without 
worrying about others	



• Describe high-level composition of modules	


• Pyretic takes care of the details



Pyretic abstractions

Sequential composition (x >> y)	



Parallel composition (x | y)

Monitor
srcip=5.6.7.8! count

Route
dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Load-balance
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2

Compiled Prioritized Rule Set for “Monitor | Route”
srcip=5.6.7.8,dstip=10.0.0.1! count,fwd(1)
srcip=5.6.7.8,dstip=10.0.0.2! count,fwd(2)
srcip=5.6.7.8! count

dstip=10.0.0.1! fwd(1)

dstip=10.0.0.2! fwd(2)

Compiled Prioritized Rule Set for “Load-balance >> Route”
srcip=0*,dstip=1.2.3.4! dstip=10.0.0.1,fwd(1)
srcip=1*,dstip=1.2.3.4! dstip=10.0.0.2,fwd(2)

Figure 1: Parallel and Sequential Composition.

each module to operate on its own abstract view of the
network. Programmers can define network objects that
naturally constrain what a module can see (information
hiding) and do (protection), extending previous work on
topology abstraction techniques [4, 17, 10, 25].

The Pyretic Language and System. Pyretic is a new
language and system that enables programmers to spec-
ify network policies at a high level of abstraction, com-
pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
Pyretic’s composition operators and topology abstraction
mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
information between modules, and a library for defining
and composing policies. Section 4 introduces network
objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
offer simple, yet powerful, ways to combine policies
generated by different modules. Network objects (Sec-

tion 2.2) allow policies to operate on abstract locations
that map—through one or more levels of indirection—to
ones in the physical network.

2.1 Parallel and Sequential Composition Operators
Parallel and sequential composition are two central
mechanisms for specifying the relationship between
packet-processing policies. Figure 1 illustrates these ab-
stractions through two examples in which policies are
specified via prioritized lists of OpenFlow-like rules.
Each rule includes a pattern (field=value) that matches
on bits in the packet header (e.g., source and destina-
tion MAC addresses, IP addresses, and TCP/UDP port
numbers), and simple actions the switch should perform
(e.g., drop, flood, forward out a port, rewrite a header
field, or count1 matching packets). When a packet ar-
rives, the switch (call it s) identifies the first matching
rule and performs the associated actions. Note that one
may easily think of such a list of rules as a function: The
function input is a packet at a particular inport on s and
the function output is a multiset of zero or more pack-
ets on various outports of s (zero output packets if the
matching rule drops the input packet; one output if it for-
wards the input; and one or more if it floods). We call a
packet together with its location a located packet.

Parallel Composition (|): Parallel composition gives
the illusion of multiple policies operating concurrently
on separate copies of the same packets [6, 14]. Given two
policy functions f and g operating on a located packet
p, parallel composition computes the multiset union of
f (p) and g(p)—that is, every located packet produced by
either policy. For example, suppose a programmer writes
one module to monitor traffic by source IP address, and
another to route traffic by destination IP address. The
monitoring module (Figure 1, top-left) comprises a sim-
ple policy that consists of a single rule applying the count
action to packets matching source IP address 5.6.7.8.
The routing module (Figure 1, top-middle) consists of
two rules, each matching on a destination IP address and
forwarding packets out the specified port. Each module

1The OpenFlow API does not have an explicit count action; in-
stead, every rule includes byte and packet counters. We consider
count as an explicit action for ease of exposition.
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topology abstraction techniques [4, 17, 10, 25].
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pose them together in a variety of ways, and execute
them on abstract network topologies. Running Pyretic
programs efficiently relies on having a run-time system
that performs composition and topology mapping to gen-
erate rules to install in the switches. Our initial proto-
type, built on top of POX [19], is a simple interpreter
that handles each packet at the controller. While suffi-
cient to execute and test Pyretic programs, it does not
provide realistic performance. In our ongoing work, we
are extending our run-time system to proactively gener-
ate and install OpenFlow rules, building on our previous
research [14].

The next section presents a top-down overview of
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mechanisms. The following two sections then explain
each in detail, building a complete picture of Pyretic
from the bottom up. Section 3 presents the Pyretic lan-
guage, including an abstract packet model that conveys
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objects, which allow each module to apply a policy over
its own abstract topology, and describes how our run-
time system executes Pyretic programs. To evaluate the
language, Section 5 presents example applications run-
ning on our Pyretic prototype. After reviewing related
work in Section 6, we conclude in Section 7.

2 Abstractions for Modular Programming
Building modular SDN applications requires support for
composition of multiple independent modules that each
partially specify how traffic should be handled. The par-
allel and sequential composition operators (Section 2.1)
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Key points: (1) modularize functionality;	


(2) programmer avoids combinatorial explosion



Pyretic abstractions

Sequential composition (x >> y)	



Parallel composition (x | y)	



Topology virtualization	



• e.g., network could be “one big switch”	


• or a single switch could be virtualized to many	



Virtual packet headers	



• Modules can annotate packets	


• Pass information between modules, carry in packets	


• Example of use?



Pyretic discussion from reviews

Performance and scalability	



• What challenges would Pyretic face?	



What happens when the network changes?	



• Need to adjust policies automatically	


• Consistent updates	



Language features



Discussion

What do you want the controller to do for you?
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