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Figure 1: Memcache as a demand-filled look-aside
cache. The left half illustrates the read path for a web
server on a cache miss. The right half illustrates the
write path.

forth, we use ‘memcached’ to refer to the source code
or a running binary and ‘memcache’ to describe the dis-
tributed system.
Query cache: We rely on memcache to lighten the read
load on our databases. In particular, we use memcache
as a demand-filled look-aside cache as shown in Fig-
ure 1. When a web server needs data, it first requests
the value from memcache by providing a string key. If
the item addressed by that key is not cached, the web
server retrieves the data from the database or other back-
end service and populates the cache with the key-value
pair. For write requests, the web server issues SQL state-
ments to the database and then sends a delete request to
memcache that invalidates any stale data. We choose to
delete cached data instead of updating it because deletes
are idempotent. Memcache is not the authoritative source
of the data and is therefore allowed to evict cached data.

While there are several ways to address excessive
read traffic on MySQL databases, we chose to use
memcache. It was the best choice given limited engi-
neering resources and time. Additionally, separating our
caching layer from our persistence layer allows us to ad-
just each layer independently as our workload changes.
Generic cache: We also leverage memcache as a more
general key-value store. For example, engineers use
memcache to store pre-computed results from sophisti-
cated machine learning algorithms which can then be
used by a variety of other applications. It takes little ef-
fort for new services to leverage the existing marcher
infrastructure without the burden of tuning, optimizing,
provisioning, and maintaining a large server fleet.

As is, memcached provides no server-to-server co-
ordination; it is an in-memory hash table running on
a single server. In the remainder of this paper we de-
scribe how we built a distributed key-value store based
on memcached capable of operating under Facebook’s
workload. Our system provides a suite of configu-
ration, aggregation, and routing services to organize
memcached instances into a distributed system.
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Figure 2: Overall architecture
We structure our paper to emphasize the themes that

emerge at three different deployment scales. Our read-
heavy workload and wide fan-out is the primary con-
cern when we have one cluster of servers. As it becomes
necessary to scale to multiple frontend clusters, we ad-
dress data replication between these clusters. Finally, we
describe mechanisms to provide a consistent user ex-
perience as we spread clusters around the world. Op-
erational complexity and fault tolerance is important at
all scales. We present salient data that supports our de-
sign decisions and refer the reader to work by Atikoglu
et al. [8] for a more detailed analysis of our workload. At
a high-level, Figure 2 illustrates this final architecture in
which we organize co-located clusters into a region and
designate a master region that provides a data stream to
keep non-master regions up-to-date.

While evolving our system we prioritize two ma-
jor design goals. (1) Any change must impact a user-
facing or operational issue. Optimizations that have lim-
ited scope are rarely considered. (2) We treat the prob-
ability of reading transient stale data as a parameter to
be tuned, similar to responsiveness. We are willing to
expose slightly stale data in exchange for insulating a
backend storage service from excessive load.

3 In a Cluster: Latency and Load
We now consider the challenges of scaling to thousands
of servers within a cluster. At this scale, most of our
efforts focus on reducing either the latency of fetching
cached data or the load imposed due to a cache miss.

3.1 Reducing Latency
Whether a request for data results in a cache hit or miss,
the latency of memcache’s response is a critical factor
in the response time of a user’s request. A single user
web request can often result in hundreds of individual

[from Nishtala et al., Scaling Memcache at Facebook, NSDI 2013]
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We implemented an adaptive allocator that period-
ically re-balances slab assignments to match the cur-
rent workload. It identifies slab classes as needing more
memory if they are currently evicting items and if the
next item to be evicted was used at least 20% more re-
cently than the average of the least recently used items in
other slab classes. If such a class is found, then the slab
holding the least recently used item is freed and trans-
ferred to the needy class. Note that the open-source com-
munity has independently implemented a similar allo-
cator that balances the eviction rates across slab classes
while our algorithm focuses on balancing the age of the
oldest items among classes. Balancing age provides a
better approximation to a single global Least Recently
Used (LRU) eviction policy for the entire server rather
than adjusting eviction rates which can be heavily influ-
enced by access patterns.

6.3 The Transient Item Cache

While memcached supports expiration times, entries
may live in memory well after they have expired.
Memcached lazily evicts such entries by checking ex-
piration times when serving a get request for that item
or when they reach the end of the LRU. Although effi-
cient for the common case, this scheme allows short-
lived keys that see a single burst of activity to waste
memory until they reach the end of the LRU.

We therefore introduce a hybrid scheme that relies on
lazy eviction for most keys and proactively evicts short-
lived keys when they expire. We place short-lived items
into a circular buffer of linked lists (indexed by sec-
onds until expiration) – called the Transient Item Cache
– based on the expiration time of the item. Every sec-
ond, all of the items in the bucket at the head of the
buffer are evicted and the head advances by one. When
we added a short expiration time to a heavily used set of
keys whose items have short useful lifespans; the pro-
portion of memcache pool used by this key family was
reduced from 6% to 0.3% without affecting the hit rate.

6.4 Software Upgrades

Frequent software changes may be needed for upgrades,
bug fixes, temporary diagnostics, or performance test-
ing. A memcached server can reach 90% of its peak hit
rate within a few hours. Consequently, it can take us over
12 hours to upgrade a set of memcached servers as the re-
sulting database load needs to be managed carefully. We
modified memcached to store its cached values and main
data structures in System V shared memory regions so
that the data can remain live across a software upgrade
and thereby minimize disruption.
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Figure 9: Cumulative distribution of the number of dis-
tinct memcached servers accessed

7 Memcache Workload
We now characterize the memcache workload using data
from servers that are running in production.

7.1 Measurements at the Web Server
We record all memcache operations for a small percent-
age of user requests and discuss the fan-out, response
size, and latency characteristics of our workload.
Fanout: Figure 9 shows the distribution of distinct
memcached servers a web server may need to contact
when responding to a page request. As shown, 56%
of all page requests contact fewer than 20 memcached
servers. By volume, user requests tend to ask for small
amounts of cached data. There is, however, a long tail to
this distribution. The figure also depicts the distribution
for one of our more popular pages that better exhibits
the all-to-all communication pattern. Most requests of
this type will access over 100 distinct servers; accessing
several hundred memcached servers is not rare.
Response size: Figure 10 shows the response sizes from
memcache requests. The difference between the median
(135 bytes) and the mean (954 bytes) implies that there
is a very large variation in the sizes of the cached items.
In addition there appear to be three distinct peaks at ap-
proximately 200 bytes and 600 bytes. Larger items tend
to store lists of data while smaller items tend to store
single pieces of content.
Latency: We measure the round-trip latency to request
data from memcache, which includes the cost of rout-
ing the request and receiving the reply, network transfer
time, and the cost of deserialization and decompression.
Over 7 days the median request latency is 333 microsec-
onds while the 75th and 95th percentiles (p75 and p95)
are 475µs and 1.135ms respectively. Our median end-
to-end latency from an idle web server is 178µs while
the p75 and p95 are 219µs and 374µs, respectively. The

(from web server for single web request)

[from Nishtala et al., Scaling Memcache at 
Facebook, NSDI 2013]
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Simplified Bing workflow
Speeding up Distributed Request-Response Workflows

Virajith Jalaparti (UIUC) Peter Bodik Srikanth Kandula
Ishai Menache Mikhail Rybalkin (Steklov Math Inst.) Chenyu Yan

Microsoft

Abstract– We found that interactive services at Bing have
highly variable datacenter-side processing latencies because
their processing consists of many sequential stages, paral-
lelization across 10s-1000s of servers and aggregation of re-
sponses across the network. To improve the tail latency of
such services, we use a few building blocks: reissuing laggards
elsewhere in the cluster, new policies to return incomplete re-
sults and speeding up laggards by giving them more resources.
Combining these building blocks to reduce the overall latency
is non-trivial because for the same amount of resource (e.g.,
number of reissues), different stages improve their latency
by different amounts. We present Kwiken, a framework
that takes an end-to-end view of latency improvements and
costs. It decomposes the problem of minimizing latency over
a general processing DAG into a manageable optimization
over individual stages. Through simulations with production
traces, we show sizable gains; the 99th percentile of latency
improves by over 50% when just 0.1% of the responses are
allowed to have partial results and by over 40% for 25% of the
services when just 5% extra resources are used for reissues.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distribu-
ted Systems – Distributed applications

Keywords

Interactive services; Tail latency; Optimization; Reissues;
Partial results

1. INTRODUCTION
Modern interactive services are built from many disjoint

parts and hence, are best represented as directed acyclic
graphs. Nodes in the graph correspond to a specific function-
ality that may involve one or more servers or switches. Edges
represent input-output dependencies. For example, Fig. 1
shows a simplified DAG corresponding to the web-search
service at Bing, one of the major search engines today. In
this paper, we use the term workflow to refer to such a DAG
and stage to refer to a node in the DAG.

Analyzing production traces from hundreds of user-facing
services at Bing reveals that the end-to-end response latency
is quite variable. Despite significant developer effort, we

Looking up the index 
for a document

(network) Lag to 
collect responses Snippet generation

Doc. 
Lookup

…
…

…

Snippet 
Generator

Snippet 
Generator

Snippet 
Generator

Snippet 
Generator

Figure 1: A simplified version of the workflow used for
web-search at Bing.

found over 30% of the examined services have 95th (and 99th)
percentile of latency 3X (and 5X) their median latency.

Delivering low and predictable latency is valuable: several
studies show that slow and unpredictable responses degrade
user experience and hence lead to lower revenue [8, 9, 22].
Further, these services represent sizable investments in terms
of cluster hardware and software, so any improvements would
be a competitive advantage.

We believe that the increase in variability is because mod-
ern datacenter services have workflows that are long and
highly parallel. In contrast, a typical web service workflow
has a length of two (a web-server and a database) and a width
of one. As we show in §2, the median workflow in production
at Bing has 15 stages and 10% of the stages process the query
in parallel on 1000s of servers. Significant delays at any of
these servers manifest as end-to-end delays. To see why, as a
rule of thumb, the 99th percentile of an n-way parallel stage
depends on the 99.99th percentile of the individual server
latencies for n = 100 (or 99.999th for n = 1000).
While standard techniques exist to reduce the latency

tail [10], applying them to reduce end-to-end latency is diffi-
cult for various reasons. First, different stages benefit differ-
ently from different techniques. For example, request reissues
work best for stages with low mean and high variance of la-
tency. Second, end-to-end effects of local actions depend on
topology of the workflow; reducing latency of stages usually
off the critical path does not improve end-to-end latency.
Finally, many techniques have overhead, such as increased
resource usage when reissuing a request. For these reasons,
latency reduction techniques today are applied at the level
of individual stages, without clear understanding of their
total cost and the achieved latency reduction. Therefore,
without an end-to-end approach, the gains achieved by such
techniques are limited.

In this paper, we present a holistic framework that consid-
ers the latency distribution in each stage, the cost of applying
individual techniques and the workflow structure to deter-
mine how to use each technique in each stage to minimize
end-to-end latency. To appreciate the challenge, consider
splitting the reissue budget between two stages, 1 and 2, in
a serial workflow. Fig. 2a shows how the variance of the
latency of these two stages (Var1 and Var2, respectively)
varies with the fraction of the total budget allocated to Stage
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Implications	



• Need extreme performance	


• Exceptional conditions become the common case



Key design goal: scale to billions

A cornucopia of systems optimizations	



• Aggregate queries across threads, compression, batching 
requests in one packet, custom malloc, use UDP, client 
flow control to avoid incast, …	



• One master region handles writes, others read-only	



Keep memcache servers simple	



• Only talk to web clients	


• Web clients handle complexity (e.g., installing cached 

values, carrying tokens, error recovery)	



Pr[stale] is tunable, not a correctness problem



Aside: what’s TCP incast?

Figures from CMU PDL INCAST project:	


http://www.pdl.cmu.edu/Incast/

http://www.pdl.cmu.edu/Incast/


Interesting observations

Warmup takes hours! (How did they handle this?)	



• Bring up new cluster fast by moving content from 
already-warm memcache cluster	



• memcached servers store cached values semi-persistently	


- in shared memory region	


- doesn’t die when memcached process is killed or 

upgraded!	



Intriguing questions	



• What would happen if you shut off Facebook and turned 
it back on again?	



• What if you shut off the Internet and turned it back on 
again?



“Tail at Scale” [Dean and Barroso]

Key problem identified?	



• Exceptional conditions become the common case 
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systems with shared computational 
resources exhibit performance fluctua-
tions beyond the control of application 
developers. Google has therefore found 
it advantageous to develop tail-tolerant 
techniques that mask or work around 
temporary latency pathologies, instead 
of trying to eliminate them altogether. 
We separate these techniques into two 
main classes: The first corresponds to 
within-request immediate-response 
techniques that operate at a time scale 
of tens of milliseconds, before longer-
term techniques have a chance to react. 
The second consists of cross-request 
long-term adaptations that perform on 
a time scale of tens of seconds to min-
utes and are meant to mask the effect of 
longer-term phenomena. 

Within Request Short-Term  
Adaptations 
A broad class of Web services deploy 
multiple replicas of data items to pro-
vide additional throughput capacity and 
maintain availability in the presence of 
failures. This approach is particularly 
effective when most requests operate on 
largely read-only, loosely consistent da-
tasets; an example is a spelling-correc-
tion service that has its model updated 
once a day while handling thousands of 
correction requests per second. Simi-
larly, distributed file systems may have 
multiple replicas of a given data chunk 
that can all be used to service read re-
quests. The techniques here show how 
replication can also be used to reduce 
latency variability within a single high-
er-level request: 

Hedged requests. A simple way to 
curb latency variability is to issue the 
same request to multiple replicas and 
use the results from whichever replica 
responds first. We term such requests 
“hedged requests” because a client first 
sends one request to the replica be-
lieved to be the most appropriate, but 
then falls back on sending a secondary 
request after some brief delay. The cli-
ent cancels remaining outstanding re-
quests once the first result is received. 
Although naive implementations of 
this technique typically add unaccept-
able additional load, many variations 
exist that give most of the latency-re-
duction effects while increasing load 
only modestly. 

One such approach is to defer send-
ing a secondary request until the first 

request has been outstanding for more 
than the 95th-percentile expected la-
tency for this class of requests. This 
approach limits the additional load to 
approximately 5% while substantially 
shortening the latency tail. The tech-
nique works because the source of la-
tency is often not inherent in the par-
ticular request but rather due to other 
forms of interference. For example, in 
a Google benchmark that reads the val-
ues for 1,000 keys stored in a BigTable 
table distributed across 100 different 
servers, sending a hedging request after 
a 10ms delay reduces the 99.9th-percen-
tile latency for retrieving all 1,000 values 
from 1,800ms to 74ms while sending 
just 2% more requests. The overhead of 
hedged requests can be further reduced 
by tagging them as lower priority than 
the primary requests. 

Tied requests. The hedged-requests 
technique also has a window of vulner-

ability in which multiple servers can 
execute the same request unnecessar-
ily. That extra work can be capped by 
waiting for the 95th-percentile expect-
ed latency before issuing the hedged 
request, but this approach limits the 
benefits to only a small fraction of re-
quests. Permitting more aggressive 
use of hedged requests with moderate 
resource consumption requires faster 
cancellation of requests. 

A common source of variability is 
queueing delays on the server before 
a request begins execution. For many 
services, once a request is actually 
scheduled and begins execution, the 
variability of its completion time goes 
down substantially. Mitzenmacher10 
said allowing a client to choose between 
two servers based on queue lengths at 
enqueue time exponentially improves 
load-balancing performance over a uni-
form random scheme. We advocate not 
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Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured 
from root node of the tree). 

50%ile latency 95%ile latency 99%ile latency

One random leaf finishes 1ms 5ms 10ms

95% of all leaf  
requests finish

12ms 32ms 70ms

100% of all leaf  
requests finish

40ms 87ms 140ms

[Dean and Barroso, CACM 2013]
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systems with shared computational 
resources exhibit performance fluctua-
tions beyond the control of application 
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temporary latency pathologies, instead 
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We separate these techniques into two 
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of tens of milliseconds, before longer-
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The second consists of cross-request 
long-term adaptations that perform on 
a time scale of tens of seconds to min-
utes and are meant to mask the effect of 
longer-term phenomena. 

Within Request Short-Term  
Adaptations 
A broad class of Web services deploy 
multiple replicas of data items to pro-
vide additional throughput capacity and 
maintain availability in the presence of 
failures. This approach is particularly 
effective when most requests operate on 
largely read-only, loosely consistent da-
tasets; an example is a spelling-correc-
tion service that has its model updated 
once a day while handling thousands of 
correction requests per second. Simi-
larly, distributed file systems may have 
multiple replicas of a given data chunk 
that can all be used to service read re-
quests. The techniques here show how 
replication can also be used to reduce 
latency variability within a single high-
er-level request: 

Hedged requests. A simple way to 
curb latency variability is to issue the 
same request to multiple replicas and 
use the results from whichever replica 
responds first. We term such requests 
“hedged requests” because a client first 
sends one request to the replica be-
lieved to be the most appropriate, but 
then falls back on sending a secondary 
request after some brief delay. The cli-
ent cancels remaining outstanding re-
quests once the first result is received. 
Although naive implementations of 
this technique typically add unaccept-
able additional load, many variations 
exist that give most of the latency-re-
duction effects while increasing load 
only modestly. 

One such approach is to defer send-
ing a secondary request until the first 

request has been outstanding for more 
than the 95th-percentile expected la-
tency for this class of requests. This 
approach limits the additional load to 
approximately 5% while substantially 
shortening the latency tail. The tech-
nique works because the source of la-
tency is often not inherent in the par-
ticular request but rather due to other 
forms of interference. For example, in 
a Google benchmark that reads the val-
ues for 1,000 keys stored in a BigTable 
table distributed across 100 different 
servers, sending a hedging request after 
a 10ms delay reduces the 99.9th-percen-
tile latency for retrieving all 1,000 values 
from 1,800ms to 74ms while sending 
just 2% more requests. The overhead of 
hedged requests can be further reduced 
by tagging them as lower priority than 
the primary requests. 

Tied requests. The hedged-requests 
technique also has a window of vulner-

ability in which multiple servers can 
execute the same request unnecessar-
ily. That extra work can be capped by 
waiting for the 95th-percentile expect-
ed latency before issuing the hedged 
request, but this approach limits the 
benefits to only a small fraction of re-
quests. Permitting more aggressive 
use of hedged requests with moderate 
resource consumption requires faster 
cancellation of requests. 

A common source of variability is 
queueing delays on the server before 
a request begins execution. For many 
services, once a request is actually 
scheduled and begins execution, the 
variability of its completion time goes 
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How do these two papers approach replication?	



• Google’s “tail at scale”	


• Facebook’s scaled memcached



Discussion question

How do these two papers approach replication?	



• Facebook’s scaled memcached	


- Goal: scaling efficiently	


- Data in memory => minimize replicated data to 

maximize cache size	


- Replication is used to increase throughput	



!

• Google’s “tail at scale”	


- Goal: consistent performance	


- Data replicated for reliability, enabling …	


- …replicated requests (“hedged”)	


- …replicated requests with cancellation (“tied”)



Announcements

Assignment 2	



• Solution key posted	


• Feedback will be emailed to you this week	



Thursday	



• Composing SDNs [Monsanto et al., NSDI 2013]	



Next Tuesday	



• Presentations by those who can’t make poster session	


• Ping us to schedule	


• Online students: we’ll be in touch


