
Cloud Services
Brighten Godfrey

CS 538 December 3 2013

slides ©2010-2013 by Brighten Godfrey unless otherwise noted

Cloud service architecture

386 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

database

web
server

memcache

1. get k 2. SELECT ...

3. set (k,v)

database

web
server

memcache

2. delete k

1. UPDATE ...

Figure 1: Memcache as a demand-filled look-aside
cache. The left half illustrates the read path for a web
server on a cache miss. The right half illustrates the
write path.

forth, we use ‘memcached’ to refer to the source code
or a running binary and ‘memcache’ to describe the dis-
tributed system.
Query cache: We rely on memcache to lighten the read
load on our databases. In particular, we use memcache
as a demand-filled look-aside cache as shown in Fig-
ure 1. When a web server needs data, it first requests
the value from memcache by providing a string key. If
the item addressed by that key is not cached, the web
server retrieves the data from the database or other back-
end service and populates the cache with the key-value
pair. For write requests, the web server issues SQL state-
ments to the database and then sends a delete request to
memcache that invalidates any stale data. We choose to
delete cached data instead of updating it because deletes
are idempotent. Memcache is not the authoritative source
of the data and is therefore allowed to evict cached data.

While there are several ways to address excessive
read traffic on MySQL databases, we chose to use
memcache. It was the best choice given limited engi-
neering resources and time. Additionally, separating our
caching layer from our persistence layer allows us to ad-
just each layer independently as our workload changes.
Generic cache: We also leverage memcache as a more
general key-value store. For example, engineers use
memcache to store pre-computed results from sophisti-
cated machine learning algorithms which can then be
used by a variety of other applications. It takes little ef-
fort for new services to leverage the existing marcher
infrastructure without the burden of tuning, optimizing,
provisioning, and maintaining a large server fleet.

As is, memcached provides no server-to-server co-
ordination; it is an in-memory hash table running on
a single server. In the remainder of this paper we de-
scribe how we built a distributed key-value store based
on memcached capable of operating under Facebook’s
workload. Our system provides a suite of configu-
ration, aggregation, and routing services to organize
memcached instances into a distributed system.

!
!
!
!
!
!

!
!
!
!
!
!

"#$%&'(%)!
*+,-&.#-!

!
!
!
!
!
!

!"#$%"&'"&$

(")*+*,"$

/&$#01.!*+,-&.#!230-&.#4!

!
!
!
!
!
!

!
!
!
!
!
!

"#$%&'(%)!
*+,-&.#-!

!
!
!
!
!
!

!"#$%"&'"&$

(")*+*,"$

/&$#01.!*+,-&.#!2/+05.4!

6.17$%!230-&.#4! 6.17$%!2/+05.4!

Figure 2: Overall architecture
We structure our paper to emphasize the themes that

emerge at three different deployment scales. Our read-
heavy workload and wide fan-out is the primary con-
cern when we have one cluster of servers. As it becomes
necessary to scale to multiple frontend clusters, we ad-
dress data replication between these clusters. Finally, we
describe mechanisms to provide a consistent user ex-
perience as we spread clusters around the world. Op-
erational complexity and fault tolerance is important at
all scales. We present salient data that supports our de-
sign decisions and refer the reader to work by Atikoglu
et al. [8] for a more detailed analysis of our workload. At
a high-level, Figure 2 illustrates this final architecture in
which we organize co-located clusters into a region and
designate a master region that provides a data stream to
keep non-master regions up-to-date.

While evolving our system we prioritize two ma-
jor design goals. (1) Any change must impact a user-
facing or operational issue. Optimizations that have lim-
ited scope are rarely considered. (2) We treat the prob-
ability of reading transient stale data as a parameter to
be tuned, similar to responsiveness. We are willing to
expose slightly stale data in exchange for insulating a
backend storage service from excessive load.

3 In a Cluster: Latency and Load
We now consider the challenges of scaling to thousands
of servers within a cluster. At this scale, most of our
efforts focus on reducing either the latency of fetching
cached data or the load imposed due to a cache miss.

3.1 Reducing Latency
Whether a request for data results in a cache hit or miss,
the latency of memcache’s response is a critical factor
in the response time of a user’s request. A single user
web request can often result in hundreds of individual

[from Nishtala et al., Scaling Memcache at Facebook, NSDI 2013]

Cloud service characteristics

O(billions) scale	

Wide “fan-out”	

• 100s of
memcached
servers per
request	

• Causes all-to-all
traffic from web
to memcached
servers

394 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

We implemented an adaptive allocator that period-
ically re-balances slab assignments to match the cur-
rent workload. It identifies slab classes as needing more
memory if they are currently evicting items and if the
next item to be evicted was used at least 20% more re-
cently than the average of the least recently used items in
other slab classes. If such a class is found, then the slab
holding the least recently used item is freed and trans-
ferred to the needy class. Note that the open-source com-
munity has independently implemented a similar allo-
cator that balances the eviction rates across slab classes
while our algorithm focuses on balancing the age of the
oldest items among classes. Balancing age provides a
better approximation to a single global Least Recently
Used (LRU) eviction policy for the entire server rather
than adjusting eviction rates which can be heavily influ-
enced by access patterns.

6.3 The Transient Item Cache

While memcached supports expiration times, entries
may live in memory well after they have expired.
Memcached lazily evicts such entries by checking ex-
piration times when serving a get request for that item
or when they reach the end of the LRU. Although effi-
cient for the common case, this scheme allows short-
lived keys that see a single burst of activity to waste
memory until they reach the end of the LRU.

We therefore introduce a hybrid scheme that relies on
lazy eviction for most keys and proactively evicts short-
lived keys when they expire. We place short-lived items
into a circular buffer of linked lists (indexed by sec-
onds until expiration) – called the Transient Item Cache
– based on the expiration time of the item. Every sec-
ond, all of the items in the bucket at the head of the
buffer are evicted and the head advances by one. When
we added a short expiration time to a heavily used set of
keys whose items have short useful lifespans; the pro-
portion of memcache pool used by this key family was
reduced from 6% to 0.3% without affecting the hit rate.

6.4 Software Upgrades

Frequent software changes may be needed for upgrades,
bug fixes, temporary diagnostics, or performance test-
ing. A memcached server can reach 90% of its peak hit
rate within a few hours. Consequently, it can take us over
12 hours to upgrade a set of memcached servers as the re-
sulting database load needs to be managed carefully. We
modified memcached to store its cached values and main
data structures in System V shared memory regions so
that the data can remain live across a software upgrade
and thereby minimize disruption.

distinct memcached servers

pe
rc

en
tile

 o
f r

eq
ue

sts

20 100 200 300 400 500 600

0
20

40
60

80
10

0
All requests
A popular data intensive page

Figure 9: Cumulative distribution of the number of dis-
tinct memcached servers accessed

7 Memcache Workload
We now characterize the memcache workload using data
from servers that are running in production.

7.1 Measurements at the Web Server
We record all memcache operations for a small percent-
age of user requests and discuss the fan-out, response
size, and latency characteristics of our workload.
Fanout: Figure 9 shows the distribution of distinct
memcached servers a web server may need to contact
when responding to a page request. As shown, 56%
of all page requests contact fewer than 20 memcached
servers. By volume, user requests tend to ask for small
amounts of cached data. There is, however, a long tail to
this distribution. The figure also depicts the distribution
for one of our more popular pages that better exhibits
the all-to-all communication pattern. Most requests of
this type will access over 100 distinct servers; accessing
several hundred memcached servers is not rare.
Response size: Figure 10 shows the response sizes from
memcache requests. The difference between the median
(135 bytes) and the mean (954 bytes) implies that there
is a very large variation in the sizes of the cached items.
In addition there appear to be three distinct peaks at ap-
proximately 200 bytes and 600 bytes. Larger items tend
to store lists of data while smaller items tend to store
single pieces of content.
Latency: We measure the round-trip latency to request
data from memcache, which includes the cost of rout-
ing the request and receiving the reply, network transfer
time, and the cost of deserialization and decompression.
Over 7 days the median request latency is 333 microsec-
onds while the 75th and 95th percentiles (p75 and p95)
are 475µs and 1.135ms respectively. Our median end-
to-end latency from an idle web server is 178µs while
the p75 and p95 are 219µs and 374µs, respectively. The

(from web server for single web request)

[from Nishtala et al., Scaling Memcache at
Facebook, NSDI 2013]

Cloud service characteristics

O(billions) scale	

App workflows have wide “fan-out”	

• 100s of memcached servers per request	

• Causes all-to-all traffic from web to memcached servers	

App workflows need multiple rounds per request	

• Service tasks according to the DAG of dependencies	

• Example of needing multiple rounds?

Simplified Bing workflow
Speeding up Distributed Request-Response Workflows

Virajith Jalaparti (UIUC) Peter Bodik Srikanth Kandula
Ishai Menache Mikhail Rybalkin (Steklov Math Inst.) Chenyu Yan

Microsoft

Abstract– We found that interactive services at Bing have
highly variable datacenter-side processing latencies because
their processing consists of many sequential stages, paral-
lelization across 10s-1000s of servers and aggregation of re-
sponses across the network. To improve the tail latency of
such services, we use a few building blocks: reissuing laggards
elsewhere in the cluster, new policies to return incomplete re-
sults and speeding up laggards by giving them more resources.
Combining these building blocks to reduce the overall latency
is non-trivial because for the same amount of resource (e.g.,
number of reissues), different stages improve their latency
by different amounts. We present Kwiken, a framework
that takes an end-to-end view of latency improvements and
costs. It decomposes the problem of minimizing latency over
a general processing DAG into a manageable optimization
over individual stages. Through simulations with production
traces, we show sizable gains; the 99th percentile of latency
improves by over 50% when just 0.1% of the responses are
allowed to have partial results and by over 40% for 25% of the
services when just 5% extra resources are used for reissues.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distribu-
ted Systems – Distributed applications

Keywords

Interactive services; Tail latency; Optimization; Reissues;
Partial results

1. INTRODUCTION
Modern interactive services are built from many disjoint

parts and hence, are best represented as directed acyclic
graphs. Nodes in the graph correspond to a specific function-
ality that may involve one or more servers or switches. Edges
represent input-output dependencies. For example, Fig. 1
shows a simplified DAG corresponding to the web-search
service at Bing, one of the major search engines today. In
this paper, we use the term workflow to refer to such a DAG
and stage to refer to a node in the DAG.

Analyzing production traces from hundreds of user-facing
services at Bing reveals that the end-to-end response latency
is quite variable. Despite significant developer effort, we

Looking up the index
for a document

(network) Lag to
collect responses Snippet generation

Doc.
Lookup

…
…

…

Snippet
Generator

Snippet
Generator

Snippet
Generator

Snippet
Generator

Figure 1: A simplified version of the workflow used for
web-search at Bing.

found over 30% of the examined services have 95th (and 99th)
percentile of latency 3X (and 5X) their median latency.

Delivering low and predictable latency is valuable: several
studies show that slow and unpredictable responses degrade
user experience and hence lead to lower revenue [8, 9, 22].
Further, these services represent sizable investments in terms
of cluster hardware and software, so any improvements would
be a competitive advantage.

We believe that the increase in variability is because mod-
ern datacenter services have workflows that are long and
highly parallel. In contrast, a typical web service workflow
has a length of two (a web-server and a database) and a width
of one. As we show in §2, the median workflow in production
at Bing has 15 stages and 10% of the stages process the query
in parallel on 1000s of servers. Significant delays at any of
these servers manifest as end-to-end delays. To see why, as a
rule of thumb, the 99th percentile of an n-way parallel stage
depends on the 99.99th percentile of the individual server
latencies for n = 100 (or 99.999th for n = 1000).
While standard techniques exist to reduce the latency

tail [10], applying them to reduce end-to-end latency is diffi-
cult for various reasons. First, different stages benefit differ-
ently from different techniques. For example, request reissues
work best for stages with low mean and high variance of la-
tency. Second, end-to-end effects of local actions depend on
topology of the workflow; reducing latency of stages usually
off the critical path does not improve end-to-end latency.
Finally, many techniques have overhead, such as increased
resource usage when reissuing a request. For these reasons,
latency reduction techniques today are applied at the level
of individual stages, without clear understanding of their
total cost and the achieved latency reduction. Therefore,
without an end-to-end approach, the gains achieved by such
techniques are limited.

In this paper, we present a holistic framework that consid-
ers the latency distribution in each stage, the cost of applying
individual techniques and the workflow structure to deter-
mine how to use each technique in each stage to minimize
end-to-end latency. To appreciate the challenge, consider
splitting the reissue budget between two stages, 1 and 2, in
a serial workflow. Fig. 2a shows how the variance of the
latency of these two stages (Var1 and Var2, respectively)
varies with the fraction of the total budget allocated to Stage

219

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGCOMM’13, August 12–16, 2013, Hong Kong, China.

Copyright © 2013 ACM 978-1-4503-2056-6/13/08…$15.00.

[from Jalaparti, Bodik, Kandula, Menache, Rybalkin, Yan, SIGCOMM 2013]

Web	
 services	
 implemented	
 as	
 complex	

Workflows

Partition-­‐aggregate

– Up	
 to	
 150	
 stages,	
 degree	
 of	
 40,	
 path	

lengths	
 of	
 10	
 or	
 more	

– Each	
 stage	
 can	
 be	
 a	
 complex	
 workflow

Stochastic	
 delays	
 accumulate	
 across	
 stages

Stages	
 (e.g.	
 Speller,	

Ads)	

Dependencies

Workflow	
 for	
 first-­‐page	

results	
 in	
 Bing

Request

Response

[Slide from Jalaparti, Bodik, Kandula, Menache, Rybalkin, Yan, SIGCOMM 2013]

Cloud service characteristics

O(billions) scale	

Wide “fan-out”	

• 100s of memcached servers per request	

• Causes all-to-all traffic from web to memcached servers	

Needs multiple rounds per request	

• Service tasks according to the DAG of dependencies	

• Example of needing multiple rounds?	

Implications	

• Need extreme performance	

• Exceptional conditions become the common case

Key design goal: scale to billions

A cornucopia of systems optimizations	

• Aggregate queries across threads, compression, batching
requests in one packet, custom malloc, use UDP, client
flow control to avoid incast, …	

• One master region handles writes, others read-only	

Keep memcache servers simple	

• Only talk to web clients	

• Web clients handle complexity (e.g., installing cached

values, carrying tokens, error recovery)	

Pr[stale] is tunable, not a correctness problem

Aside: what’s TCP incast?

Figures from CMU PDL INCAST project:	

http://www.pdl.cmu.edu/Incast/

http://www.pdl.cmu.edu/Incast/

Interesting observations

Warmup takes hours! (How did they handle this?)	

• Bring up new cluster fast by moving content from
already-warm memcache cluster	

• memcached servers store cached values semi-persistently	

- in shared memory region	

- doesn’t die when memcached process is killed or

upgraded!	

Intriguing questions	

• What would happen if you shut off Facebook and turned
it back on again?	

• What if you shut off the Internet and turned it back on
again?

“Tail at Scale” [Dean and Barroso]

Key problem identified?	

• Exceptional conditions become the common case

contributed articles

FEBRUARY 2013 | VOL. 56 | NO. 2 | COMMUNICATIONS OF THE ACM 77

systems with shared computational
resources exhibit performance fluctua-
tions beyond the control of application
developers. Google has therefore found
it advantageous to develop tail-tolerant
techniques that mask or work around
temporary latency pathologies, instead
of trying to eliminate them altogether.
We separate these techniques into two
main classes: The first corresponds to
within-request immediate-response
techniques that operate at a time scale
of tens of milliseconds, before longer-
term techniques have a chance to react.
The second consists of cross-request
long-term adaptations that perform on
a time scale of tens of seconds to min-
utes and are meant to mask the effect of
longer-term phenomena.

Within Request Short-Term
Adaptations
A broad class of Web services deploy
multiple replicas of data items to pro-
vide additional throughput capacity and
maintain availability in the presence of
failures. This approach is particularly
effective when most requests operate on
largely read-only, loosely consistent da-
tasets; an example is a spelling-correc-
tion service that has its model updated
once a day while handling thousands of
correction requests per second. Simi-
larly, distributed file systems may have
multiple replicas of a given data chunk
that can all be used to service read re-
quests. The techniques here show how
replication can also be used to reduce
latency variability within a single high-
er-level request:

Hedged requests. A simple way to
curb latency variability is to issue the
same request to multiple replicas and
use the results from whichever replica
responds first. We term such requests
“hedged requests” because a client first
sends one request to the replica be-
lieved to be the most appropriate, but
then falls back on sending a secondary
request after some brief delay. The cli-
ent cancels remaining outstanding re-
quests once the first result is received.
Although naive implementations of
this technique typically add unaccept-
able additional load, many variations
exist that give most of the latency-re-
duction effects while increasing load
only modestly.

One such approach is to defer send-
ing a secondary request until the first

request has been outstanding for more
than the 95th-percentile expected la-
tency for this class of requests. This
approach limits the additional load to
approximately 5% while substantially
shortening the latency tail. The tech-
nique works because the source of la-
tency is often not inherent in the par-
ticular request but rather due to other
forms of interference. For example, in
a Google benchmark that reads the val-
ues for 1,000 keys stored in a BigTable
table distributed across 100 different
servers, sending a hedging request after
a 10ms delay reduces the 99.9th-percen-
tile latency for retrieving all 1,000 values
from 1,800ms to 74ms while sending
just 2% more requests. The overhead of
hedged requests can be further reduced
by tagging them as lower priority than
the primary requests.

Tied requests. The hedged-requests
technique also has a window of vulner-

ability in which multiple servers can
execute the same request unnecessar-
ily. That extra work can be capped by
waiting for the 95th-percentile expect-
ed latency before issuing the hedged
request, but this approach limits the
benefits to only a small fraction of re-
quests. Permitting more aggressive
use of hedged requests with moderate
resource consumption requires faster
cancellation of requests.

A common source of variability is
queueing delays on the server before
a request begins execution. For many
services, once a request is actually
scheduled and begins execution, the
variability of its completion time goes
down substantially. Mitzenmacher10
said allowing a client to choose between
two servers based on queue lengths at
enqueue time exponentially improves
load-balancing performance over a uni-
form random scheme. We advocate not

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 500 1,000 1,500 2,000

Probability of one-second service-level response time as the system scales and frequency
of server-level high-latency outliers varies.

0.18

0.63

1 in 10,0001 in 1,0001 in 100

Numbers of Servers

P
 (s

er
vi

ce
 la

te
nc

y
>

1s
)

Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured
from root node of the tree).

50%ile latency 95%ile latency 99%ile latency

One random leaf finishes 1ms 5ms 10ms

95% of all leaf
requests finish

12ms 32ms 70ms

100% of all leaf
requests finish

40ms 87ms 140ms

[Dean and Barroso, CACM 2013]

“Tail at Scale” [Dean and Barroso]

Key problem identified:	

• Exceptional conditions become the common case

contributed articles

FEBRUARY 2013 | VOL. 56 | NO. 2 | COMMUNICATIONS OF THE ACM 77

systems with shared computational
resources exhibit performance fluctua-
tions beyond the control of application
developers. Google has therefore found
it advantageous to develop tail-tolerant
techniques that mask or work around
temporary latency pathologies, instead
of trying to eliminate them altogether.
We separate these techniques into two
main classes: The first corresponds to
within-request immediate-response
techniques that operate at a time scale
of tens of milliseconds, before longer-
term techniques have a chance to react.
The second consists of cross-request
long-term adaptations that perform on
a time scale of tens of seconds to min-
utes and are meant to mask the effect of
longer-term phenomena.

Within Request Short-Term
Adaptations
A broad class of Web services deploy
multiple replicas of data items to pro-
vide additional throughput capacity and
maintain availability in the presence of
failures. This approach is particularly
effective when most requests operate on
largely read-only, loosely consistent da-
tasets; an example is a spelling-correc-
tion service that has its model updated
once a day while handling thousands of
correction requests per second. Simi-
larly, distributed file systems may have
multiple replicas of a given data chunk
that can all be used to service read re-
quests. The techniques here show how
replication can also be used to reduce
latency variability within a single high-
er-level request:

Hedged requests. A simple way to
curb latency variability is to issue the
same request to multiple replicas and
use the results from whichever replica
responds first. We term such requests
“hedged requests” because a client first
sends one request to the replica be-
lieved to be the most appropriate, but
then falls back on sending a secondary
request after some brief delay. The cli-
ent cancels remaining outstanding re-
quests once the first result is received.
Although naive implementations of
this technique typically add unaccept-
able additional load, many variations
exist that give most of the latency-re-
duction effects while increasing load
only modestly.

One such approach is to defer send-
ing a secondary request until the first

request has been outstanding for more
than the 95th-percentile expected la-
tency for this class of requests. This
approach limits the additional load to
approximately 5% while substantially
shortening the latency tail. The tech-
nique works because the source of la-
tency is often not inherent in the par-
ticular request but rather due to other
forms of interference. For example, in
a Google benchmark that reads the val-
ues for 1,000 keys stored in a BigTable
table distributed across 100 different
servers, sending a hedging request after
a 10ms delay reduces the 99.9th-percen-
tile latency for retrieving all 1,000 values
from 1,800ms to 74ms while sending
just 2% more requests. The overhead of
hedged requests can be further reduced
by tagging them as lower priority than
the primary requests.

Tied requests. The hedged-requests
technique also has a window of vulner-

ability in which multiple servers can
execute the same request unnecessar-
ily. That extra work can be capped by
waiting for the 95th-percentile expect-
ed latency before issuing the hedged
request, but this approach limits the
benefits to only a small fraction of re-
quests. Permitting more aggressive
use of hedged requests with moderate
resource consumption requires faster
cancellation of requests.

A common source of variability is
queueing delays on the server before
a request begins execution. For many
services, once a request is actually
scheduled and begins execution, the
variability of its completion time goes
down substantially. Mitzenmacher10
said allowing a client to choose between
two servers based on queue lengths at
enqueue time exponentially improves
load-balancing performance over a uni-
form random scheme. We advocate not

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 500 1,000 1,500 2,000

Probability of one-second service-level response time as the system scales and frequency
of server-level high-latency outliers varies.

0.18

0.63

1 in 10,0001 in 1,0001 in 100

Numbers of Servers

P
 (s

er
vi

ce
 la

te
nc

y
>

1s
)

Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured
from root node of the tree).

50%ile latency 95%ile latency 99%ile latency

One random leaf finishes 1ms 5ms 10ms

95% of all leaf
requests finish

12ms 32ms 70ms

100% of all leaf
requests finish

40ms 87ms 140ms

[Dean and Barroso, CACM 2013]

Discussion question

How do these two papers approach replication?	

• Google’s “tail at scale”	

• Facebook’s scaled memcached

Discussion question

How do these two papers approach replication?	

• Facebook’s scaled memcached	

- Goal: scaling efficiently	

- Data in memory => minimize replicated data to

maximize cache size	

- Replication is used to increase throughput	

!

• Google’s “tail at scale”	

- Goal: consistent performance	

- Data replicated for reliability, enabling …	

- …replicated requests (“hedged”)	

- …replicated requests with cancellation (“tied”)

Announcements

Assignment 2	

• Solution key posted	

• Feedback will be emailed to you this week	

Thursday	

• Composing SDNs [Monsanto et al., NSDI 2013]	

Next Tuesday	

• Presentations by those who can’t make poster session	

• Ping us to schedule	

• Online students: we’ll be in touch

