Cloud Services

Brighten Godfrey
CS 538 December 3 2013

slides ©2010-2013 by Brighten Godfrey unless otherwise noted



Region (Master) Region (Slave)

Front-End
Clusters

Front-End
Clusters

Web Server “

Memcache 'l |

Memcache '

Storage Cluster (Master)

Storage Cluster (Slave)

) eee 5

Storage
Replication

) oo O

[from Nishtala et al., Scaling Memcache at Facebook, NSDI 201 3]
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O(billions) scale

App workflows have wide “fan-out”

e |00s of memcached servers per request
e Causes all-to-all traffic from web to memcached servers

App workflows need multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?
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Web services implemented as complex
Workflows
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O(billions) scale

Wide “fan-out”

e |00s of memcached servers per request
e Causes all-to-all traffic from web to memcached servers

Needs multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?

Implications

® Need extreme performance
® Exceptional conditions become the common case




A cornucopia of systems optimizations

® Aggregate queries across threads, compression, batching
requests in one packet, custom malloc, use UDP, client
flow control to avoid incast, ...

® One master region handles writes, others read-only

Keep memcache servers simple

® Only talk to web clients
® Web clients handle complexity (e.g., installing cached
values, carrying tokens, error recovery)

Pr[stale] is tunable, not a correctness problem
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http://www.pdl.cmu.edu/Incast/

Warmup takes hours! (How did they handle this?)

® Bring up new cluster fast by moving content from
already-warm memcache cluster
e memcached servers store cached values semi-persistently
= in shared memory region
- doesn’t die when memcached process is killed or
upgraded!

Intriguing questions

® What would happen if you shut off Facebook and turned
it back on again?

® What if you shut off the Internet and turned it back on
again?



Key problem identified?

® Exceptional conditions become the common case




Probability of one-second service-level response time as the system scales and frequency

of server-level high-latency outliers varies.
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[Dean and Barroso, CACM 201 3]



Key problem identified:

® Exceptional conditions become the common case

Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured

from root node of the tree).

50%ile latency 95%ile latency 99%ile latency
One random leaf finishes 1ms oms 10ms
95% of all leaf 12ms 32ms 70ms
requests finish
100% of all leaf 40ms 87ms 140ms

requests finish

[Dean and Barroso, CACM 201 3]




How do these two papers approach replication?

o Google’s “tail at scale”
e Facebook’s scaled memcached




How do these two papers approach replication?

® Facebook’s scaled memcached
= Goal: scaling efficiently
= Data in memory => minimize replicated data to
maximize cache size
- Replication is used to increase throughput

o Google’s “tail at scale”
- Goal: consistent performance
= Data replicated for reliability, enabling ...
- ...replicated requests (“hedged”)
- ...replicated requests with cancellation (“tied”)




Assignment 2

® Solution key posted
® Feedback will be emailed to you this week

Thursday
e Composing SDNs [Monsanto et al.,, NSDI 201 3]

Next Tuesday

® Presentations by those who can’t make poster session
® Ping us to schedule
® Online students: we'll be in touch




