Cloud Services

Brighten Godfrey
CS 538 December 3 2013

slides ©2010-2013 by Brighten Godfrey unless otherwise noted

Region (Master) Region (Slave)

Front-End
Clusters

Front-End
Clusters

Web Server “

Memcache 'l |

Memcache '

Storage Cluster (Master)

Storage Cluster (Slave)

) eee 5

Storage
Replication

) oo O

[from Nishtala et al., Scaling Memcache at Facebook, NSDI 201 3]

O(billions) scale

Wide “fan-out”

|00s of
memcached

servers per
request

Causes all-to-all
traffic from web
to memcached
servers

percentile of requests

60 80 100

40

20

GO
€500) 0 0('1’«'@31"1«'(0,‘11/’ 3"
SR\ ‘r/ .

O All requests
A A popular data intensive page

O GO

distinct memcached servers

(from web server for single web request)

[from Nishtala et al., Scaling Memcache at
Facebook, NSDI 201 3]

O(billions) scale

App workflows have wide “fan-out”

e |00s of memcached servers per request
e Causes all-to-all traffic from web to memcached servers

App workflows need multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?

> Snippet
Generator

for a document collect responses

[from Jalaparti, Bodik, Kandula, Menache, Rybalkin, Yan, SIGCOMM 201 3]

Web services implemented as complex
Workflows

!Request

e ——————————————

| — — | —

| | | Stages (e.g. Speller,

|
RS ' E Ads)
3 ' e ' ,
L i U | L L N A"
| L e u||_|||‘_u LSRR o 1 LT lllN@wg

Al ul_l S T T T 0

W SV RO e aSsS '
| T8 | | NGV
|

I e | | S T
| | A A n (} [ih
— ! .
t

Workflow for first-page n .
results in Bing lResponse

% — Up to 150 stages, degree of 40, path

€. lengths of 10 or more
Partition-aggregate — Each stage can be a complex workflow

Dependencies

Stochastic delays accumulate across stages
[Slide from Jalaparti, Bodik, Kandula, Menache, Rybalkin, Yan, SIGCOMM 201 3]

O(billions) scale

Wide “fan-out”

e |00s of memcached servers per request
e Causes all-to-all traffic from web to memcached servers

Needs multiple rounds per request

® Service tasks according to the DAG of dependencies
® Example of needing multiple rounds!?

Implications

® Need extreme performance
® Exceptional conditions become the common case

A cornucopia of systems optimizations

® Aggregate queries across threads, compression, batching
requests in one packet, custom malloc, use UDP, client
flow control to avoid incast, ...

® One master region handles writes, others read-only

Keep memcache servers simple

® Only talk to web clients
® Web clients handle complexity (e.g., installing cached
values, carrying tokens, error recovery)

Pr[stale] is tunable, not a correctness problem

Data Block

Client
e
Num Servers vs Good
Server Request (Fixed Block = 1MB, buffer = 64KB (oat), Switch = S50)
Unit (SRU) 1000
900
800
@ 700
g 600
= 500
% 400
8 300 |-
200
100 |
. . o | | i |]
Figures from CMU PDL INCAST project: 0O 5 10 15 20 25 30 35 40 45

Number of Servers

http://www.pdl.cmu.edu/Incast/ e

http://www.pdl.cmu.edu/Incast/

Warmup takes hours! (How did they handle this?)

® Bring up new cluster fast by moving content from
already-warm memcache cluster
e memcached servers store cached values semi-persistently
= in shared memory region
- doesn’t die when memcached process is killed or
upgraded!

Intriguing questions

® What would happen if you shut off Facebook and turned
it back on again?

® What if you shut off the Internet and turned it back on
again?

Key problem identified?

® Exceptional conditions become the common case

Probability of one-second service-level response time as the system scales and frequency

of server-level high-latency outliers varies.

w=== 1in100 === 1in1000 === 1in10,000

o

O
©

—
e¢)

—

O
\l

0.63

O
»

O
&y

O
w

0.18

P (service latency > 1s)
(@)
N

-
N
@

——

(@)
—

500 1,000 1,500 2,000

Numbers of Servers

[Dean and Barroso, CACM 201 3]

Key problem identified:

® Exceptional conditions become the common case

Table 1. Individual-leaf-request finishing times for a large fan-out service tree (measured

from root node of the tree).

50%ile latency 95%ile latency 99%ile latency
One random leaf finishes 1ms oms 10ms
95% of all leaf 12ms 32ms 70ms
requests finish
100% of all leaf 40ms 87ms 140ms

requests finish

[Dean and Barroso, CACM 201 3]

How do these two papers approach replication?

o Google’s “tail at scale”
e Facebook’s scaled memcached

How do these two papers approach replication?

® Facebook’s scaled memcached
= Goal: scaling efficiently
= Data in memory => minimize replicated data to
maximize cache size
- Replication is used to increase throughput

o Google’s “tail at scale”
- Goal: consistent performance
= Data replicated for reliability, enabling ...
- ...replicated requests (“hedged”)
- ...replicated requests with cancellation (“tied”)

Assignment 2

® Solution key posted
® Feedback will be emailed to you this week

Thursday
e Composing SDNs [Monsanto et al.,, NSDI 201 3]

Next Tuesday

® Presentations by those who can’t make poster session
® Ping us to schedule
® Online students: we'll be in touch

