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Definitions

Peer-to-peer system: participants have the same 
functionality and role in the system

• ...as opposed to client-server architecture
• Commonly used to imply file sharing but also used in 

other contexts (e.g., “BGP peering session”)
• At transport level: peer = both client and server

Overlay network: a virtual network whose links are 
end-to-end paths in another network

Peer-to-peer networks: Intersection of the above two

• Or, can also mean “file sharing systems”



In the beginning...

Napster (1999)

• Centralized index server to find the right peer
• Peer-to-peer file transfer

Gnutella (2000)

• Fully decentralized P2P indexing: scoped flooding
• Problems?

Freenet (1999)

• Goal: censorship-resistant key-value content store
• Routing: heuristic clustering of similar keys



In the beginning...

Napster (1999)

• Scales poorly, subject to attack (or take-down!)

Gnutella (2000)

• Flooding wastes resources, can’t find all results

Freenet (1999)

• Heuristic key-based routing promising, but no guarantees

Is there a fully decentralized storage system 
which is guaranteed to find desired results?



Key properties of a DHT

Hashtable interface (fast put(k,v),  get(k)=v)

• Freenet: get() might not find results
• DHT: guaranteed to find results, relatively quickly

Scalable

• Low memory / communication
• Uses consistent hashing: transfers in expectation 1/n of 

objects when a node leaves/joins

Resilient and decentralized

• Still works if, say, 50% of the nodes suddenly fail
• No centralized index server which could be attacked



DHTs: carefully structured

Greedy routing based on 
distance in keyspace

(Where did we see greedy 
routing before?)

• Geographic routing
• Small world models
• Grid / torus

What does the DHT 
topology need for routing...

• ...to work?
• ...to work well?



x

Internet routing is suboptimal

• Observed delay d(a,b) may not be best possible (why?)
• Key: Internet does not obey the triangle inequality
• i.e. it can happen that:   d(a,x) + d(x,b) < d(a,b)

Idea: Improve it with an overlay

• Find a good point x to relay packets!

In the other beginning...

a b



Idea: Improve it with an overlay

• “E2E effects of Internet path selection”, [Savage, Collins, 
Hoffman, Snell, Anderson, SIGCOMM 1999]

• Technique used in production in Akamai’s CDN

In the other beginning...
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Figure 1: CDF of the difference between the mean round-trip time
recorded on each path, and the best mean round-trip time derived
for an alternate path.
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Figure 2: CDF of the ratio between the mean round-trip time
recorded on each path, and the best mean round-trip time derived
for an alternate path.

one or more additional hosts resulting in a smaller round-trip time.
For a smaller fraction, there was a significant improvement of 20
ms or more. Finally, when we take the ratio of the round-trip times
for the default and best alternate path, shown in Figure 2, we find
that for roughly 10 percent of the paths, the best alternate has 50
percent better latency. The imbalance between the D2 and D2-NA
datasets in Figure 1 is due to the longer latencies for trans-oceanic
transit; in Figure 2, the imbalance largely disappears.

A similar effect is demonstrated in Figure 3 for the metric of
loss rate. Loss rates on synthetic alternate paths are formed by
assuming that losses on the constituent ”hops” are uncorrelated;
an assumption of correlated losses would result in lower combined
losses along alternate paths. Across all four datasets, we find that
75 to 85 percent of the paths have alternates with a lower loss rate.
Again, the fraction of alternate paths that demonstrate substantial
improvements in drop rate (5 percent or more) is smaller; only 5 to
50 percent of the paths fall in this category in the first three datasets.
The vertical line at 0 percent represents pairs with no measured
losses on either the default or alternate paths. Note that we did not
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Figure 3: CDF of the difference between the mean loss rate
recorded on each path, and the best mean loss rate derived for an
alternate path.

collect enough samples to discriminate among low loss rates; we
discuss confidence intervals for this graph in Section 6. For this
same reason, normalizing the difference in the drop rate is unin-
teresting, as large numbers of alternate paths show enormous, or
even infinite, relative improvements. As with round-trip time, most
of the datasets track together, with D2 demonstrating substantially
more improvement from alternate paths.

While the previous graphs suggest that there are alternate paths
with better performance characteristics, they do not indicate the
amount of available bandwidth on these paths. Although TCP per-
formance is inversely related to background latency and drop rate,
it is difficult to determine what the TCP throughput along an al-
ternate path would have been from these measurements, because
TCP exerts and reacts to load. Instead, we use the N2 datasets
to attempt to answer this question, since they reflect the loss and
round-trip times seen during actual TCP transfers. We construct
alternate path bandwidth measurements by combining the round-
trip times and loss rates observed along each default path in the N2
datasets. We compute the resulting TCP bandwidth according to
the TCP model of Mathis et al. [MSM97]. We combine round-trip
times via addition. However it is less clear how to compose loss
rates, since we do not know how much of the observed loss was
caused by the activity of the sending host and how much was due
to background traffic. Therefore, we present the results using two
different methods of combining loss rates. The first, which we la-
bel “optimistic”, uses the maximum loss rate of any component of
a synthetic path. This reflects the scenario that the sending TCP
is completely responsible for the observed loss, and therefore the
highest loss reflects the smallest bottleneck. The second, which we
label “pessimistic”, assumes that the loss rates on each component
are independent and combines them according to the probability
that a packet is lost on each underlying component of the synthetic
path. This reflects a mode in which all of the measured packet
losses are independent of the load exerted by the sending TCP. To
be computationally tractable, we only consider alternate paths of
length one hop for both the optimistic and pessimistic bandwidth
metrics.

Using these procedures we compute the CDF of the difference
between the bandwidth of the best alternate path and the actual
measured bandwidth of the default path. Of course, since we do
not have information about the capacity or load present on the links

CDF of difference 
between mean RTT on 
Internet’s default path, 
and best mean RTT on 
an alternate path



Building on the Internet’s services

Common theme of many overlay networks: provide 
more advanced services than the Internet provides

• Much easier to deploy new functionality at hosts
• The Internet doesn’t even know what’s happening to it

Examples

• RON: more reliable, efficient routing
• DHT: flat name routing and key-value store
• i3: indirection, mobility, middlebox support, ...
• Content distribution: a kind of time-delayed multicast



DHT & overlay in the real world

Deployed systems

• Content distribution: Akamai, CoralCDN
• Swarming: DHT for BitTorrent distributed tracker (Vuze)
• File sharing: DHTs in Kad, Overnet/eDonkey
• Storage: Amazon Dynamo
• Botnets: Storm botnet’s command & control delivered 

via DHT

Big impact on many research systems & papers

• Many ideas from DHT / overlay research incorporated 
into other work, if not entire DHT system



On to CDNs...

bution. Yet this very openness exposed a number of
web security challenges. Many can be attributed to
a lack of explicitness for specifying appropriate pro-
tection domains, and they arise due to violations of
traditional security principles (such as least privilege,
complete mediation, and fail-safe defaults [33]).

• Resource management in CDNs (§5). CoralCDN
commonly faced the challenge of interacting with
oversubscribed and ill-behaved resources, both re-
mote origin servers and its own deployment platform.
Various aspects of its design react conservatively to
change and perform admission control for resources.

• Desired properties for deployment platforms (§6).
Application deployments could benefit from greater
visibility into and control over lower layers of their
platforms. Some challenges are again confounded
when information and policies cannot be expressed
explicitly between layers.

• Directions for building large-scale, cooperative
CDNs (§7). While using decentralized algo-
rithms, CoralCDN currently operates on a centrally-
administered, smaller-scale testbed of trusted servers.
We revisit the challenge of escaping this setting.

Rather than focus on CoralCDN’s self-organizing algo-
rithms, the majority of this paper analyzes CoralCDN as an
example of an open web service on a virtualized platform.
As such, the experiences we detail may have implications
to a wider audience, including those developing distributed
hash tables (DHTs) for key-value storage, CDNs or web
services for elastic provisioning, virtualized network fa-
cilities for programmable networks, or cloud computing
platforms for virtualized hosting. While many of the ob-
servations we report are neither new nor surprising in hind-
sight, many relate to mistakes, oversights, or limitations of
CoralCDN’s original design that only became apparent to
us from its deployment.

We next review CoralCDN’s architecture and protocols;
a more complete description can be found in [14]. All sys-
tem details presented after §2 were developed subsequent
to that publication. We discuss related work throughout
the paper as we touch on different aspects of CoralCDN.

2 Original CoralCDN Design
The Coral Content Distribution Network is composed of
three main parts: (1) a network of cooperative HTTP prox-
ies that handle client requests from users, (2) a network
of DNS nameservers for nyud.net that map clients to
nearby CoralCDN HTTP proxies, and (3) the underlying
Coral indexing infrastructure and clustering machinery on
which the first two applications are built. This paper con-
sistently refers to the system’s indexing layer as Coral, and
the entire content distribution system as CoralCDN.

Client
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Figure 1: The steps involved in serving a Coralized URL.

2.1 System overview
At a high level, the following steps occur when a client
issues a request to CoralCDN, as shown in Figure 1.

1. Resolving DNS. A client resolves a “Coralized”
domain name (e.g., of the form example.com.
nyud.net) using CoralCDN nameservers. A Coral-
CDN nameserver probes the client to determine its
round-trip-time and uses this information to deter-
mine appropriate nameservers and proxies to return.

2. Processing HTTP client requests. The client sends
an HTTP request for a Coralized URL to one of the
returned proxies. If the proxy is caching the web ob-
ject locally, it returns the object and the client is fin-
ished. Otherwise, the proxy attempts to find the ob-
ject on another CoralCDN proxy.

3. Discovering cooperative-cached content. The proxy
looks up the object’s URL in the Coral indexing layer.

4. Retrieving content. If Coral returns the address of a
node caching the object, the proxy fetches the object
from this node. Otherwise, the proxy downloads the
object from the origin server example.com.

5. Serving content to clients. The proxy stores the web
object to disk and returns it to the client browser.

6. Announcing cached content. The proxy stores a ref-
erence to itself in Coral, recording the fact that is now
caching the URL.

This section reviews the design of the Coral indexing layer
and the CDN’s proxies, as proposed in [14].

2.2 Coral indexing layer
The Coral indexing layer is closely related to the structure
and organization of distributed hash tables like Chord [34]
and Kademlia [23], with the latter serving as the basis for
its underlying algorithm. The system maps opaque keys
onto nodes by hashing their value onto a flat, semantic-free
identifier (ID) space; nodes are assigned identifiers in the
same ID space. It allows scalable key lookup (in O(log(n))
overlay hops for n-node systems), reorganizes itself upon
network membership changes, and provides robust behav-
ior against failure.

2

Figure from Freedman, NSDI’10



A Case for a Coordinated
Internet Video Control Plane

Liu, Dobrian, Milner, Jiang, Sekar, Stoica, Zhang
SIGCOMM’12



Key take-away points



Key take-away points

Significant variability across attributes

• CDNs (even within the same city), locations, delivery 
rate, and time
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Figure 3: CDN performance can vary substantially across different geographical regions
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Figure 4: CDN performance within a given geographical region can vary significantly over time as well

CDN Rebuffering Ratio Startup Time Failure Rate
1 34.25% 79.08% 53.85%

2 25.22% 12.55% 37.50%

3 40.53% 8.37% 8.65%

Table 2: Percentage of scenarios where one of the CDNs per-
forms the best in terms of each of the quality metrics.

hour on a weekday. Here, we choose the geographical regions cor-
responding to the top six cities by user population. Since there is
a potential tradeoff between a session’s bitrate and its performance
under these quality metrics (higher bitrates will typically result in
higher rebuffering ratios), we focus only on sessions having the
same bitrate by choosing the most commonly used bitrate within
that geographical region. We also remove sessions that cannot sus-
tain the lowest bitrate (300Kbps) to rule out client-side effects in
this analysis.

In summary, the results in Figure 3 show that:
• The performance of different CDNs can vary within a given

city. For example, in City1, the rebuffering ratio of CDN1 is
almost 2⇥ that of users with CDN2.

• For each metric, no single CDN is optimal across all cities. For
example, in the case of rebuffering ratio, CDN1 is optimal for
City4 and City6, CDN2 for City1 and City5, and CDN3 for
City2 and City3.

• CDNs may differ in their performance across metrics. For ex-
ample, when we consider video startup time, CDN3 performs
the best in all cases except City4. In contrast, when it comes to
failure rate, CDN3 performs the worst.

Figure 4 shows the same metrics for one of these top cities over
three days. (Each point is the average over several thousand ses-
sions.) Here, we see that:

• For all three metrics, no CDN has the best performance all the
time. Every CDN experiences some performance issues during

the 3-day period. Table 2 shows how often each CDN is the
best choice in a city-hour pair over the course of one weekday.2

• The rebuffering ratio and failure rate of a CDN may experience
high fluctuations over time. For example, for roughly half of the
time CDN3 has the lowest rebuffering ratio, and for the other
half it has the highest rebuffering ratio.

• Most of the performance degradation is not correlated across
CDNs, suggesting that these variations are not merely due to
time-of-day effects but other factors.

One possible reason for such variability in the quality observed
with CDNs is the load on the CDN. Figure 5(a) shows the rebuffer-
ing ratio vs. normalized CDN load for one CDN in one city over a
week. Here, we measure the load as the number of unique sessions
that we observe over each 5-minute interval. Since our clients rep-
resent only a fraction of the total load on the CDN, we normalize
the observed load for each CDN by the maximum observed over
the entire week for that CDN. Figure 5(a) shows that the rebuffer-
ing ratio generally increases with the normalized load.

Implications: This result highlights the need for providers to have
multiple CDNs to optimize delivery across different geographical
regions and over time. It also suggests that dynamically choosing a
CDN can potentially improve the overall video quality.

AS under stress: Finally, ISPs and ASes can also experience qual-
ity issues under heavy load. Figure 5(b) shows the rebuffering ratio
of one AS from all three CDNs during a 4-hour flash crowd pe-
riod.3 Each point shows the average buffering ratio across clients
at a given time. We report the normalized load on the x-axis by
dividing the current number of users by the maximum number of
clients observed over time. During this flash crowd, the rebuffering
ratio becomes quite high when the number of views increase.

Implications: These results suggest that heavy load can lead to ISP
congestion. Ideally, we want the video delivery infrastructure to be

2Here we consider only city-hours where all three CDNs serve a
reasonable number of views.
3This data comes from a known event which is not included in the
data set presented before.
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CDN Rebuffering Ratio Startup Time Failure Rate
1 34.25% 79.08% 53.85%

2 25.22% 12.55% 37.50%

3 40.53% 8.37% 8.65%

Table 2: Percentage of scenarios where one of the CDNs per-
forms the best in terms of each of the quality metrics.

hour on a weekday. Here, we choose the geographical regions cor-
responding to the top six cities by user population. Since there is
a potential tradeoff between a session’s bitrate and its performance
under these quality metrics (higher bitrates will typically result in
higher rebuffering ratios), we focus only on sessions having the
same bitrate by choosing the most commonly used bitrate within
that geographical region. We also remove sessions that cannot sus-
tain the lowest bitrate (300Kbps) to rule out client-side effects in
this analysis.

In summary, the results in Figure 3 show that:
• The performance of different CDNs can vary within a given

city. For example, in City1, the rebuffering ratio of CDN1 is
almost 2⇥ that of users with CDN2.

• For each metric, no single CDN is optimal across all cities. For
example, in the case of rebuffering ratio, CDN1 is optimal for
City4 and City6, CDN2 for City1 and City5, and CDN3 for
City2 and City3.

• CDNs may differ in their performance across metrics. For ex-
ample, when we consider video startup time, CDN3 performs
the best in all cases except City4. In contrast, when it comes to
failure rate, CDN3 performs the worst.

Figure 4 shows the same metrics for one of these top cities over
three days. (Each point is the average over several thousand ses-
sions.) Here, we see that:

• For all three metrics, no CDN has the best performance all the
time. Every CDN experiences some performance issues during

the 3-day period. Table 2 shows how often each CDN is the
best choice in a city-hour pair over the course of one weekday.2

• The rebuffering ratio and failure rate of a CDN may experience
high fluctuations over time. For example, for roughly half of the
time CDN3 has the lowest rebuffering ratio, and for the other
half it has the highest rebuffering ratio.

• Most of the performance degradation is not correlated across
CDNs, suggesting that these variations are not merely due to
time-of-day effects but other factors.

One possible reason for such variability in the quality observed
with CDNs is the load on the CDN. Figure 5(a) shows the rebuffer-
ing ratio vs. normalized CDN load for one CDN in one city over a
week. Here, we measure the load as the number of unique sessions
that we observe over each 5-minute interval. Since our clients rep-
resent only a fraction of the total load on the CDN, we normalize
the observed load for each CDN by the maximum observed over
the entire week for that CDN. Figure 5(a) shows that the rebuffer-
ing ratio generally increases with the normalized load.

Implications: This result highlights the need for providers to have
multiple CDNs to optimize delivery across different geographical
regions and over time. It also suggests that dynamically choosing a
CDN can potentially improve the overall video quality.

AS under stress: Finally, ISPs and ASes can also experience qual-
ity issues under heavy load. Figure 5(b) shows the rebuffering ratio
of one AS from all three CDNs during a 4-hour flash crowd pe-
riod.3 Each point shows the average buffering ratio across clients
at a given time. We report the normalized load on the x-axis by
dividing the current number of users by the maximum number of
clients observed over time. During this flash crowd, the rebuffering
ratio becomes quite high when the number of views increase.

Implications: These results suggest that heavy load can lead to ISP
congestion. Ideally, we want the video delivery infrastructure to be

2Here we consider only city-hours where all three CDNs serve a
reasonable number of views.
3This data comes from a known event which is not included in the
data set presented before.
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Key take-away points

Significant fraction of users with poor experience
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Figure 1: Distribution of three standard video quality metrics computed over > 200 million user views across 91 providers. The
result shows that a non-trivial fraction of views suffer quality issues.
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Figure 2: There is significant variability in client-side band-
width both within and across sessions confirming the need for
bitrate adaptation.

Figure 1 shows the distribution of rebuffering ratio, video start
up time, and average bitrate from views that have started the video
playing. Note that these are the observed performances in the wild
with the default video players that the providers use. For rebuffer-
ing ratio and average bitrate, we remove sessions less than one
minute, because they usually come from users that are not inter-
ested in the video.

The result shows that
• 40% of the views experience at least 1% rebuffering ratio, and

20% experience at least 10% rebuffering ratio.
• 23% of the views wait more than 5 seconds before video starts,

and 14% wait more than 10 seconds.1

• 28% of the views have average bitrate less than 500Kbps, and
74.1% have average bitrate less than 1Mbps.

We also observe that 2.84% views failed to start due to fatal er-
rors, and 14.43% without errors (not shown). Furthermore, we see
that more than 9% of the views have actually waited at least 20
seconds before they lose patience in waiting for the video to start.

Implications: To put these results in perspective, previous work
shows that a 1% increase in rebuffering ratio can reduce the to-
tal play time by more than 3 minutes, viewers who have low join

1These are the views that have in fact started playing the video.

times are more likely to return to the content providers, and view-
ers who receive higher bitrate videos are likely to watch the video
longer [21]. Our analysis indicates that today’s end user experi-
ence is far from perfect, and highlights the need for performance
optimization.

2.3 Sources of quality issues
Next we identify and analyze three potential issues that could

result in poor video quality.
Client-side variability: Figure 2 shows the distribution of the
standard deviation of the client-side intra- and inter-session esti-
mated bandwidth, which shows significant variability in client-side
conditions. In this result, we rely on the client player’s bandwidth
estimation logic which effectively measures the observed band-
width for the data transferred from the selected CDN server, and
the data is collected every 10 seconds. For intra-session band-
width, we compute the standard deviation of all the bandwidth
samples across the entire lifetime of a view. Then we plot the
CDF for all views, excluding views that have only one sample. For
inter-session bandwidth, for each viewer, we compute the average
bandwidth of each session and then compute the standard devia-
tion across the different sessions initiated by that viewer. In both
cases, we bin the different views (for intra-session) or viewers (for
inter-session) based on their average bandwidth and show the distri-
bution for the five bins from 0-1Mbps to 4-5Mbps. For views with
bandwidth less than 1Mbps, more than 20% have a intra-session de-
viation of 400Kbps. The deviation is 2Mbps for views with band-
width between 4-5Mbps. Furthermore, there is a fair amount of
variability in the inter-session case as well. For example, more
than 20% of the viewers with bandwidth less than 1Mbps have a
deviation of 250Kbps. We also confirmed that such variability is a
general phenomenon that occurs across all ISPs (not shown).
Implications: Given today’s bitrate levels (e.g., 400, 800, 1000,
3000 Kbps), this naturally implies the need for intelligent bitrate
selection and switching to ensure a smooth viewing experience.
Specifically, we see that it is necessary to choose a suitable bitrate
at the start of each session to account for inter-session variability
and also dynamically adapt the bitrate midstream to account for
intra-session variability.
CDN variability across space and time: The performance of
CDN infrastructure for delivering video can vary significantly both
spatially (e.g., across ISPs or across geographical regions) and tem-
porally. Such variation can be caused by load, misconfiguration
(e.g., content not reaching a CDN’s edge servers), or other network
conditions. Our goal is not to diagnose the root causes of these
problems (e.g., [32]), but to show that they occur in the wild.

Figure 3 shows the average rebuffering ratio, video startup time,
and video start failure rate experienced by clients with three ma-
jor CDNs across different geographical regions during the busiest
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Figure 1: Distribution of three standard video quality metrics computed over > 200 million user views across 91 providers. The
result shows that a non-trivial fraction of views suffer quality issues.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

C
D

F

Standard Deviation (Kbps)

0-1Mbps
1-2Mbps
2-3Mbps
3-4Mbps
4-5Mbps

(a) Intra-session

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

C
D

F

Standard Deviation (Kbps)

0 - 1Mbps
1 - 2Mbps
2 - 3Mbps
3 - 4Mbps
4 - 5Mbps

(b) Inter-session

Figure 2: There is significant variability in client-side band-
width both within and across sessions confirming the need for
bitrate adaptation.

Figure 1 shows the distribution of rebuffering ratio, video start
up time, and average bitrate from views that have started the video
playing. Note that these are the observed performances in the wild
with the default video players that the providers use. For rebuffer-
ing ratio and average bitrate, we remove sessions less than one
minute, because they usually come from users that are not inter-
ested in the video.

The result shows that
• 40% of the views experience at least 1% rebuffering ratio, and

20% experience at least 10% rebuffering ratio.
• 23% of the views wait more than 5 seconds before video starts,

and 14% wait more than 10 seconds.1

• 28% of the views have average bitrate less than 500Kbps, and
74.1% have average bitrate less than 1Mbps.

We also observe that 2.84% views failed to start due to fatal er-
rors, and 14.43% without errors (not shown). Furthermore, we see
that more than 9% of the views have actually waited at least 20
seconds before they lose patience in waiting for the video to start.

Implications: To put these results in perspective, previous work
shows that a 1% increase in rebuffering ratio can reduce the to-
tal play time by more than 3 minutes, viewers who have low join

1These are the views that have in fact started playing the video.

times are more likely to return to the content providers, and view-
ers who receive higher bitrate videos are likely to watch the video
longer [21]. Our analysis indicates that today’s end user experi-
ence is far from perfect, and highlights the need for performance
optimization.

2.3 Sources of quality issues
Next we identify and analyze three potential issues that could

result in poor video quality.
Client-side variability: Figure 2 shows the distribution of the
standard deviation of the client-side intra- and inter-session esti-
mated bandwidth, which shows significant variability in client-side
conditions. In this result, we rely on the client player’s bandwidth
estimation logic which effectively measures the observed band-
width for the data transferred from the selected CDN server, and
the data is collected every 10 seconds. For intra-session band-
width, we compute the standard deviation of all the bandwidth
samples across the entire lifetime of a view. Then we plot the
CDF for all views, excluding views that have only one sample. For
inter-session bandwidth, for each viewer, we compute the average
bandwidth of each session and then compute the standard devia-
tion across the different sessions initiated by that viewer. In both
cases, we bin the different views (for intra-session) or viewers (for
inter-session) based on their average bandwidth and show the distri-
bution for the five bins from 0-1Mbps to 4-5Mbps. For views with
bandwidth less than 1Mbps, more than 20% have a intra-session de-
viation of 400Kbps. The deviation is 2Mbps for views with band-
width between 4-5Mbps. Furthermore, there is a fair amount of
variability in the inter-session case as well. For example, more
than 20% of the viewers with bandwidth less than 1Mbps have a
deviation of 250Kbps. We also confirmed that such variability is a
general phenomenon that occurs across all ISPs (not shown).
Implications: Given today’s bitrate levels (e.g., 400, 800, 1000,
3000 Kbps), this naturally implies the need for intelligent bitrate
selection and switching to ensure a smooth viewing experience.
Specifically, we see that it is necessary to choose a suitable bitrate
at the start of each session to account for inter-session variability
and also dynamically adapt the bitrate midstream to account for
intra-session variability.
CDN variability across space and time: The performance of
CDN infrastructure for delivering video can vary significantly both
spatially (e.g., across ISPs or across geographical regions) and tem-
porally. Such variation can be caused by load, misconfiguration
(e.g., content not reaching a CDN’s edge servers), or other network
conditions. Our goal is not to diagnose the root causes of these
problems (e.g., [32]), but to show that they occur in the wild.

Figure 3 shows the average rebuffering ratio, video startup time,
and video start failure rate experienced by clients with three ma-
jor CDNs across different geographical regions during the busiest
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Figure 1: Distribution of three standard video quality metrics computed over > 200 million user views across 91 providers. The
result shows that a non-trivial fraction of views suffer quality issues.
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Figure 2: There is significant variability in client-side band-
width both within and across sessions confirming the need for
bitrate adaptation.

Figure 1 shows the distribution of rebuffering ratio, video start
up time, and average bitrate from views that have started the video
playing. Note that these are the observed performances in the wild
with the default video players that the providers use. For rebuffer-
ing ratio and average bitrate, we remove sessions less than one
minute, because they usually come from users that are not inter-
ested in the video.

The result shows that
• 40% of the views experience at least 1% rebuffering ratio, and

20% experience at least 10% rebuffering ratio.
• 23% of the views wait more than 5 seconds before video starts,

and 14% wait more than 10 seconds.1

• 28% of the views have average bitrate less than 500Kbps, and
74.1% have average bitrate less than 1Mbps.

We also observe that 2.84% views failed to start due to fatal er-
rors, and 14.43% without errors (not shown). Furthermore, we see
that more than 9% of the views have actually waited at least 20
seconds before they lose patience in waiting for the video to start.

Implications: To put these results in perspective, previous work
shows that a 1% increase in rebuffering ratio can reduce the to-
tal play time by more than 3 minutes, viewers who have low join

1These are the views that have in fact started playing the video.

times are more likely to return to the content providers, and view-
ers who receive higher bitrate videos are likely to watch the video
longer [21]. Our analysis indicates that today’s end user experi-
ence is far from perfect, and highlights the need for performance
optimization.

2.3 Sources of quality issues
Next we identify and analyze three potential issues that could

result in poor video quality.
Client-side variability: Figure 2 shows the distribution of the
standard deviation of the client-side intra- and inter-session esti-
mated bandwidth, which shows significant variability in client-side
conditions. In this result, we rely on the client player’s bandwidth
estimation logic which effectively measures the observed band-
width for the data transferred from the selected CDN server, and
the data is collected every 10 seconds. For intra-session band-
width, we compute the standard deviation of all the bandwidth
samples across the entire lifetime of a view. Then we plot the
CDF for all views, excluding views that have only one sample. For
inter-session bandwidth, for each viewer, we compute the average
bandwidth of each session and then compute the standard devia-
tion across the different sessions initiated by that viewer. In both
cases, we bin the different views (for intra-session) or viewers (for
inter-session) based on their average bandwidth and show the distri-
bution for the five bins from 0-1Mbps to 4-5Mbps. For views with
bandwidth less than 1Mbps, more than 20% have a intra-session de-
viation of 400Kbps. The deviation is 2Mbps for views with band-
width between 4-5Mbps. Furthermore, there is a fair amount of
variability in the inter-session case as well. For example, more
than 20% of the viewers with bandwidth less than 1Mbps have a
deviation of 250Kbps. We also confirmed that such variability is a
general phenomenon that occurs across all ISPs (not shown).
Implications: Given today’s bitrate levels (e.g., 400, 800, 1000,
3000 Kbps), this naturally implies the need for intelligent bitrate
selection and switching to ensure a smooth viewing experience.
Specifically, we see that it is necessary to choose a suitable bitrate
at the start of each session to account for inter-session variability
and also dynamically adapt the bitrate midstream to account for
intra-session variability.
CDN variability across space and time: The performance of
CDN infrastructure for delivering video can vary significantly both
spatially (e.g., across ISPs or across geographical regions) and tem-
porally. Such variation can be caused by load, misconfiguration
(e.g., content not reaching a CDN’s edge servers), or other network
conditions. Our goal is not to diagnose the root causes of these
problems (e.g., [32]), but to show that they occur in the wild.

Figure 3 shows the average rebuffering ratio, video startup time,
and video start failure rate experienced by clients with three ma-
jor CDNs across different geographical regions during the busiest
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Figure 1: Distribution of three standard video quality metrics computed over > 200 million user views across 91 providers. The
result shows that a non-trivial fraction of views suffer quality issues.
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Figure 2: There is significant variability in client-side band-
width both within and across sessions confirming the need for
bitrate adaptation.

Figure 1 shows the distribution of rebuffering ratio, video start
up time, and average bitrate from views that have started the video
playing. Note that these are the observed performances in the wild
with the default video players that the providers use. For rebuffer-
ing ratio and average bitrate, we remove sessions less than one
minute, because they usually come from users that are not inter-
ested in the video.

The result shows that
• 40% of the views experience at least 1% rebuffering ratio, and

20% experience at least 10% rebuffering ratio.
• 23% of the views wait more than 5 seconds before video starts,

and 14% wait more than 10 seconds.1

• 28% of the views have average bitrate less than 500Kbps, and
74.1% have average bitrate less than 1Mbps.

We also observe that 2.84% views failed to start due to fatal er-
rors, and 14.43% without errors (not shown). Furthermore, we see
that more than 9% of the views have actually waited at least 20
seconds before they lose patience in waiting for the video to start.

Implications: To put these results in perspective, previous work
shows that a 1% increase in rebuffering ratio can reduce the to-
tal play time by more than 3 minutes, viewers who have low join

1These are the views that have in fact started playing the video.

times are more likely to return to the content providers, and view-
ers who receive higher bitrate videos are likely to watch the video
longer [21]. Our analysis indicates that today’s end user experi-
ence is far from perfect, and highlights the need for performance
optimization.

2.3 Sources of quality issues
Next we identify and analyze three potential issues that could

result in poor video quality.
Client-side variability: Figure 2 shows the distribution of the
standard deviation of the client-side intra- and inter-session esti-
mated bandwidth, which shows significant variability in client-side
conditions. In this result, we rely on the client player’s bandwidth
estimation logic which effectively measures the observed band-
width for the data transferred from the selected CDN server, and
the data is collected every 10 seconds. For intra-session band-
width, we compute the standard deviation of all the bandwidth
samples across the entire lifetime of a view. Then we plot the
CDF for all views, excluding views that have only one sample. For
inter-session bandwidth, for each viewer, we compute the average
bandwidth of each session and then compute the standard devia-
tion across the different sessions initiated by that viewer. In both
cases, we bin the different views (for intra-session) or viewers (for
inter-session) based on their average bandwidth and show the distri-
bution for the five bins from 0-1Mbps to 4-5Mbps. For views with
bandwidth less than 1Mbps, more than 20% have a intra-session de-
viation of 400Kbps. The deviation is 2Mbps for views with band-
width between 4-5Mbps. Furthermore, there is a fair amount of
variability in the inter-session case as well. For example, more
than 20% of the viewers with bandwidth less than 1Mbps have a
deviation of 250Kbps. We also confirmed that such variability is a
general phenomenon that occurs across all ISPs (not shown).
Implications: Given today’s bitrate levels (e.g., 400, 800, 1000,
3000 Kbps), this naturally implies the need for intelligent bitrate
selection and switching to ensure a smooth viewing experience.
Specifically, we see that it is necessary to choose a suitable bitrate
at the start of each session to account for inter-session variability
and also dynamically adapt the bitrate midstream to account for
intra-session variability.
CDN variability across space and time: The performance of
CDN infrastructure for delivering video can vary significantly both
spatially (e.g., across ISPs or across geographical regions) and tem-
porally. Such variation can be caused by load, misconfiguration
(e.g., content not reaching a CDN’s edge servers), or other network
conditions. Our goal is not to diagnose the root causes of these
problems (e.g., [32]), but to show that they occur in the wild.

Figure 3 shows the average rebuffering ratio, video startup time,
and video start failure rate experienced by clients with three ma-
jor CDNs across different geographical regions during the busiest
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Figure 6: Overview of a video control plane

Of course, it may be unnecessary and impractical for this control
plane to be continuously involved in adapting the CDN and bitrate.
Thus, we can consider intermediate points in this design space as
well. For example, CDN selection can be driven by the control
plane because it has a global view of CDN performance, but bitrate
adaptation may run purely at the client (rows 4 and 5).

3.2 Vision for a Video Control Plane
The notion of a centralized control plane to optimize content de-

livery is not new and has been used within CDNs and ISPs for
server selection and content placement [12, 13, 36]. There are two
key differences in the context of video optimization. First, we intro-
duce a new dimension of cross CDN optimization and combining
this with bitrate selection/adaptation. Second, we focus on the pos-
sibility of midstream switching of both parameters, whereas most
CDN optimizations focus only on start-time selection. As a sim-
ple starting point, our current work assumes that this control plane
operates per content provider. That is, a video content provider
such as YouTube or Hulu runs such a control plane to monitor and
improve the video experience for its customers. We discuss issues
involving the interaction between multiple such providers and con-
trollers in Section 7.

Figure 6 shows a high-level overview of the three key compo-
nents in the video control plane: (1) a measurement component
responsible for actively monitoring the video quality of clients, (2)
a performance oracle that uses historical and current measurements
to predict the potential performance a user will receive for a partic-
ular combination of CDN and bitrate at the current time, and (3)
the global optimization engine that uses the measurement and per-
formance oracle to assign the CDN and bitrate for each user. Next,
we briefly highlight the main factors and challenges involved in the
design of each component.
Measurement Engine: The measurement engine periodically col-
lects quality statistics for currently active users. Because the client-
side player is in the best position to measure the observed video
quality, we envision the client player periodically (every few sec-
onds) reporting such statistics. In addition to reporting the video
quality metrics (e.g., buffering, join time, average bitrate), the mea-
surement engine also collects user and session attributes such as the
ISP, location, current CDN being used, and player version that will
aid in the performance prediction. The challenge here is to choose
a suitable granularity of attributes and quality metrics to measure,
and to decide an appropriate frequency at which these reports are
sent to the control plane.
Performance Oracle: The performance oracle plays a key role in
answering what-if style questions at the control plane to predict the

performance (e.g., rebuffering ratio, startup delay, failure rate) that
a given user may observe at the current time if it chose a different
combination of CDN and bitrate. By design, the oracle will have
to extrapolate the performance based on past and current measure-
ments. For example, it may cluster users based on a set of attributes
(e.g., ISP, location) and use the empirical mean within this cluster
as its prediction. The challenge here is that the extrapolation must
be robust to noise and missing data; e.g., are there enough points
within this cluster for this extrapolation to be statistically sound?
Global Optimization: At a high-level, we are solving a resource
allocation problem, where the resources are the CDNs. Each CDN
is characterized by a given network capacity (i.e., how many clients
can it serve) and distribution costs. We want to assign each user a
suitable CDN and bitrate that maximizes some notion of global
utility for the content providers and consumers, while operating
within the provider’s cost constraints and the CDN capacities. There
are three main challenges here. First, we want to choose a suit-
able utility and policy objective. For example, this utility can be
a function of the bitrate, quality metrics such as buffering, and the
providers’ policy goals (e.g., premium customers get higher prior-
ity over non-paying users). Designing a good video utility metric
that can combine different notions of quality (e.g., bitrate, rebuffer-
ing, startup delay) is an open challenge that is outside the scope of
this paper [21, 35, 40]. The provider can also specify other policy
constraints; e.g., should it admit new clients when all CDNs are
overloaded. Our focus is to make a case for such a framework and
present initial steps toward a practical realization rather than pre-
scribe specific utility or policy functions. Second, this optimization
must fast enough in order to periodically re-optimize the assign-
ments in response to network dynamics. Third, we need to ensure
that the optimization is stable and does not itself introduce biases
or instability (see Section 5.1).

4. POTENTIAL FOR IMPROVEMENT
Before attempting to design a specific control plane, we want to

first establish the improvement in video quality that we can achieve.
To this end, in this section we analyze the potential improvement
that clients could achieve by choosing a better CDN. As we will
see later, the techniques described here can be extended to realize
the performance oracle described in the previous section.

4.1 Approach
Our goal is to determine the potential performance improvement

assuming each session makes the best possible choice. Ideally, each
client will try all possible choices and pick the one with the best
performance (e.g., rebuffering rate). Moreover, a client will con-
stantly re-evaluate the performance and switch, if needed, to im-
prove its performance. For example, a client can start with the con-
figuration (CDN 1, bitrate1), and later switch to (CDN 2, bitrate2),
if the new choice provides better performance. Of course, in prac-
tice we cannot have each client continuously probe all possible
combinations. To get around this limitation, we extrapolate the
performance a client could have achieved based on our observed
performance of other clients that share similar attributes, such as
ISP, location, device, and time-of-day. We follow previous work
on non-parametric prediction [24, 33] with some simplifying mod-
ifications.

We make two simplifying assumptions. First, we do not con-
sider bitrate selection in this section. Second, we assume that ses-
sion outcomes are independent and that CDN performance does not
degrade with load. We relax these assumptions in Section 5.2.

Our approach has two logical stages: estimation and extrapola-
tion that we describe next.
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Discussion

How did they get all this data?

• 200 million viewing sessions from over 50 million 
viewers across 91 content providers globally



Discussion

“by 2014, video traffic will constitute more than 90% 
of the total traffic on the Internet”

Does this mean video is essentially the only type of 
traffic that's important?



Small group discussion

1. “One possible reason for such variability in the 
quality observed with CDNs is the load on the 
CDN.” Other reasons?

2. Would their design work for latency-sensitive 
requests, like web browsing? What would be the 
challenges?



Announcements

Thursday: Wireless

• “Mirror Mirror on the Ceiling” [Zhou et al, 
SIGCOMM’12]
• Nitin Vaidya guest lecture


