
Data Center Networks
Brighten Godfrey

CS 538 October 29 2013

slides ©2010-2013 by Brighten Godfrey unless otherwise noted

Introduction:
The Driving Trends

Cloud Computing

Cloud Computing: Computing as a utility

• Purchase however much you need, whenever you need it
• Service ranges from access to raw (virtual) machines, to

higher level: distributed storage, web services

Implications

• Reduces barrier to entry to building large service
- No need for up-front capital investment
- No need to plan ahead
• May reduce cost
• Compute and storage becomes more centralized

The physical cloud: Data centers

Facebook data center, North Carolina

National Petascale Computing Facility,
UIUC

Key advantage: economy of scale

One technician for each 15,000 servers [Facebook]

Facility / power infrastructure operated in bulk

• Power usage efficiency (PuE) ~ 1.8 in average DCs
• Pushed down to ~ 1.1 in large cloud DCs

Ability to custom-design equipment

• Facebook (servers), Google (servers & networking gear)

Statistical multiplexing

• Must provision for peak load
• Many users sharing a resource are unlikely to have their

peaks all at the same time

Key advantage: economy of scale

Statistical multiplexing

• Must provision for peak load
• Many users sharing a resource are unlikely to have their

peaks all at the same time
• Just as in packet switching

Circuit switching

Time

Packet switching:
multiplexed

Time

Challenges for Cloud Computing

Challenges

• Confidentiality of data and computation
• Isolation of resources
• Integration with existing systems
• Robustness
• Latency
• Bandwidth
• Programmability
• ...

Opportunities

• New systems and architectures
• Optimizations matter

Costs in a data center

Servers are expensive!

The Cost of a Cloud:
Research Problems in Data Center Networks

Albert Greenberg, James Hamilton, David A. Maltz, Parveen Patel
Microsoft Research, Redmond, WA, USA

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The author takes full responsibility for this article’s technical content. Comments can be posted through CCR Online.

Abstract
The data centers used to create cloud services represent a signifi-
cant investment in capital outlay and ongoing costs. Accordingly,
we first examine the costs of cloud service data centers today. The
cost breakdown reveals the importance of optimizing work com-
pleted per dollar invested. Unfortunately, the resources inside the
data centers often operate at low utilization due to resource strand-
ing and fragmentation. To attack this first problem, we propose (1)
increasing network agility, and (2) providing appropriate incentives
to shape resource consumption. Second, we note that cloud service
providers are building out geo-distributed networks of data centers.
Geo-diversity lowers latency to users and increases reliability in the
presence of an outage taking out an entire site. However, without
appropriate design and management, these geo-diverse data center
networks can raise the cost of providing service. Moreover, leverag-
ing geo-diversity requires services be designed to benefit from it. To
attack this problem, we propose (1) joint optimization of network
and data center resources, and (2) new systems and mechanisms for
geo-distributing state.
Categories and Subject Descriptors: C.2.1 Network Architecture
General Terms: Design, Economics
Keywords: Cloud-service data centers, costs, network challenges

1. INTRODUCTION
In recent years, large investments have been made in mas-

sive data centers supporting cloud services, by companies such as
eBay, Facebook, Google, Microsoft, and Yahoo!. In this paper, we
attempt to demystify the structure of these data centers, and to iden-
tify areas of opportunity for R&D impact in data center networks
and systems. We start our investigation with the question:

Where does the cost go in today’s cloud service data centers?

To quantify data center costs, we consider a data center hous-
ing on the order of 50,000 servers that would be built based on
currently well-understood techniques, using good quality, highly
available equipment. Table 1 provides a rough guide to associated
costs. Costs are amortized, i.e., one time purchases are amortized
over reasonable lifetimes, assuming a 5% cost of money. By amor-
tizing, we obtain a common cost run rate metric that we can apply
to both one time purchases (e.g., for servers) and ongoing expenses
(e.g., for power). We discuss each row in detail in Section 2.

Details may vary somewhat by site or by moment in time,
but these are the major costs. While networking is not the largest
cost category, this paper will argue that networking and systems
innovation is the key to reducing costs and getting the most out of
each dollar invested.

Amortized Cost Component Sub-Components
⇠45% Servers CPU, memory, storage systems
⇠25% Infrastructure Power distribution and cooling
⇠15% Power draw Electrical utility costs
⇠15% Network Links, transit, equipment

Table 1: Guide to where costs go in the data center.

1.1 Cloud Service Data Centers are Different
It is natural to ask why existing solutions for the enterprise

data center do not work for cloud service data centers.
First and foremost, the leading cost in the enterprise is opera-

tional staff. In the data center, such costs are so small (under 5% due
to automation), that we safely omit them from Table 1. In a well-run
enterprise, a typical ratio of IT staff members to servers is 1:100.
Automation is partial [25], and human error is the cause of a large
fraction of performance impacting problems [21]. In cloud service
data centers, automation is a mandatory requirement of scale, and
it is accordingly a foundational principle of design [20]. In a well
run data center, a typical ratio of staff members to servers is 1:1000.
Automated, recovery-oriented computing techniques cope success-
fully with the vast majority of problems that arise [20, 12].

There are additional differences between the enterprise and
the cloud service data center environments including:

Large economies of scale. The size of cloud scale data cen-
ters (some now approaching 100,000 severs) presents an opportu-
nity to leverage economies of scale not present in the enterprise
data centers, though the up front costs are high.

Scale Out. Enterprises often optimize for physical space and
number of devices, consolidating workload onto a small number of
high-price “scale-up” hardware devices and servers. Cloud service
data centers “scale-out” — distributing workload over large num-
bers of low cost servers and hardware.

That said, enterprises are also moving toward the cloud. Thus,
we expect innovation in cloud service data centers to benefit the
enterprise, through outsourcing of computing and storage to cloud
service providers [1, 8, 3], and/or adapting and scaling down tech-
nologies and business models from cloud service providers.

1.2 Types of Cloud Service Data Centers
Many cloud service data centers today may be termed mega

data centers, having on the order of tens of thousands or more
servers drawing tens of Mega-Watts of power at peak. Massive
data analysis applications (e.g., computing the web search index)
are a natural fit for a mega data center, where some problems re-
quire huge amounts of fast RAM, others require massive num-
bers of CPU cycles, and still others require massive disk I/O band-
width. These problems typically call for extensive communication

[Greenberg, CCR Jan. 2009]

A key goal: Agility

Agility: Use any server for any service at any time

• Increase utilization of servers
• Reduce costs, increase reliability

What we need [Greenberg, ICDCS’09]

• Rapid installation of service’s code
- Solution: virtual machines

• Access to data from anywhere
- Solution: distributed filesystems

• Ability to communicate between servers quickly,
regardless of where they are in the data center

Datacenter Networks

Are In My Way

Principals of Amazon

James Hamilton, 2010.10.28

e: James@amazon.com

blog: perspectives.mvdirona.com

With Albert Greenberg, Srikanth Kandula, Dave Maltz, Parveen Patel, Sudipta

Sengupta, Changhoon Kim, Jagwinder Brar, Justin Pietsch, Tyson Lamoreaux,

Dhiren Dedhia, Alan Judge, Dave O'Meara, & Mike Marr

Traditional data center network

3. AGILITY
We define agility inside a single data center to mean that any

server can be dynamically assigned to any service anywhere in
the data center, while maintaining proper security and performance
isolation between services. Unfortunately, conventional data center
network designs work against agility - by their nature fragmenting
both network and server capacity, and limiting the dynamic grow-
ing and shrinking of server pools. In this section, we first look at
the network within the data center as it exists today and then dis-
cuss some desirable properties for a better solution.

3.1 Networking in Current Data Centers
Multiple applications run inside a single data center, typically

with each application hosted on its own set of (potentially virtual)
server machines. A single data center network supports two types
of traffic: (a) traffic flowing between external end systems and inter-
nal servers, and (b) traffic flowing between internal servers. A given
application typically involves both of these traffic types. In Search
applications, for example, internal traffic dominates – building and
synchronizing instances of the index. In Video download applica-
tions, external traffic dominates.

To support external requests from the Internet, an application
is associated with one or more publicly visible and routable IP
addresses to which clients in the Internet send their requests and
from which they receive replies. Inside the data center, requests are
spread among a pool of front-end servers that process the requests.
This spreading is typically performed by a specialized hardware
load balancer [23]. Using conventional load-balancer terminology,
the IP address to which requests are sent is called a virtual IP ad-
dress (VIP) and the IP addresses of the servers over which the re-
quests are spread are known as direct IP addresses (DIPs).

and Design
Figure 2: The conventional network architecture for data cen-
ters (adapted from figure by Cisco [15]).

Figure 2 shows the conventional architecture for a data center,
taken from a recommended source [15]. Requests arriving from the
Internet are IP (layer 3) routed through border and access routers
to a layer 2 domain based on the destination VIP address. The
VIP is configured onto the two load balancers connected to the top
switches, and complex mechanisms are used to ensure that if one
load balancer fails, the other picks up the traffic [24]. For each VIP,
the load balancers are configured with a list of DIPs, internal IP
addresses over which they spread incoming requests.

As shown in the figure, all the servers that connect into a pair
of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer-2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few

hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems that
inhibit agility:

Static Network Assignment: To support internal traffic within
the data center, individual applications are mapped to specific phys-
ical switches and routers, relying heavily on VLANs and layer-3
based VLAN spanning [19] to cover the servers dedicated to the
application. While the extensive use of VLANs and direct phys-
ical mapping of services to switches and routers provides a de-
gree of performance and security isolation, these practices lead to
two problems that ossify the assignment and work against agility:
(a) VLANs are often policy-overloaded, integrating traffic manage-
ment, security, and performance isolation, and (b) VLAN spanning,
and use of large server pools in general, concentrates traffic on links
high in the tree, where links and routers are highly overbooked.

Fragmentation of resources: Popular load balancing tech-
niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [23]. This constraint means that if an application grows
and requires more front-end servers, it cannot use available servers
in other layer 2 domains - ultimately resulting in fragmentation and
under-utilization of resources. Load balancing via Source NAT (or
full-NAT) does allow servers to be spread across layer 2 domains,
but then the servers never see the client IP, which is often unac-
ceptable because servers use the client IP for everything from data
mining and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that communication between servers in dif-
ferent layer 2 domains must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to marketplace factors. As a result, these links are typically
oversubscribed by factors of 10:1 to 80:1 (i.e., the capacity of the
links between access routers and border routers is significantly less
than the sum of the output capacity of the servers connected to the
access routers). The result is that the bandwidth available between
servers in different parts of the DC can be quite limited. Manag-
ing the scarce bandwidth could be viewed as a global optimization
problem – servers from all applications must be placed with great
care to ensure the sum of their traffic does not saturate any of the
network links. Unfortunately, achieving this level of coordination
between (changing) applications is untenable in practice.

Proprietary hardware that scales up, not out: Conventional
load balancers are used in pairs in a 1+1 resiliency configuration.
When the load becomes too great for the load balancers, operators
replace the existing load balancers with a new pair having more
capacity, which is an unscalable and expensive strategy.

3.2 Design Objectives
In order to achieve agility within a data center, we argue the

network should have the following properties:
Location-independent Addressing: Services should use loca-

tion-independent addresses that decouple the server’s location in
the DC from its address. This enables any server to become part of
any server pool while simplifying configuration management.

UniformBandwidth and Latency: If the available bandwidth
between two servers is not dependent on where they are located,
then the servers for a given service can be distributed arbitrarily in
the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]

Traditional data center network

3. AGILITY
We define agility inside a single data center to mean that any

server can be dynamically assigned to any service anywhere in
the data center, while maintaining proper security and performance
isolation between services. Unfortunately, conventional data center
network designs work against agility - by their nature fragmenting
both network and server capacity, and limiting the dynamic grow-
ing and shrinking of server pools. In this section, we first look at
the network within the data center as it exists today and then dis-
cuss some desirable properties for a better solution.

3.1 Networking in Current Data Centers
Multiple applications run inside a single data center, typically

with each application hosted on its own set of (potentially virtual)
server machines. A single data center network supports two types
of traffic: (a) traffic flowing between external end systems and inter-
nal servers, and (b) traffic flowing between internal servers. A given
application typically involves both of these traffic types. In Search
applications, for example, internal traffic dominates – building and
synchronizing instances of the index. In Video download applica-
tions, external traffic dominates.

To support external requests from the Internet, an application
is associated with one or more publicly visible and routable IP
addresses to which clients in the Internet send their requests and
from which they receive replies. Inside the data center, requests are
spread among a pool of front-end servers that process the requests.
This spreading is typically performed by a specialized hardware
load balancer [23]. Using conventional load-balancer terminology,
the IP address to which requests are sent is called a virtual IP ad-
dress (VIP) and the IP addresses of the servers over which the re-
quests are spread are known as direct IP addresses (DIPs).

and Design
Figure 2: The conventional network architecture for data cen-
ters (adapted from figure by Cisco [15]).

Figure 2 shows the conventional architecture for a data center,
taken from a recommended source [15]. Requests arriving from the
Internet are IP (layer 3) routed through border and access routers
to a layer 2 domain based on the destination VIP address. The
VIP is configured onto the two load balancers connected to the top
switches, and complex mechanisms are used to ensure that if one
load balancer fails, the other picks up the traffic [24]. For each VIP,
the load balancers are configured with a list of DIPs, internal IP
addresses over which they spread incoming requests.

As shown in the figure, all the servers that connect into a pair
of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer-2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few

hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems that
inhibit agility:

Static Network Assignment: To support internal traffic within
the data center, individual applications are mapped to specific phys-
ical switches and routers, relying heavily on VLANs and layer-3
based VLAN spanning [19] to cover the servers dedicated to the
application. While the extensive use of VLANs and direct phys-
ical mapping of services to switches and routers provides a de-
gree of performance and security isolation, these practices lead to
two problems that ossify the assignment and work against agility:
(a) VLANs are often policy-overloaded, integrating traffic manage-
ment, security, and performance isolation, and (b) VLAN spanning,
and use of large server pools in general, concentrates traffic on links
high in the tree, where links and routers are highly overbooked.

Fragmentation of resources: Popular load balancing tech-
niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [23]. This constraint means that if an application grows
and requires more front-end servers, it cannot use available servers
in other layer 2 domains - ultimately resulting in fragmentation and
under-utilization of resources. Load balancing via Source NAT (or
full-NAT) does allow servers to be spread across layer 2 domains,
but then the servers never see the client IP, which is often unac-
ceptable because servers use the client IP for everything from data
mining and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that communication between servers in dif-
ferent layer 2 domains must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to marketplace factors. As a result, these links are typically
oversubscribed by factors of 10:1 to 80:1 (i.e., the capacity of the
links between access routers and border routers is significantly less
than the sum of the output capacity of the servers connected to the
access routers). The result is that the bandwidth available between
servers in different parts of the DC can be quite limited. Manag-
ing the scarce bandwidth could be viewed as a global optimization
problem – servers from all applications must be placed with great
care to ensure the sum of their traffic does not saturate any of the
network links. Unfortunately, achieving this level of coordination
between (changing) applications is untenable in practice.

Proprietary hardware that scales up, not out: Conventional
load balancers are used in pairs in a 1+1 resiliency configuration.
When the load becomes too great for the load balancers, operators
replace the existing load balancers with a new pair having more
capacity, which is an unscalable and expensive strategy.

3.2 Design Objectives
In order to achieve agility within a data center, we argue the

network should have the following properties:
Location-independent Addressing: Services should use loca-

tion-independent addresses that decouple the server’s location in
the DC from its address. This enables any server to become part of
any server pool while simplifying configuration management.

UniformBandwidth and Latency: If the available bandwidth
between two servers is not dependent on where they are located,
then the servers for a given service can be distributed arbitrarily in
the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]

The need for performance

March
2011

May
2012[Facebook, via Wired]

Modern Data Center Networks

Scalable, commodity DC net arch.

[Al-Fares, Loukissas, Vahdat, SIGCOMM 2008]

Argued for nonblocking bandwidth

• servers limited only by their network card’s speed,
regardless of communication pattern between servers
• also known as full throughput in the “hose model”

Employed large number of commodity switches

• rather than “big iron”

Arranged in Clos topology

• specifically, a “fat tree”

Fat tree network

[Al-Fares,
Loukissas, Vahdat,
SIGCOMM ’08]

Pod 0

10.0.2.1

10.0.1.1

Pod 1 Pod 3Pod 2
10.2.0.2 10.2.0.3

10.2.0.1

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2
Core

10.2.2.1

10.0.1.2

Edge

Aggregation

Figure 3: Simple fat-tree topology. Using the two-level routing tables described in Section 3.3, packets from source 10.0.1.2 to
destination 10.2.0.3 would take the dashed path.

Prefix
10.2.0.0/24
10.2.1.0/24
0.0.0.0/0

Output port
0
1

Suffix
0.0.0.2/8
0.0.0.3/8

Output port
2
3

Figure 4: Two-level table example. This is the table at switch
10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
nation IP address 10.3.0.3 is forwarded on port 3.

than one first-level prefix. Whereas entries in the primary table are
left-handed (i.e., /m prefix masks of the form 1m032−m), entries
in the secondary tables are right-handed (i.e. /m suffix masks of
the form 032−m1m). If the longest-matching prefix search yields
a non-terminating prefix, then the longest-matching suffix in the
secondary table is found and used.

This two-level structure will slightly increase the routing table
lookup latency, but the parallel nature of prefix search in hardware
should ensure only a marginal penalty (see below). This is helped
by the fact that these tables are meant to be very small. As shown
below, the routing table of any pod switch will contain no more
than k/2 prefixes and k/2 suffixes.

3.4 Two-Level Lookup Implementation
We now describe how the two-level lookup can be implemented

in hardware using Content-Addressable Memory (CAM) [9].
CAMs are used in search-intensive applications and are faster
than algorithmic approaches [15, 29] for finding a match against
a bit pattern. A CAM can perform parallel searches among all
its entries in a single clock cycle. Lookup engines use a special
kind of CAM, called Ternary CAM (TCAM). A TCAM can store
don’t care bits in addition to matching 0’s and 1’s in particular
positions, making it suitable for storing variable length prefixes,
such as the ones found in routing tables. On the downside, CAMs
have rather low storage density, they are very power hungry, and

Next hop
10.2.0.1
10.2.1.1
10.4.1.1
10.4.1.2

Address
00
01
10
11

Output port
0
1
2
3

RAM

Encoder

10.2.0.X
10.2.1.X
X.X.X.2
X.X.X.3

TCAM

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routing tables can
be implemented in a TCAM of a relatively modest size (k entries
each 32 bits wide).

Figure 5 shows our proposed implementation of the two-level
lookup engine. A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP address of the next
hop and the output port. We store left-handed (prefix) entries in
numerically smaller addresses and right-handed (suffix) entries in
larger addresses. We encode the output of the CAM so that the
entry with the numerically smallest matching address is output.
This satisfies the semantics of our specific application of two-level
lookup: when the destination IP address of a packet matches both a
left-handed and a right-handed entry, then the left-handed entry is
chosen. For example, using the routing table in Figure 5, a packet
with destination IP address 10.2.0.3 matches the left-handed entry
10.2.0.X and the right-handed entry X.X.X.3. The packet is
correctly forwarded on port 0. However, a packet with destination
IP address 10.3.1.2 matches only the right-handed entry X.X.X.2
and is forwarded on port 2.

3.5 Routing Algorithm
The first two levels of switches in a fat-tree act as filtering traf-

fic diffusers; the lower- and upper-layer switches in any given pod
have terminating prefixes to the subnets in that pod. Hence, if a
host sends a packet to another host in the same pod but on a dif-
ferent subnet, then all upper-level switches in that pod will have a
terminating prefix pointing to the destination subnet’s switch.

For all other outgoing inter-pod traffic, the pod switches have
a default /0 prefix with a secondary table matching host IDs (the

67

Fat tree network

[Al-Fares,
Loukissas, Vahdat,
SIGCOMM ’08]

Pod 0

10.0.2.1

10.0.1.1

Pod 1 Pod 3Pod 2
10.2.0.2 10.2.0.3

10.2.0.1

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2
Core

10.2.2.1

10.0.1.2

Edge

Aggregation

Figure 3: Simple fat-tree topology. Using the two-level routing tables described in Section 3.3, packets from source 10.0.1.2 to
destination 10.2.0.3 would take the dashed path.

Prefix
10.2.0.0/24
10.2.1.0/24
0.0.0.0/0

Output port
0
1

Suffix
0.0.0.2/8
0.0.0.3/8

Output port
2
3

Figure 4: Two-level table example. This is the table at switch
10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
nation IP address 10.3.0.3 is forwarded on port 3.

than one first-level prefix. Whereas entries in the primary table are
left-handed (i.e., /m prefix masks of the form 1m032−m), entries
in the secondary tables are right-handed (i.e. /m suffix masks of
the form 032−m1m). If the longest-matching prefix search yields
a non-terminating prefix, then the longest-matching suffix in the
secondary table is found and used.

This two-level structure will slightly increase the routing table
lookup latency, but the parallel nature of prefix search in hardware
should ensure only a marginal penalty (see below). This is helped
by the fact that these tables are meant to be very small. As shown
below, the routing table of any pod switch will contain no more
than k/2 prefixes and k/2 suffixes.

3.4 Two-Level Lookup Implementation
We now describe how the two-level lookup can be implemented

in hardware using Content-Addressable Memory (CAM) [9].
CAMs are used in search-intensive applications and are faster
than algorithmic approaches [15, 29] for finding a match against
a bit pattern. A CAM can perform parallel searches among all
its entries in a single clock cycle. Lookup engines use a special
kind of CAM, called Ternary CAM (TCAM). A TCAM can store
don’t care bits in addition to matching 0’s and 1’s in particular
positions, making it suitable for storing variable length prefixes,
such as the ones found in routing tables. On the downside, CAMs
have rather low storage density, they are very power hungry, and

Next hop
10.2.0.1
10.2.1.1
10.4.1.1
10.4.1.2

Address
00
01
10
11

Output port
0
1
2
3

RAM

Encoder

10.2.0.X
10.2.1.X
X.X.X.2
X.X.X.3

TCAM

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routing tables can
be implemented in a TCAM of a relatively modest size (k entries
each 32 bits wide).

Figure 5 shows our proposed implementation of the two-level
lookup engine. A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP address of the next
hop and the output port. We store left-handed (prefix) entries in
numerically smaller addresses and right-handed (suffix) entries in
larger addresses. We encode the output of the CAM so that the
entry with the numerically smallest matching address is output.
This satisfies the semantics of our specific application of two-level
lookup: when the destination IP address of a packet matches both a
left-handed and a right-handed entry, then the left-handed entry is
chosen. For example, using the routing table in Figure 5, a packet
with destination IP address 10.2.0.3 matches the left-handed entry
10.2.0.X and the right-handed entry X.X.X.3. The packet is
correctly forwarded on port 0. However, a packet with destination
IP address 10.3.1.2 matches only the right-handed entry X.X.X.2
and is forwarded on port 2.

3.5 Routing Algorithm
The first two levels of switches in a fat-tree act as filtering traf-

fic diffusers; the lower- and upper-layer switches in any given pod
have terminating prefixes to the subnets in that pod. Hence, if a
host sends a packet to another host in the same pod but on a dif-
ferent subnet, then all upper-level switches in that pod will have a
terminating prefix pointing to the destination subnet’s switch.

For all other outgoing inter-pod traffic, the pod switches have
a default /0 prefix with a secondary table matching host IDs (the

67

Fat tree network

Pod 0

10.0.2.1

10.0.1.1

Pod 1 Pod 3Pod 2
10.2.0.2 10.2.0.3

10.2.0.1

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2
Core

10.2.2.1

10.0.1.2

Edge

Aggregation

Figure 3: Simple fat-tree topology. Using the two-level routing tables described in Section 3.3, packets from source 10.0.1.2 to
destination 10.2.0.3 would take the dashed path.

Prefix
10.2.0.0/24
10.2.1.0/24
0.0.0.0/0

Output port
0
1

Suffix
0.0.0.2/8
0.0.0.3/8

Output port
2
3

Figure 4: Two-level table example. This is the table at switch
10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
nation IP address 10.3.0.3 is forwarded on port 3.

than one first-level prefix. Whereas entries in the primary table are
left-handed (i.e., /m prefix masks of the form 1m032−m), entries
in the secondary tables are right-handed (i.e. /m suffix masks of
the form 032−m1m). If the longest-matching prefix search yields
a non-terminating prefix, then the longest-matching suffix in the
secondary table is found and used.

This two-level structure will slightly increase the routing table
lookup latency, but the parallel nature of prefix search in hardware
should ensure only a marginal penalty (see below). This is helped
by the fact that these tables are meant to be very small. As shown
below, the routing table of any pod switch will contain no more
than k/2 prefixes and k/2 suffixes.

3.4 Two-Level Lookup Implementation
We now describe how the two-level lookup can be implemented

in hardware using Content-Addressable Memory (CAM) [9].
CAMs are used in search-intensive applications and are faster
than algorithmic approaches [15, 29] for finding a match against
a bit pattern. A CAM can perform parallel searches among all
its entries in a single clock cycle. Lookup engines use a special
kind of CAM, called Ternary CAM (TCAM). A TCAM can store
don’t care bits in addition to matching 0’s and 1’s in particular
positions, making it suitable for storing variable length prefixes,
such as the ones found in routing tables. On the downside, CAMs
have rather low storage density, they are very power hungry, and

Next hop
10.2.0.1
10.2.1.1
10.4.1.1
10.4.1.2

Address
00
01
10
11

Output port
0
1
2
3

RAM

Encoder

10.2.0.X
10.2.1.X
X.X.X.2
X.X.X.3

TCAM

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routing tables can
be implemented in a TCAM of a relatively modest size (k entries
each 32 bits wide).

Figure 5 shows our proposed implementation of the two-level
lookup engine. A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP address of the next
hop and the output port. We store left-handed (prefix) entries in
numerically smaller addresses and right-handed (suffix) entries in
larger addresses. We encode the output of the CAM so that the
entry with the numerically smallest matching address is output.
This satisfies the semantics of our specific application of two-level
lookup: when the destination IP address of a packet matches both a
left-handed and a right-handed entry, then the left-handed entry is
chosen. For example, using the routing table in Figure 5, a packet
with destination IP address 10.2.0.3 matches the left-handed entry
10.2.0.X and the right-handed entry X.X.X.3. The packet is
correctly forwarded on port 0. However, a packet with destination
IP address 10.3.1.2 matches only the right-handed entry X.X.X.2
and is forwarded on port 2.

3.5 Routing Algorithm
The first two levels of switches in a fat-tree act as filtering traf-

fic diffusers; the lower- and upper-layer switches in any given pod
have terminating prefixes to the subnets in that pod. Hence, if a
host sends a packet to another host in the same pod but on a dif-
ferent subnet, then all upper-level switches in that pod will have a
terminating prefix pointing to the destination subnet’s switch.

For all other outgoing inter-pod traffic, the pod switches have
a default /0 prefix with a secondary table matching host IDs (the

67

VL2

[Greenberg, Hamilton, Jain, Kandula, Kim, Lahiri, Maltz,
Patel, Sengupta, SIGCOMM 2009]

VL2 claims (in its title!) that it is “flexible”. In what
ways is VL2 flexible? How does it achieve these
notions of flexibility?

VL2

[Greenberg, Hamilton, Jain, Kandula, Kim, Lahiri, Maltz,
Patel, Sengupta, SIGCOMM 2009]

Key features

• High bandwidth network
- Another folded Clos network
- Slightly different than fat tree (e.g., uses 10 Gbps links)
• Randomized (Valiant) load balancing
- Makes better use of network resources
• Flat addressing
- Ethernet-style (layer 2) addresses to forward data,

rather than IP addresses
- Separates names from locations

VL2 discussion

Does VL2 need to adjust its randomized routing over
time? [Yiying]

• More generally, how much could you improve routing?

How does VL2 compare to MPLS-based TE and
‘fabric’?

Rest of this lecture:

Jellyfish

[Singla, Hong, Popa, Godfrey, NSDI 2012]
[Singla, Godfrey, Kolla, manuscript, 2013]

Two difficult goals

High throughput
with minimal cost

Support big data analytics
Agile placement of VMs

Flexible incremental
expandability

Easily add/replace
servers & switches

Incremental expansion

Facebook “adding capacity on a daily basis”

Reduces up-front capital expenditure

Commercial products expand servers but not the net

• SGI Ice Cube (“Expandable Modular Data Center”)
• HP EcoPod (“Pay-as-you-grow”)

2007 1008 09

Structure hinders expansion

Coarse design points

• Hypercube: 2k switches
• de Bruijn-like: 3k switches
• 3-level fat tree: 5k2/4 switches

Fat trees by the numbers

• (3-level, with commodity 24, 32, 48, ... port switches)
• 3456 servers, 8192 servers, 27648 servers, ...

Unclear how to maintain structure incrementally

• Overutilize switches? Uneven / constrained bandwidth
• Leave ports free for later? Wasted investment

Our Solution

Forget about structure –
let’s have no structure at all!

Jellyfish:
The Topology

Jellyfish: The Topology

Servers connected to top-of-rack switch

Switches form uniform-random interconnections

Capacity as a fluid

Jellyfish random graph
432 servers, 180 switches, degree 12

Capacity as a fluid

Jellyfish random graph
432 servers, 180 switches, degree 12

Jellyfish
Crossota norvegica
Photo: Kevin Raskoff

Construction & Expansion

Building Jellyfish

Building Jellyfish

X

Building Jellyfish

X

X

Same procedure for initial construction
and incremental expansion

Can flexibly incorporate any type of equipment

Building Jellyfish

60% cheaper incremental expansion
compared with past technique for

traditional networks

LEGUP: [Curtis, Keshav, Lopez-Ortiz, CoNEXT’10]

Throughput

By giving up on structure,
do we take a hit on throughput?

Throughput: Jellyfish vs. fat tree

��

����

�����

�����

�����

�����

�����

�����

�� ����� ����� ����� �	��� ������ ������ ������

�
�

��

�

��
���

��
���

�

��

��
��

�

��������������� ������
!�
��"�#�����$%����&������������

'���()����*!�&+��,�����-
���,�
���*!�&+��,�����- } +25%

more
servers

The VL2 topology

. . .

. . .

!"#

$%&

. . .

. . . .

'(()

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches

DI x Aggregate Switches

20(DADI/4) x Servers

InternetLink-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. The network is built with two separate address
families— topologically significant LocatorAddresses (LAs) and
flat Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we find that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) affected ten million users for about four hours. We found
the main causes of these downtimes are networkmisconfigurations,
firmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brieflydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center traffic
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) traffic spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding flow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) traffic spreading ratios are uniform, and (b) the
offered traffic patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.This strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: The data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-specific addresses (AAs),
from their locations, termed location-specific addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: The rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables fine-grained path control by adjusting the randomization used
in VLB. The agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. The directory system itself is
also realized on servers, rather than switches, and thus offers flexi-
bility, such as fine-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.These aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
offering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . This is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding traffic through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any traffic matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).

55

[Greenburg, Hamilton, Jain, Kandula, Kim, Lahiri, Maltz, Patel, Sengupta,
SIGCOMM’09]

Rewiring VL2

. . .

. . .

!"#

$%&

. . .

. . . .

'(()

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches

DI x Aggregate Switches

20(DADI/4) x Servers

InternetLink-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. The network is built with two separate address
families— topologically significant LocatorAddresses (LAs) and
flat Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we find that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) affected ten million users for about four hours. We found
the main causes of these downtimes are networkmisconfigurations,
firmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brieflydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center traffic
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) traffic spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding flow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) traffic spreading ratios are uniform, and (b) the
offered traffic patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.This strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: The data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-specific addresses (AAs),
from their locations, termed location-specific addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: The rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables fine-grained path control by adjusting the randomization used
in VLB. The agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. The directory system itself is
also realized on servers, rather than switches, and thus offers flexi-
bility, such as fine-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.These aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
offering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . This is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding traffic through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any traffic matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).

55

Uniform-random
interconnection}
Connect ToRs proportional
to Intermediate/Agg degree

Servers unchanged
(only ToRs have 1 Gbps
ports)

Rewiring VL2

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 6 8 10 12 14 16 18 20

Se
rv

er
s

at
 F

ul
l T

hr
ou

gh
pu

t
(R

at
io

 O
ve

r
V

L2
)

Aggregation Switch Degree

40% more
servers
with server-to-server
random permutation
traffic

Rewiring VL2

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 6 8 10 12 14 16 18 20

Se
rv

er
s

at
 F

ul
l T

hr
ou

gh
pu

t
(R

at
io

 O
ve

r
V

L2
)

Aggregation Switch Degree

rack-to-rack

40% more
servers
with server-to-server
random permutation
traffic

Rewiring VL2

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 6 8 10 12 14 16 18 20

Se
rv

er
s

at
 F

ul
l T

hr
ou

gh
pu

t
(R

at
io

 O
ve

r
V

L2
)

Aggregation Switch Degree

all-to-all

rack-to-rack

40% more
servers
with server-to-server
random permutation
traffic

Just the beginning

Just the beginning

“
”

Everything you just said is
completely counterintuitive
to everyone in this building.

– a large networking company

Just the beginning

Topology design

• How close are random graphs to optimal?
• What if switches are heterogeneous?

System design (or: “But what about...”)

• Performance consistency?
• Cabling spaghetti?
• Routing and congestion control without structure?

Understanding Throughput

Throughput: Jellyfish vs. fat tree

��

����

�����

�����

�����

�����

�����

�����

�� ����� ����� ����� �	��� ������ ������ ������

�
�

��

�

��
���

��
���

�

��

��
��

�

��������������� ������
!�
��"�#�����$%����&������������

'���()����*!�&+��,�����-
���,�
���*!�&+��,�����- } +25%

more
servers

Intuition

1 Gbps flows
total capacity

used capacity per flow
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

used capacity per flow
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

1 Gbps • mean path length
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

1 Gbps • mean path length
=

if we fully utilize all available capacity ...

Mission:
minimize average path length

Example

Fat tree
432 servers, 180 switches, degree 12

Jellyfish random graph
432 servers, 180 switches, degree 12

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin4 of 16
reachable

in ≤ 5 hops

12 of 16
reachable in
≤ 5 hops

(good expander)

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

12 of 16
reachable in
≤ 5 hops

(good expander)

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

12 of 16
reachable in
≤ 5 hops

(good expander)

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

12 of 16
reachable in
≤ 5 hops

(good expander)

Jellyfish has short paths

��
����
����
����
����
����
���	
���

����
����
��

� � � � 	

�
��
���
��
��
��
��
��
���

��
��

�����������

�������

Fat-tree with 686 servers

Jellyfish has short paths

��
����
����
����
����
����
���	
���

����
����

��

� � � � 	

�
��

���
��

��
��

��
��

���
��

��

�����������

���������
�� ����

Jellyfish, same equipment

Wrap up

Announcements

Now: David Patterson, UC Berkeley

• Distinguished Lecture
• 3 pm today, 2405 SC
• “Myths about MOOCs and Software

Engineering Education”

Thursday: Nathan Farrington, Facebook

• Virtual Guest Lecture here
• Post review comment, and optionally a

question for Nathan

System Design:

Cabling

(Not discussed in lecture)

Cabling

Cabling

[Photo: Javier Lastras / Wikimedia]

Cluster of switches
Rack of servers
Aggregate cable

new rack X
cluster A

cluster B

Aggregate
bundles

Cabling solutions

Fewer
cables

for same #
servers as
fat tree

Generic optimization: Place all switches centrally

Interconnecting clusters

How many “long” cables do we actually need?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Interconnecting clusters

?

Interconnecting clusters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Intuition

Intuition

Intuition

Still need one crossing!

⇥

✓
1

APL

◆
Throughput should
drop when less than

of total capacity
crosses the cut!

Explaining throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Explaining throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Upper bounds...

And constant-factor matching lower bounds in special case.

Two regimes of throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

sparsest cut
“plateau”:

(total cap) / APL

Two regimes of throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Bisection bandwidth
is poor predictor of
performance!

sparsest cut
“plateau”:

(total cap) / APL

Cables can be
localized

High-capacity switches
needn’t be clustered

