SDN Applications

Brighten Godfrey and Chi-Yao Hong CS 538 October 10 2013

Initial "Killer apps"

Cloud virtualization

- Create separate virtual networks for tenants
- Allow flexible placement and movement of VMs

WAN traffic engineering

- Drive utilization to near 100% when possible
- Protect critical traffic from congestion

Key characteristics of the above

- Special-purpose deployments with less diverse hardware
- Existing solutions aren't just annoying, they don't work!

Range of new apps in research

Environments

- Mobility
- Control of wireless infrastructure
- Performance optimization
- ...

Infrastructure / "northbound APIs"

- Programming languages
- APIs to assist policy-compliant updates
- Verification
- ...

B4 key design decisions

[Jain et al., SIGCOMM 2013]

Separate hardware from software

B4 routers custom-built from merchant silicon

Drive links to 100% utilization

Centralized traffic engineering

Vs. Semi-Distributed TE

What aspects of B4 would have been difficult with MPLS-based TE such as TeXCP?

What aspects of B4 are similar to TeXCP?

Small group discussion

1 How does B4 scale?

 Subsecond centralized scheduling of more traffic than Google's public WAN serves!

2 What does B4 assume about network's traffic?

- In what environments would these assumptions be violated?
- In what other environments would they be valid?

Hierarchy

 Not a simple contollerto-switch design

Figure 2: B4 architecture overview.

Hierarchy

 Not a simple contollerto-switch design

Figure 2: B4 architecture overview.

Hierarchy

 Not a simple contollerto-switch design

Aggregation

- Node = site (data center)
- Link = 100s of links
- Flow group = {src, dst, QoS} tuple

Figure 1: B4 worldwide deployment (2011).

Hierarchy

 Not a simple contollerto-switch design!

Aggregation

- Node = site (data center)
- Link = 100s of links
- Flow group = {src, dst, QoS} tuple

Figure 1: B4 worldwide deployment (2011).

Algorithms

 Greedy heuristic approximation algorithm

What assumptions about traffic?

Design makes what assumption about traffic to approach 100% utilization on some links?

- High priority traffic is in the minority
- Elastic traffic is the majority (backups, offline data analytics, ...)

What assumptions about traffic?

Design makes what assumption about traffic to approach 100% utilization on some links?

- High priority traffic is in the minority
- Elastic traffic is the majority (backups, offline data analytics, ...)

When would that assumption be violated?

Google's user-facing wide area network