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Initial “Killer apps”

Cloud virtualization

• Create separate virtual networks for tenants
• Allow flexible placement and movement of VMs

WAN traffic engineering

• Drive utilization to near 100% when possible
• Protect critical traffic from congestion

Key characteristics of the above

• Special-purpose deployments with less diverse hardware
• Existing solutions aren’t just annoying, they don’t work!



Range of new apps in research

Environments

• Mobility
• Control of wireless infrastructure
• Performance optimization
• ...

Infrastructure / “northbound APIs”

• Programming languages
• APIs to assist policy-compliant updates
• Verification
• ...



B4 key design decisions

[Jain et al., SIGCOMM 2013]

Separate hardware from software 

B4 routers custom-built from merchant silicon

Drive links to 100% utilization

Centralized traffic engineering



Vs. Semi-Distributed TE

What aspects of B4 would have been difficult with 
MPLS-based TE such as TeXCP?

What aspects of B4 are similar to TeXCP?



Small group discussion

1 How does B4 scale?

• Subsecond centralized scheduling of more traffic than 
Google’s public WAN serves!

2 What does B4 assume about network’s traffic?

• In what environments would these assumptions be 
violated?
• In what other environments would they be valid?



How does B4 scale?



How does B4 scale?

Hierarchy

• Not a simple contoller-
to-switch design

Design Decision Rationale/Bene�ts Challenges
B� routers built from
merchant switch silicon

B� apps are willing to trade more average bandwidth for fault tolerance.
Edge application control limits need for large bu�ers. Limited number of B� sites means
large forwarding tables are not required.
Relatively low router cost allows us to scale network capacity.

Sacri�ce hardware fault tolerance,
deep bu�ering, and support for
large routing tables.

Drive links to ����
utilization

Allows e�cient use of expensive long haul transport.
Many applications willing to trade higher average bandwidth for predictability. Largest
bandwidth consumers adapt dynamically to available bandwidth.

Packet loss becomes inevitable
with substantial capacity loss dur-
ing link/switch failure.

Centralized tra�c
engineering

Use multipath forwarding to balance application demands across available capacity in re-
sponse to failures and changing application demands.
Leverage application classi�cation and priority for scheduling in cooperation with edge rate
limiting.
Tra�c engineering with traditional distributed routing protocols (e.g. link-state) is known
to be sub-optimal [��, ��] except in special cases [��].
Faster, deterministic global convergence for failures.

No existing protocols for func-
tionality. Requires knowledge
about site to site demand and im-
portance.

Separate hardware
from so�ware

Customize routing and monitoring protocols to B� requirements.
Rapid iteration on so�ware protocols.
Easier to protect against common case so�ware failures through external replication.
Agnostic to range of hardware deployments exporting the same programming interface.

Previously untested development
model. Breaks fate sharing be-
tween hardware and so�ware.

Table �: Summary of design decisions in B�.

Figure �: B� architecture overview.

stance of Paxos [�] elects one of multiple available so�ware replicas
(placed on di�erent physical servers) as the primary instance.

�e global layer consists of logically centralized applications (e.g.
an SDN Gateway and a central TE server) that enable the central
control of the entire network via the site-levelNCAs.�e SDNGate-
way abstracts details of OpenFlow and switch hardware from the
central TE server. We replicate global layer applications across mul-
tiple WAN sites with separate leader election to set the primary.

Each server cluster in our network is a logical “Autonomous Sys-
tem” (AS)with a set of IP pre�xes. Each cluster contains a set of BGP
routers (not shown in Fig. �) that peerwith B� switches at eachWAN
site. Even before introducing SDN, we ran B� as a single AS pro-
viding transit among clusters running traditional BGP/ISIS network
protocols. We chose BGP because of its isolation properties between
domains and operator familiarity with the protocol.�e SDN-based
B� then had to support existing distributed routing protocols, both
for interoperability with our non-SDN WAN implementation, and
to enable a gradual rollout.

We considered a number of options for integrating existing rout-
ing protocols with centralized tra�c engineering. In an aggressive
approach, we would have built one integrated, centralized service
combining routing (e.g., ISIS functionality) and tra�c engineering.
We instead chose to deploy routing and tra�c engineering as in-
dependent services, with the standard routing service deployed ini-
tially and central TE subsequently deployed as an overlay. �is sep-

aration delivers a number of bene�ts. It allowed us to focus initial
work on building SDN infrastructure, e.g., the OFC and agent, rout-
ing, etc. Moreover, since we initially deployed our network with no
new externally visible functionality such as TE, it gave time to de-
velop and debug the SDN architecture before trying to implement
new features such as TE.
Perhaps most importantly, we layered tra�c engineering on top

of baseline routing protocols using prioritized switch forwarding ta-
ble entries (§ �). �is isolation gave our network a “big red button”;
faced with any critical issues in tra�c engineering, we could dis-
able the service and fall back to shortest path forwarding. �is fault
recovery mechanism has proven invaluable (§ �).
Each B� site consists of multiple switches with potentially hun-

dreds of individual ports linking to remote sites. To scale, the TE ab-
stracts each site into a single node with a single edge of given capac-
ity to each remote site. To achieve this topology abstraction, all traf-
�c crossing a site-to-site edge must be evenly distributed across all
its constituent links. B� routers employ a custom variant of ECMP
hashing [��] to achieve the necessary load balancing.
In the rest of this section, we describe how we integrate ex-

isting routing protocols running on separate control servers with
OpenFlow-enabled hardware switches. § � then describes how we
layer TE on top of this baseline routing implementation.

3.2 Switch Design
Conventional wisdom dictates that wide area routing equipment

must have deep bu�ers, very large forwarding tables, and hardware
support for high availability. All of this functionality adds to hard-
ware cost and complexity. We posited that with careful endpoint
management, we could adjust transmission rates to avoid the need
for deep bu�ers while avoiding expensive packet drops. Further,
our switches run across a relatively small set of data centers, so
we did not require large forwarding tables. Finally, we found that
switch failures typically result from so�ware rather than hardware
issues. By moving most so�ware functionality o� the switch hard-
ware, we can manage so�ware fault tolerance through known tech-
niques widely available for existing distributed systems.
Even so, the main reason we chose to build our own hardware

was that no existing platform could support an SDN deployment,
i.e., one that could export low-level control over switch forwarding
behavior. Any extra costs from using custom switch hardware are
more than repaid by the e�ciency gains available from supporting
novel services such as centralized TE. Given the bandwidth required
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• Link = 100s of links
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QoS} tuple Figure �: B� worldwide deployment (����).

not a panacea; we summarize our experience with a large-scale B�
outage, pointing to challenges in both SDN and large-scale network
management. While our approach does not generalize to all WANs
or SDNs, we hope that our experience will inform future design in
both domains.

2. BACKGROUND
Before describing the architecture of our so�ware-de�nedWAN,

we provide an overview of our deployment environment and tar-
get applications. Google’s WAN is among the largest in the Internet,
delivering a range of search, video, cloud computing, and enterprise
applications to users across the planet. �ese services run across a
combination of data centers spread across the world, and edge de-
ployments for cacheable content.

Architecturally, we operate two distinct WANs. Our user-facing
network peers with and exchanges tra�c with other Internet do-
mains. End user requests and responses are delivered to our data
centers and edge caches across this network. �e second network,
B�, provides connectivity among data centers (see Fig. �), e.g., for
asynchronous data copies, index pushes for interactive serving sys-
tems, and end user data replication for availability. Well over ���
of internal application tra�c runs across this network.

We maintain two separate networks because they have di�erent
requirements. For example, our user-facing networking connects
with a range of gear and providers, and hence must support a wide
range of protocols. Further, its physical topology will necessarily be
more dense than a network connecting a modest number of data
centers. Finally, in delivering content to end users, it must support
the highest levels of availability.

�ousands of individual applications run across B�; here, we cat-
egorize them into three classes: i) user data copies (e.g., email, doc-
uments, audio/video �les) to remote data centers for availability/-
durability, ii) remote storage access for computation over inherently
distributed data sources, and iii) large-scale data push synchroniz-
ing state across multiple data centers. �ese three tra�c classes are
ordered in increasing volume, decreasing latency sensitivity, and de-
creasing overall priority. For example, user-data represents the low-
est volume on B�, is the most latency sensitive, and is of the highest
priority.

�e scale of our network deployment strains both the capacity
of commodity network hardware and the scalability, fault tolerance,
and granularity of control available from network so�ware. Internet
bandwidth as a whole continues to grow rapidly [��]. However, our
ownWAN tra�c has been growing at an even faster rate.

Our decision to build B� around So�ware De�ned Networking
and OpenFlow [��] was driven by the observation that we could not
achieve the level of scale, fault tolerance, cost e�ciency, and control
required for our network using traditional WAN architectures. A
number of B�’s characteristics led to our design approach:

● Elastic bandwidth demands: �e majority of our data cen-
ter tra�c involves synchronizing large data sets across sites.
�ese applications bene�t from as much bandwidth as they
can get but can tolerate periodic failures with temporary
bandwidth reductions.● Moderate number of sites: While B�must scale among multi-
ple dimensions, targeting our data center deployments meant
that the total number of WAN sites would be a few dozen.● End application control: We control both the applications and
the site networks connected to B�. Hence, we can enforce rel-
ative application priorities and control bursts at the network
edge, rather than through overprovisioning or complex func-
tionality in B�.● Cost sensitivity: B�’s capacity targets and growth rate led to
unsustainable cost projections. �e traditional approach of
provisioningWAN links at ��-��� (or �-�x the cost of a fully-
utilized WAN) to protect against failures and packet loss,
combined with prevailing per-port router cost, would make
our network prohibitively expensive.

�ese considerations led to particular design decisions for B�,
which we summarize in Table �. In particular, SDN gives us a
dedicated, so�ware-based control plane running on commodity
servers, and the opportunity to reason about global state, yielding
vastly simpli�ed coordination and orchestration for both planned
and unplanned network changes. SDN also allows us to leverage
the raw speed of commodity servers; latest-generation servers are
much faster than the embedded-class processor in most switches,
and we can upgrade servers independently from the switch hard-
ware. OpenFlow gives us an early investment in an SDN ecosys-
tem that can leverage a variety of switch/data plane elements. Crit-
ically, SDN/OpenFlow decouples so�ware and hardware evolution:
control plane so�ware becomes simpler and evolves more quickly;
data plane hardware evolves based on programmability and perfor-
mance.

We had several additional motivations for our so�ware de�ned
architecture, including: i) rapid iteration on novel protocols, ii) sim-
pli�ed testing environments (e.g., we emulate our entire so�ware
stack running across the WAN in a local cluster), iii) improved
capacity planning available from simulating a deterministic cen-
tral TE server rather than trying to capture the asynchronous rout-
ing behavior of distributed protocols, and iv) simpli�ed manage-
ment through a fabric-centric rather than router-centricWAN view.
However, we leave a description of these aspects to separate work.

3. DESIGN
In this section, we describe the details of our So�ware De�ned

WAN architecture.

3.1 Overview
Our SDN architecture can be logically viewed in three layers, de-

picted in Fig. �. B� serves multiple WAN sites, each with a num-
ber of server clusters. Within each B� site, the switch hardware
layer primarily forwards tra�c and does not run complex control
so�ware, and the site controller layer consists of Network Control
Servers (NCS) hosting both OpenFlow controllers (OFC) and Net-
work Control Applications (NCAs).

�ese servers enable distributed routing and central tra�c engi-
neering as a routing overlay. OFCs maintain network state based on
NCA directives and switch events and instruct switches to set for-
warding table entries based on this changing network state. For fault
tolerance of individual servers and control processes, a per-site in-
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Use multipath forwarding to balance application demands across available capacity in re-
sponse to failures and changing application demands.
Leverage application classi�cation and priority for scheduling in cooperation with edge rate
limiting.
Tra�c engineering with traditional distributed routing protocols (e.g. link-state) is known
to be sub-optimal [��, ��] except in special cases [��].
Faster, deterministic global convergence for failures.

No existing protocols for func-
tionality. Requires knowledge
about site to site demand and im-
portance.

Separate hardware
from so�ware

Customize routing and monitoring protocols to B� requirements.
Rapid iteration on so�ware protocols.
Easier to protect against common case so�ware failures through external replication.
Agnostic to range of hardware deployments exporting the same programming interface.

Previously untested development
model. Breaks fate sharing be-
tween hardware and so�ware.

Table �: Summary of design decisions in B�.

Figure �: B� architecture overview.

stance of Paxos [�] elects one of multiple available so�ware replicas
(placed on di�erent physical servers) as the primary instance.

�e global layer consists of logically centralized applications (e.g.
an SDN Gateway and a central TE server) that enable the central
control of the entire network via the site-levelNCAs.�e SDNGate-
way abstracts details of OpenFlow and switch hardware from the
central TE server. We replicate global layer applications across mul-
tiple WAN sites with separate leader election to set the primary.

Each server cluster in our network is a logical “Autonomous Sys-
tem” (AS)with a set of IP pre�xes. Each cluster contains a set of BGP
routers (not shown in Fig. �) that peerwith B� switches at eachWAN
site. Even before introducing SDN, we ran B� as a single AS pro-
viding transit among clusters running traditional BGP/ISIS network
protocols. We chose BGP because of its isolation properties between
domains and operator familiarity with the protocol.�e SDN-based
B� then had to support existing distributed routing protocols, both
for interoperability with our non-SDN WAN implementation, and
to enable a gradual rollout.

We considered a number of options for integrating existing rout-
ing protocols with centralized tra�c engineering. In an aggressive
approach, we would have built one integrated, centralized service
combining routing (e.g., ISIS functionality) and tra�c engineering.
We instead chose to deploy routing and tra�c engineering as in-
dependent services, with the standard routing service deployed ini-
tially and central TE subsequently deployed as an overlay. �is sep-

aration delivers a number of bene�ts. It allowed us to focus initial
work on building SDN infrastructure, e.g., the OFC and agent, rout-
ing, etc. Moreover, since we initially deployed our network with no
new externally visible functionality such as TE, it gave time to de-
velop and debug the SDN architecture before trying to implement
new features such as TE.
Perhaps most importantly, we layered tra�c engineering on top

of baseline routing protocols using prioritized switch forwarding ta-
ble entries (§ �). �is isolation gave our network a “big red button”;
faced with any critical issues in tra�c engineering, we could dis-
able the service and fall back to shortest path forwarding. �is fault
recovery mechanism has proven invaluable (§ �).
Each B� site consists of multiple switches with potentially hun-

dreds of individual ports linking to remote sites. To scale, the TE ab-
stracts each site into a single node with a single edge of given capac-
ity to each remote site. To achieve this topology abstraction, all traf-
�c crossing a site-to-site edge must be evenly distributed across all
its constituent links. B� routers employ a custom variant of ECMP
hashing [��] to achieve the necessary load balancing.
In the rest of this section, we describe how we integrate ex-

isting routing protocols running on separate control servers with
OpenFlow-enabled hardware switches. § � then describes how we
layer TE on top of this baseline routing implementation.

3.2 Switch Design
Conventional wisdom dictates that wide area routing equipment

must have deep bu�ers, very large forwarding tables, and hardware
support for high availability. All of this functionality adds to hard-
ware cost and complexity. We posited that with careful endpoint
management, we could adjust transmission rates to avoid the need
for deep bu�ers while avoiding expensive packet drops. Further,
our switches run across a relatively small set of data centers, so
we did not require large forwarding tables. Finally, we found that
switch failures typically result from so�ware rather than hardware
issues. By moving most so�ware functionality o� the switch hard-
ware, we can manage so�ware fault tolerance through known tech-
niques widely available for existing distributed systems.
Even so, the main reason we chose to build our own hardware

was that no existing platform could support an SDN deployment,
i.e., one that could export low-level control over switch forwarding
behavior. Any extra costs from using custom switch hardware are
more than repaid by the e�ciency gains available from supporting
novel services such as centralized TE. Given the bandwidth required
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What assumptions about traffic?

Design makes what assumption about traffic to 
approach 100% utilization on some links?

• High priority traffic is in the minority
• Elastic traffic is the majority (backups, offline data 

analytics, ...)

We tolerate high utilization by di�erentiating among di�erent tra�c
classes.

�e two graphs in Fig. �� show tra�c on all links between two
WAN sites. �e top graph shows how we drive utilization close to
���� over a ��-hour period. �e second graph shows the ratio of
high priority to low priority packets, and packet-drop fractions for
each priority. A key bene�t of centralized TE is the ability to mix
priority classes across all edges. By ensuring that heavily utilized
edges carry substantial low priority tra�c, local QoS schedulers can
ensure that high priority tra�c is insulated from loss despite shallow
switch bu�ers, hashing imperfections and inherent tra�c bursti-
ness. Our low priority tra�c tolerates loss by throttling transmis-
sion rate to available capacity at the application level.

(a)

(b)

Figure ��: Utilization and drops for a site-to-site edge.

Site-to-site edge utilization can also be studied at the granular-
ity of the constituent links of the edge, to evaluate B�’s ability to
load-balance tra�c across all links traversing a given edge. Such
balancing is a prerequisite for topology abstraction in TE (§�.�).
Fig. �� shows the uniform link utilization of all links in the site-to-
site edge of Fig. �� over a period of �� hours. In general, the results
of our load-balancing scheme in the �eld have been very encour-
aging across the B� network. For at least ��� of site-to-site edges,
the max:min ratio in link utilization across constituent links is �.��
without failures (i.e., �� from optimal), and �.� with failures. More
e�ective load balancing during failure conditions is a subject of our
ongoing work.

Figure ��: Per-link utilization in a trunk, demonstrating the e�ec-
tiveness of hashing.

7. EXPERIENCE FROM AN OUTAGE
Overall, B� system availability has exceeded our expectations.

However, it has experienced one substantial outage that has been
instructive both inmanaging a largeWAN in general and in the con-
text of SDN in particular. For reference, our public facing network
has also su�ered failures during this period.

�e outage started during a planned maintenance operation, a
fairly complex move of half the switching hardware for our biggest
site from one location to another. One of the new switches was in-
advertently manually con�gured with the same ID as an existing
switch. �is led to substantial link �aps. When switches received
ISIS Link State Packets (LSPs) with the same ID containing di�erent
adjacencies, they immediately �ooded new LSPs through all other
interfaces.�e switcheswith duplicate IDswould alternate respond-
ing to the LSPs with their own version of network topology, causing
more protocol processing.

Recall that B� forwards routing-protocols packets through so�-
ware, from Quagga to the OFC and �nally to the OFA. �e OFC
to OFA connection is the most constrained in our implementation,
leading to substantial protocol packet queueing, growing to more
than ���MB at its peak.

�e queueing led to the next chain in the failure scenario: normal
ISIS Hello messages were delayed in queues behind LSPs, well past
their useful lifetime. �is led switches to declare interfaces down,
breaking BGP adjacencies with remote sites. TE Tra�c transiting
through the site continued to work because switches maintained
their last known TE state. However, the TE server was unable to
create new tunnels through this site. At this point, any concurrent
physical failures would leave the network using old broken tunnels.

With perfect foresight, the solution was to drain all links from
one of the switches with a duplicate ID. Instead, the very reasonable
response was to reboot servers hosting the OFCs. Unfortunately,
the high system load uncovered a latent OFC bug that prevented
recovery during periods of high background load.

�e system recovered a�er operators drained the entire site, dis-
abled TE, and �nally restarted the OFCs from scratch. �e outage
highlighted a number of important areas for SDN andWANdeploy-
ment that remain active areas of work:

�. Scalability and latency of the packet IO path between the
OFC and OFA is critical and an important target for evolving
OpenFlow and improving our implementation. For exam-
ple, OpenFlow might support two communication channels,
high priority for latency sensitive operations such as packet
IO and low priority for throughput-oriented operations such
as switch programming operations. Credit-based�ow control
would aid in bounding the queue buildup. Allowing certain
duplicate messages to be dropped would help further, e.g.,
consider that the earlier of two untransmitted LSPs can sim-
ply be dropped.

�. OFA should be asynchronous and multi-threaded for more
parallelism, speci�cally in a multi-linecard chassis where
multiple switch chips may have to be programmed in parallel
in response to a single OpenFlow directive.

�. We require additional performance pro�ling and reporting.
�erewere a number of “warning signs” hidden in system logs
during previous operations and it was no accident that the
outage took place at our largest B� site, as it was closest to its
scalability limits.

�. Unlike traditional routing control systems, loss of a control
session, e.g., TE-OFC connectivity, does not necessarily in-
validate forwarding state. With TE, we do not automati-
cally reroute existing tra�c around an unresponsive OFC
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What assumptions about traffic?

Design makes what assumption about traffic to 
approach 100% utilization on some links?

• High priority traffic is in the minority
• Elastic traffic is the majority (backups, offline data 

analytics, ...)

When would that assumption be violated?

• Google’s user-facing wide area network


