
Scalable routing
Brighten Godfrey

CS 538 October 3 2013

slides ©2010-2013 by Brighten Godfrey unless otherwise noted

How do we route in
really big networks?

Classic shortest-path routing

Ω(n) memory per node

• at least store next hop to n destinations

Ω(n) messages per node per unit time

• assuming each node moves once per unit time
• also must recompute routes each of these times

if n = 1,000,000,000 and “unit time” = one day,

• ≈100–10,000x more fast path mem. than routers today
• 11,600 updates per second
• 4.4 Mbit/sec if updates are 50 bytes

How can we scale better than Ω(n) per node?

Routing in Manhattan

(8, 23)

(3, 46)

Recipe for scaling

1. Convert name to address

• name: arbitrary
• address: hint about location
• conversion uses distributed database (e.g., DNS)

2. Nodes have partial view of network

3. To route, combine partial view with dest. address

Challenge: how do we summarize the network in the
partial view and address?

• And what exactly are we trying to achieve?

Key goals

Addresses are small

Node state is small

Routes are short

• stretch =

How does Manhattan routing do?

• Assume square grid of n nodes ()
• Address is (street, avenue); nodes store neighbors’ addr.
• Address size:
• Node state:
• Route length: shortest (stretch 1) if we know address!

p
n⇥

p
n

2 log2(
p
n) = log2 n

⇡ 4 log2 n

route length
shortest path length

Outline

Scalable routing in structured networks

• Manhattan routing
• Greedy routing
• NIRA

Scalable routing in arbitrary networks

• Hierarchy
• Compact routing

Structured networks

Grid

(8, 23)

(3, 46)

Torus

2D Torus3D Torus
[Cray T3D press shot via hexus.net]

A plethora of structured graphs!

Hypercube
Supercomputers,

distributed hash tables

Fat tree
Supercomputers,
data centers

Small world
distributed hash tables

Greedy routing

Technique common in many structured networks

Scheme:

• Each node knows addresses of itself & neighbors
• Given two addresses, can estimate “distance” between

them: dist(s,t)
• Forwarding at node v: send to neighbor w which

minimizes dist(v,w) + dist(w,d)

What structure does this require?

• Compact addresses that can “summarize” location
• Good estimator of distance dist(s,t)

#1: Manhattan routing

• Address: (x, y) coordinate on grid
• Distance ‘estimation’ of (x, y) to (x’, y’) = |x-x’| + |y-y’|

#2: Greedy geographic routing

• Address: physical location (e.g., (x,y) coord. from GPS)
• Distance estimation: Euclidean distance

s ta

b

c

d

e

Greedy routing examples

??? If local minima
in dist(), we’re

stuck!

Greedy Perimeter Stateless Routing

[Karp, Kung, MobiCom ’00]

Address is physical location,
e.g., from GPS

Distance estimate is
Euclidean distance

If we get stuck...

• = no neighbor is closer to
destination D than we are!
• Then planarize graph and

traverse perimeter of void

ing (GPSR). We aim for scalability under increasing numbers of

nodes in the network, and increasing mobility rate. As these fac-

tors increase, our measures of scalability are:

Routing protocol message cost: How many routing protocol

packets does a routing algorithm send?

Application packet delivery success rate: What fraction of

applications’ packets are delivered successfully by a routing

algorithm?

Per-node state: How much storage does a routing algorithm

require at each node?

Networks that push on mobility, number of nodes, or both include:

Ad-hoc networks: Perhaps the most investigated category,

these mobile networks have no fixed infrastructure, and sup-

port applications for military users, post-disaster rescuers,

and temporary collaborations among temporary associates,

as at a business conference or lecture [10], [12], [20], [21],

[22].

Sensor networks: Comprised of small sensors, these mobile

networks can be deployed with very large numbers of nodes,

and have very impoverished per-node resources [6], [13].

Minimization of state per node in a network of tens of thou-

sands of memory-poor sensors is crucial.

“Rooftop” networks: Proposed by Shepard [24], these wire-

less networks are not mobile, but are deployed very densely

in metropolitan areas (the name refers to an antenna on each

building’s roof, for line-of-sight with neighbors) as an alter-

native to wired networking offered by traditional telecommu-

nications providers. Such a network also provides an alter-

nate infrastructure in the event of failure of the conventional

one, as after a disaster. A routing system that self-configures

(without a trusted authority to configure a routing hierarchy)

for hundreds of thousands of such nodes in a metropolitan

area represents a significant scaling challenge.

Traditional shortest-path (DV and LS) algorithms require state pro-

portional to the number of reachable destinations at each router.

On-demand ad-hoc routing algorithms require state at least pro-

portional to the number of destinations a node forwards packets

toward, and often more, as in the case in DSR, in which a node ag-

gressively caches all source routes it overhears to reduce the prop-

agation scope of other nodes’ flooded route requests.

We will show that geographic routing allows routers to be nearly

stateless, and requires propagation of topology information for only

a single hop: each node need only know its neighbors’ positions.

The self-describing nature of position is the key to geography’s

usefulness in routing. The position of a packet’s destination and

positions of the candidate next hops are sufficient to make correct

forwarding decisions, without any other topological information.

We assume in this work that all wireless routers know their own

positions, either from a GPS device, if outdoors, or through other

means. Practical solutions include surveying, for stationary wire-

less routers; inertial sensors, on vehicles; and acoustic range-finding

y

x

D

Figure 1: Greedy forwarding example. y is x’s closest neighbor

to D.

using ultrasonic “chirps” indoors [28]. We further assume bidirec-

tional radio reachability. The widely used IEEE 802.11 wireless

network MAC [11] sends link-level acknowledgements for all uni-

cast packets, so that all links in an 802.11 network must be bidi-

rectional. We simulate a network that uses 802.11 radios to evalu-

ate our routing protocol. We consider topologies where the wire-

less nodes are roughly in a plane. Finally, we assume that packet

sources can determine the locations of packet destinations, to mark

packets they originate with their destination’s location. Thus, we

assume a location registration and lookup service that maps node

addresses to locations [18]. Queries to this system use the same

geographic routing system as data packets; the querier geographi-

cally addresses his request to a location server. The scope of this

paper is limited to geographic routing. We argue for the eminent

practicality of the location service briefly in Section 3.7. We adopt

IP terminology throughout this paper, though GPSR can be applied

to any datagram network.

In the following sections, we describe the algorithms that comprise

GPSR, measure and analyze GPSR’s performance and behavior

in simulated mobile networks, cite and differentiate related work,

identify future research opportunities suggested by GPSR, and con-

clude by summarizing our findings.

2. ALGORITHMS AND EXAMPLES
We now describe the Greedy Perimeter Stateless Routing algo-

rithm. The algorithm consists of two methods for forwarding pack-

ets: greedy forwarding, which is used wherever possible, and perime-

ter forwarding, which is used in the regions greedy forwarding can-

not be.

2.1 Greedy Forwarding
As alluded to in the introduction, under GPSR, packets are marked

by their originator with their destinations’ locations. As a result,

a forwarding node can make a locally optimal, greedy choice in

choosing a packet’s next hop. Specifically, if a node knows its ra-

dio neighbors’ positions, the locally optimal choice of next hop

is the neighbor geographically closest to the packet’s destination.

Forwarding in this regime follows successively closer geographic

hops, until the destination is reached. An example of greedy next-

hop choice appears in Figure 1. Here, x receives a packet destined

for D. x’s radio range is denoted by the dotted circle about x, and

the arc with radius equal to the distance between y and D is shown

as the dashed arc about D. x forwards the packet to y, as the dis-

tance between y and D is less than that between D and any of x’s

other neighbors. This greedy forwarding process repeats, until the

packet reaches D.

A simple beaconing algorithm provides all nodes with their neigh-

bors’ positions: periodically, each node transmits a beacon to the

broadcast MAC address, containing only its own identifier (e.g., IP

address) and position. We encode position as two four-byte floating-

point quantities, for x and y coordinate values. To avoid synchro-

nization of neighbors’ beacons, as observed by Floyd and Jacob-

son [8], we jitter each beacon’s transmission by 50% of the interval

B between beacons, such that the mean inter-beacon transmission

interval is B, uniformly distributed in 0 5B 1 5B .

Upon not receiving a beacon from a neighbor for longer than time-

out interval T , a GPSR router assumes that the neighbor has failed

or gone out-of-range, and deletes the neighbor from its table. The

802.11 MAC layer also gives direct indications of link-level re-

transmission failures to neighbors; we interpret these indications

identically. We have used T 4 5B, three times the maximum jit-

tered beacon interval, in this work.

Greedy forwarding’s great advantage is its reliance only on knowl-

edge of the forwarding node’s immediate neighbors. The state re-

quired is negligible, and dependent on the density of nodes in the

wireless network, not the total number of destinations in the net-

work.1 On networks where multi-hop routing is useful, the number

of neighbors within a node’s radio range must be substantially less

than the total number of nodes in the network.

The position a node associates with a neighbor becomes less cur-

rent between beacons as that neighbor moves. The accuracy of the

set of neighbors also decreases; old neighbors may leave and new

neighbors may enter radio range. For these reasons, the correct

choice of beaconing interval to keep nodes’ neighbor tables current

depends on the rate of mobility in the network and range of nodes’

radios. We show the effect of this interval on GPSR’s performance

in our simulation results. We note that keeping current topological

state for a one-hop radius about a router is the minimum required to

do any routing; no useful forwarding decision can be made without

knowledge of the topology one or more hops away.

This beaconing mechanism does represent pro-active routing pro-

tocol traffic, avoided by DSR and AODV. To minimize the cost of

beaconing, GPSR piggybacks the local sending node’s position on

all data packets it forwards, and runs all nodes’ network interfaces

in promiscuous mode, so that each station receives a copy of all

packets for all stations within radio range. At a small cost in bytes

(twelve bytes per packet), this scheme allows all packets to serve

as beacons. When any node sends a data packet, it can then reset

its inter-beacon timer. This optimization reduces beacon traffic in

regions of the network actively forwarding data packets.

In fact, we could make GPSR’s beacon mechanism fully reactive by

having nodes solicit beacons with a broadcast “neighbor request”

only when they have data traffic to forward. We have not felt it nec-

essary to take this step, however, as the one-hop beacon overhead

does not congest our simulated networks.

The power of greedy forwarding to route using only neighbor nodes’

positions comes with one attendant drawback: there are topologies

in which the only route to a destination requires a packet move tem-

porarily farther in geometric distance from the destination [7], [16].

A simple example of such a topology is shown in Figure 2. Here,

x is closer to D than its neighbors w and y. Again, the dashed arc

1The word “stateless” in GPSR’s name is not meant literally, but
refers to this small, purely local state.

x

w
y

D

zv

Figure 2: Greedy forwarding failure. x is a local maximum in

its geographic proximity to D; w and y are farther from D.

D

v z

w

x

y

void

Figure 3: Node x’s void with respect to destination D.

about D has a radius equal to the distance between x and D. Al-

though two paths, x y z D and x w v D , exist to

D, x will not choose to forward to w or y using greedy forwarding.

x is a local maximum in its proximity toD. Some other mechanism

must be used to forward packets in these situations.

2.2 The Right-Hand Rule: Perimeters
Motivated by Figure 2, we note that the intersection of x’s circular

radio range and the circle about D of radius xD (that is, of the

length of line segment xD) is empty of neighbors. We show this

region clearly in Figure 3. From node x’s perspective, we term the

shaded region without nodes a void. x seeks to forward a packet to

destination D beyond the edge of this void. Intuitively, x seeks to

route around the void; if a path toD exists from x, it doesn’t include

nodes located within the void (or x would have forwarded to them

greedily).

The long-known right-hand rule for traversing a graph is depicted

in Figure 4. This rule states that when arriving at node x from node

y, the next edge traversed is the next one sequentially counterclock-

wise about x from edge x y . It is known that the right-hand rule

traverses the interior of a closed polygonal region (a face) in clock-

wise edge order—in this case, the triangle bounded by the edges

between nodes x, y, and z, in the order y x z y . The rule

traverses an exterior region, in this case, the region outside the same

triangle, in counterclockwise edge order.

We seek to exploit these cycle-traversing properties to route around

voids. In Figure 3, traversing the cycle x w v D z y

x by the right-hand rule amounts to navigating around the pictured

void, specifically, to nodes closer to the destination than x (in this

case, including the destination itself, D). We call the sequence of

Greedy example #3: Small worlds

“Small world” effect demonstrated by Milgram [’67]

Kleinberg’s model: n x n lattice, plus long range edges

Result: greedy routing finds short (O(log2 n)) paths
with high probability if and only if r = 2

A) B)

u

v w

Figure 1: (A) A two-dimensional grid network with n = 6, p = 1, and q = 0. (B) The
contacts of a node u with p = 1 and q = 2. v and w are the two long-range contacts.

• We then define an infinite family of random network models that naturally gener-
alizes the Watts-Strogatz model. We show that for one of these models, there is a
decentralized algorithm capable of finding short paths with high probability.

• Finally, we prove the stronger statement that there is in fact a unique model within
the family for which decentralized algorithms are effective.

The Model: Networks and Decentralized Algorithms. We now give precise defini-
tions for our network model and our notion of a decentralized algorithm; we then provide
formal statements of the main results.

In designing our network model, we seek a simple framework that encapsulates the
paradigm of Watts and Strogatz — rich in local connections, with a few long-range con-
nections. Rather than using a ring as the basic structure, however, we begin from a two-
dimensional grid and allow for edges to be directed. Thus, we begin with a set of nodes
(representing individuals in the social network) that are identified with the set of lattice
points in an n × n square, {(i, j) : i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}}, and we define the
lattice distance between two nodes (i, j) and (k, !) to be the number of “lattice steps” sep-
arating them: d((i, j), (k, !)) = |k − i| + |! − j|. For a universal constant p ≥ 1, the node u
has a directed edge to every other node within lattice distance p — these are its local con-
tacts. For universal constants q ≥ 0 and r ≥ 0, we also construct directed edges from u to q
other nodes (the long-range contacts) using independent random trials; the ith directed edge
from u has endpoint v with probability proportional to [d(u, v)]−r. (To obtain a probability
distribution, we divide this quantity by the appropriate normalizing constant

∑
v[d(u, v)]−r;

we will call this the inverse rth-power distribution.)
This model has a simple “geographic” interpretation: individuals live on a grid and know

their neighbors for some number of steps in all directions; they also have some number of
acquaintances distributed more broadly across the grid. Viewing p and q as fixed constants,
we obtain a one-parameter family of network models by tuning the value of the exponent
r. When r = 0, we have the uniform distribution over long-range contacts, the distribution

4

exists with probability
proportional to d(u,w)-r

Non-greedy: NIRA [Yang et al ’07]YANG et al.: NIRA: A NEW INTER-DOMAIN ROUTING ARCHITECTURE 777

Fig. 1. Dark lines draw the user Bob’s up-graph. In this and all other figures,
an arrowed line represents a provider-customer connection, with the arrow ends
at the provider. A dashed line represents a peering connection.

other peer and its customers. Our design also works with other
contractual relationships (Section VI). Next, we describe each
design module in more detail.

B. Route Discovery

Before we describe how a user discovers a failure-free route,
we first define a few terms. We refer to a provider that does
not purchase transit service from other providers as a tier-1
provider. We define the region of the Internet where tier-1
providers interconnect as the Core of the Internet. We discuss a
more general definition about the Core in Section II-H.

To formulate a valid route, a user needs to know which routes
he can use and whether they are failure free. Our design provides
a basic mechanism for users to discover routes and route fail-
ures, and allows users to use any general mechanism to enhance
the basic mechanisms. To allow practical payment schemes, our
design exposes to a user the region of the network that consists
of his providers, his providers’ providers, and so on until the
providers in the Core. In addition, the region also includes the
peering connections of the providers outside the Core. This re-
gion of the network is the user’s “access network” to the rest
of the Internet. We refer to this region as a user’s “up-graph.”
Fig. 1 shows a sample network, where the dark lines depict the
user Bob’s up-graph. In this paper, we abstract each domain as
having one router and the multiple links between two domains
as one domain-level link. Without specific mentioning, the term
link in this paper refers to a domain-level link. More realistic
situations are considered in [67].

We design a topology information propagation protocol
(TIPP) to let a user discover his up-graph. TIPP has two
components: a path-vector component to distribute the set of
provider-level routes in a user’s up-graph, and a policy-based
link state component to inform a user of the dynamic network
conditions. The path-vector component informs a user of his
direct and indirect providers and the transit routes formed
by those providers. A tier-1 provider advertises itself to its
customers, and the customers append themselves and fur-
ther advertise the routes to their customers. Different from
a path-vector routing protocol such as BGP, the path-vector
component of TIPP does not select paths. In the example of
Fig. 1, a user Bob learns from TIPP that he can use two routes
to reach the Core : and .
Each domain on the route is his direct or indirect provider. The

link-state component of TIPP informs a user of the dynamics of
the network. Unlike a global link-state routing protocol, TIPP’s
link-state messages can be configured to propagate within a
provider hierarchy, instead of globally. A domain can control
the scope within which a link state message is propagated
(scope enforcement) as well as to which neighbor to expose
an adjacent domain-level link (information hiding). With this
policy, a user Bob only learns the domain-level links on his
up-graph, which includes , , ,

, and . This flexibility allows the design
to be efficient and to be readily used by resource-constrained
devices such as PDAs or aged PCs. However, if in the future,
efficiency (memory, bandwidth, and computation power) is
not a concern even for small or low-end devices, the link-state
component of TIPP can be configured to propagate link-state
messages globally. A user with a more complete network
topology can avoid more dynamic failures in the network. We
describe TIPP in more detail in Section III.

In NIRA, a sender can obtain an end-to-end route to a destina-
tion by combining routes in his up-graph and those in the desti-
nation’s up-graph in reverse order. A typical domain-level route
is said to be “valley-free” [24]. That is, a route has an “uphill”
segment consisting of a sequence of the sender’s providers, and
a “downhill” segment consisting of a sequence of the receiver’s
providers. A sender’s up-graph contains the uphill segment of
a route, and the destination’s up-graph contains the downhill
part. A sender learns an uphill segment from TIPP, and may ob-
tain the destination half of a route from a lookup service, the
name-to-route lookup service (NRLS), which we describe in
Section II-D.

C. Efficient Route Representation

Once a sender formulates an end-to-end route, he needs to
encode it in a packet header. We expect that a source route
will be encoded with a uniform global format. This is to ensure
global communication. There are several candidates for route
encoding. For instance, one encoding scheme is to use a se-
quence of addresses or domain identifiers such as AS numbers.
The advantage of this scheme is its flexibility. It can express any
route. The drawback is the variable-length header overhead.

In NIRA, we use a provider-rooted hierarchical address to
encode a route segment that connects a user to a Core provider.
This scheme has a number of advantages. First, it is efficient
in the common case. With this scheme, a user can use a source
and a destination address to compactly represent a valley-free
route, and switch routes by switching addresses. Meanwhile,
with this representation scheme, both the source address and
the destination address are used for forwarding. This effectively
limits source address spoofing, because a router may not find a
forwarding entry for a packet with an arbitrary source address,
and will instead drop the packet.

In the provider-rooted hierarchical addressing scheme, a
provider in the Core obtains a globally unique address prefix.
The provider then allocates nonoverlapping subdivisions of
the address prefix to each of its customers. Each customer will
recursively allocate nonoverlapping subdivisions of the address
prefix to any customer it might have.

The hierarchical addressing scheme requires that an address
be long enough to encode the provider hierarchy. This require-
ment could be met either with a fixed-length address with a large

Assumes a graph with a “core”

• routes go up to core (provider links), over (peering
links), and down (customer links)
• i.e., “valley-free”

+

Source up-graph:
known

Dest. up-graph:
obtained from DNS

Non-greedy: NIRA [Yang et al ’07]YANG et al.: NIRA: A NEW INTER-DOMAIN ROUTING ARCHITECTURE 777

Fig. 1. Dark lines draw the user Bob’s up-graph. In this and all other figures,
an arrowed line represents a provider-customer connection, with the arrow ends
at the provider. A dashed line represents a peering connection.

other peer and its customers. Our design also works with other
contractual relationships (Section VI). Next, we describe each
design module in more detail.

B. Route Discovery

Before we describe how a user discovers a failure-free route,
we first define a few terms. We refer to a provider that does
not purchase transit service from other providers as a tier-1
provider. We define the region of the Internet where tier-1
providers interconnect as the Core of the Internet. We discuss a
more general definition about the Core in Section II-H.

To formulate a valid route, a user needs to know which routes
he can use and whether they are failure free. Our design provides
a basic mechanism for users to discover routes and route fail-
ures, and allows users to use any general mechanism to enhance
the basic mechanisms. To allow practical payment schemes, our
design exposes to a user the region of the network that consists
of his providers, his providers’ providers, and so on until the
providers in the Core. In addition, the region also includes the
peering connections of the providers outside the Core. This re-
gion of the network is the user’s “access network” to the rest
of the Internet. We refer to this region as a user’s “up-graph.”
Fig. 1 shows a sample network, where the dark lines depict the
user Bob’s up-graph. In this paper, we abstract each domain as
having one router and the multiple links between two domains
as one domain-level link. Without specific mentioning, the term
link in this paper refers to a domain-level link. More realistic
situations are considered in [67].

We design a topology information propagation protocol
(TIPP) to let a user discover his up-graph. TIPP has two
components: a path-vector component to distribute the set of
provider-level routes in a user’s up-graph, and a policy-based
link state component to inform a user of the dynamic network
conditions. The path-vector component informs a user of his
direct and indirect providers and the transit routes formed
by those providers. A tier-1 provider advertises itself to its
customers, and the customers append themselves and fur-
ther advertise the routes to their customers. Different from
a path-vector routing protocol such as BGP, the path-vector
component of TIPP does not select paths. In the example of
Fig. 1, a user Bob learns from TIPP that he can use two routes
to reach the Core : and .
Each domain on the route is his direct or indirect provider. The

link-state component of TIPP informs a user of the dynamics of
the network. Unlike a global link-state routing protocol, TIPP’s
link-state messages can be configured to propagate within a
provider hierarchy, instead of globally. A domain can control
the scope within which a link state message is propagated
(scope enforcement) as well as to which neighbor to expose
an adjacent domain-level link (information hiding). With this
policy, a user Bob only learns the domain-level links on his
up-graph, which includes , , ,

, and . This flexibility allows the design
to be efficient and to be readily used by resource-constrained
devices such as PDAs or aged PCs. However, if in the future,
efficiency (memory, bandwidth, and computation power) is
not a concern even for small or low-end devices, the link-state
component of TIPP can be configured to propagate link-state
messages globally. A user with a more complete network
topology can avoid more dynamic failures in the network. We
describe TIPP in more detail in Section III.

In NIRA, a sender can obtain an end-to-end route to a destina-
tion by combining routes in his up-graph and those in the desti-
nation’s up-graph in reverse order. A typical domain-level route
is said to be “valley-free” [24]. That is, a route has an “uphill”
segment consisting of a sequence of the sender’s providers, and
a “downhill” segment consisting of a sequence of the receiver’s
providers. A sender’s up-graph contains the uphill segment of
a route, and the destination’s up-graph contains the downhill
part. A sender learns an uphill segment from TIPP, and may ob-
tain the destination half of a route from a lookup service, the
name-to-route lookup service (NRLS), which we describe in
Section II-D.

C. Efficient Route Representation

Once a sender formulates an end-to-end route, he needs to
encode it in a packet header. We expect that a source route
will be encoded with a uniform global format. This is to ensure
global communication. There are several candidates for route
encoding. For instance, one encoding scheme is to use a se-
quence of addresses or domain identifiers such as AS numbers.
The advantage of this scheme is its flexibility. It can express any
route. The drawback is the variable-length header overhead.

In NIRA, we use a provider-rooted hierarchical address to
encode a route segment that connects a user to a Core provider.
This scheme has a number of advantages. First, it is efficient
in the common case. With this scheme, a user can use a source
and a destination address to compactly represent a valley-free
route, and switch routes by switching addresses. Meanwhile,
with this representation scheme, both the source address and
the destination address are used for forwarding. This effectively
limits source address spoofing, because a router may not find a
forwarding entry for a packet with an arbitrary source address,
and will instead drop the packet.

In the provider-rooted hierarchical addressing scheme, a
provider in the Core obtains a globally unique address prefix.
The provider then allocates nonoverlapping subdivisions of
the address prefix to each of its customers. Each customer will
recursively allocate nonoverlapping subdivisions of the address
prefix to any customer it might have.

The hierarchical addressing scheme requires that an address
be long enough to encode the provider hierarchy. This require-
ment could be met either with a fixed-length address with a large

Assumes a graph with a “core”

• routes go up to core (provider links), over (peering
links), and down (customer links)
• i.e., “valley-free”

+

Source up-graph:
known

Dest. up-graph:
obtained from DNS

NIRA key ideas

Up-graphs are small

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

Ed
ge

s
in

 u
pg

ra
ph

Core size

[Calculation using 2013 CAIDA Internet topology data]

NIRA key ideas

Up-graphs are small

Union of source and dest subgraphs is all we need

• exploits Internet’s current structure to find good paths

Address is effectively a subgraph, not just a number!

• here “address” means “destination-specific location info”

Q: How well does NIRA satisfy our goals?

• small address
• small node state
• low stretch

But what if our network
does not have a

“special” structure?

Technique in practice: Hierarchy

128.112.128.81

No structure? Make one!

• 2-level hierarchy: nodes in
clusters
• each node knows how to

reach one node of each
cluster and all nodes in its
own cluster

Problems:

• Some paths very long
• Location-dependent addresses

(as in earlier techniques)

Fundamental tradeoffs

Can we achieve our key goals?

• Low state
• Low stretch (short paths)
• Short addresses

Or, does scalability force us to give something up?

Compact routing theory

Given arbitrary graph, scheme must:

• Construct state (forwarding tables) at each router
• Specify forwarding algorithm:
- Input: Forwarding table, incoming packet
- Output: Packet’s next hop (+ optionally change header)

Goals:

• Minimize maximum state at each router (FIB memory)
• Minimize maximum stretch:

• Reasonably small packet headers (e.g., O(log n))

max

s,t

s t route length

s t shortest path length

Compact routing theory

S
p
a
c
e

Worst-case stretch

�̃(n)

�̃(kn2/(k+1))

31 5 k

...�̃(n1/3)

�̃(
�

n) U n a t t a i n a b l e

[Peleg & Upfal ’88,
Awerbuch et al. ’90,
...,
Cowen ’99,
Thorup & Zwick ’01,
Abraham et al. ’04]

Name-dependent Addresses assigned by
routing protocol

Name-independent Arbitrary (“flat”) names
e.g., DNS or MAC address

pe
r

no
de

Compact routing theory
S

p
a
c
e

Worst-case stretch

�̃(n)

�̃(kn2/(k+1))

31 5 k

...�̃(n1/3)

�̃(
�

n) U n a t t a i n a b l e

pe
r

no
de

Let’s take a look
at this scheme...

Everyone knows
shortest path to
landmarks.

Used to define
address:

Landmarks

route length = dist. to landmark + dist. to t
≤ d(s,t) + d(t,L(t)) + d(L(t),t)

L(t)
b

t
addr(t) = (L(t),b,t) s

triangle inequality

s
t

L(t)

s t
L(t)

Case 1: d(s,t) ≥ d(t,L(t)): further than landmark

• route length ≤ d(s,t) + d(t,L(t)) + d(L(t),t) ≤ 3d(s,t)

Case 2: d(s,t) < d(t,L(t)): closer than landmark

• Trouble!
• Idea: in Case 2, just remember the shortest path.

Stretch analysis

X

Vicinities

s
V(s) = nodes t s.t.
d(s,t) < d(s,L(s)) t

V(s) = nodes t s.t.
d(s,t) < d(t,L(t))

random landmarks: -size vicinities⇥̃(
p

n) ⇥̃(
p

n)

How big are V(t)?
Need a landmark in my vicinity.

Requires “handshaking”,
but convenient to
implement

Tool: Chernoff bound

Xi = m independent (0,1) random variables

X = ∑Xi, E[X] = µ

For any

See, e.g., Motwani & Raghavan, Theorems 4.1 - 4.3

Pr[X > (1 + �)µ] < e�µ�2/4

Pr[X < (1� �)µ] < e�µ�2/2

“The sum of many small independent random variables
is almost always close to its expected value.”

0  �  2e� 1,

Show that any node v always has ~ln n landmarks in its
vicinity if we use about landmarks

Xi = 1 if ith closest node to v is landmark, else Xi = 0

How many landmarks are enough?

Pr[Xi] =
p

c · n lnn

n
E[X] = (Number of nodes in vicinity) · Pr[Xi]

E[X] =
p

c · n lnn ·
p

c · n lnn

n
= c lnn

Pr

X <

1
2
c lnn

�
< e�(c ln n)· 1

4 · 1
2 = eln n�c/8

= n�c/8

Increase c to make this
arbitrarily small

p
c · n lnn

Chernoff bound

Analysis

Stretch

• ≤ 3 if outside vicinity (after “handshake”)
• = 1 if inside vicinity

State (data plane)

• Routes to landmarks:
• Routes within vicinity:

Address size

• Simple implementation: depends on path length, but very
short in practice
• More complicated/clever storage of route from landmark

to destination:

O(

p
n log n · log n)

O(

p
n log n · log n)

= ⇥̃(
p
n)

= ⇥̃(
p
n)

⇥(log n)

State in example networks

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2 4 6 8 10 12 14 16

M
ea

n
St

at
e

at
 a

 N
od

e

Number of Nodes (in thousands)

State for Different Sizes of Random Graphs

Disco
ND-Disco

S4

Geometric random graphs

Shortest path routing

S4 [Mao et al ’07]

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

C
D

F
O

ve
r S

rc
-D

es
t P

ai
rs

State at a Node (in thousands)

Disco
ND-Disco

S4

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10 12 14 16 18 20

C
D

F
O

ve
r S

rc
-D

es
t P

ai
rs

State at a Node (in thousands)

Disco
ND-Disco

S4

AS-level
Internet

Router-level
Internet

NDDisco

Disco

Stretch in example networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5
C

D
F

O
ve

r S
rc

-D
es

t P
ai

rs
Path Stretch

Disco Later
Disco First

S4 Later
S4 First

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

C
D

F
O

ve
r S

rc
-D

es
t P

ai
rs

Path Stretch

Disco Later
Disco First

S4 Later
S4 First

16,000-node Geometric
random graph

Router-level
Internet topology

What we’re not seeing

Routing on flat names with low stretch and state

• we assumed source knows destination address

Other points state-stretch tradeoff space

• we saw state ~n1/2, stretch 3

Why you cannot do better than this

• ...in the general case (dense graphs)

Why you can do better than this

• ...if the network is sparse (few edges), as essentially all
real networks are

What we’re not seeing

Distributed compact routing

• How do you compute FIBs without global view?

How to handle interdomain routing policies

• no one knows!

Conclusion

Growth of the Internet

There’s occasional concern about increasing routing
table size on the Internet...

But we seem to manage one way or another. What
really matters here?

Key points

Simple shortest-path routing cannot scale

Internet has to do something better than that

• And it does!: Hierarchy (e.g., routing by IP prefix)

Fundamental tradeoff between scalability and stretch
of paths

• Internet’s use of hierarchy gets us down to “only” 450k
forwarding entries at the cost of some latency inflation

Announcements

Steven M. Bellovin, Columbia U

• “Lawful Hacking: Using Existing
Vulnerabilities for Wiretapping on
the Internet”
• 4 pm today in CSL B02

Next week

• SDN

