Forwarding Architecture

Brighten Godfrey CS 538 September 19 2013

Partridge: 50 Gb/sec router

A fast IP router

• well, fast at the time...

Good exhibition of the guts of a router and problems to be solved in router architecture

Routing vs. forwarding

Control plane — Upcoming lectures

- Decides how data should flow through the network
- Uses operator configuration & distributed routing protocols
- Output: Forwarding table
 - Contains instructions for what to do with each packet based on its header
 - Relatively simple data structure (lookup table, tree, ...)

Data plane ← Today

- Input: Forwarding table
- Forwards data through the network

Simplistic router diagram

What's wrong with this picture?

Inside the router

Switching fabric

Operates in epochs

- 128 bytes sent by each line card to next-hop line card
- Each line card can send to only one other card, and can receive from only one other card ... to outputs

Inputs ready to send...

	1	2	3	4	5	6	7
U	0	0	1	0	1	0	0
2	I	ı	1	1	0	0	0
3	0	ı	1	1	0	0	I
4	I	0	1	0	0	1	0
5	0	0	0	0	0	0	0
6	0	0	0	0	1	0	I
7	0	I	ı	0	0	ı	0

Allocator assigns inputs to outputs & tells line cards

What fundamental problem is being solved?

Maximum bipartite matching

Maximize number of matched input-output pairs, such that each input & output only matched once

50 Gbit/s router uses approximate solution

Inputs ready to send...

co oacpass												
	ı	2	3	4	5	6	7					
U	0	0	I	0	1	0	0					
2	1	1	1	1	0	0	0					
3	0	1	1	-1	0	0	1					
4	I	0	I	0	0	I	0					
5	0	0	0	0	0	0	0					
6	0	0	0	0	I	0	ı					
7	0	1	I	0	0	I	0					

... to outputs

Beyond the 50 Gb/sec router

Many more problems to solve

Buffering (how big?)

Queueing (where? what order?)

FIB memory (how fast, large, and expensive?)

FIB algorithms (what data structure? how many memory accesses?)

Specialized functionality

Specialized functionality

Modern routers are jacks-of-all-trades:

- load balance across links
- access control
- filtering attacks
- quality of service
- accounting, traffic metering
- virtual private networks
- Protocol support: IPv4, IPv6, MPLS, ethernet, ...
- ...

Can we make forwarding flexible, extensible?

Data plane flexibility over the ages

1990s: Software routers

Zebra, later Quagga, Click, Xorp

1997: Label switching (MPLS)

Set up explicit paths for classes of packets

1999: Active networks

Packet header carries (pointer to) program code

2008: Software Defined Networks

Open interface to data plane, programmed by software controller

Data plane flexibility over the ages

2008: Software Defined Networks

Open interface to data plane, programmed by software controller

Recent: 'Fabric' architecture

 Data plane complexity moved to edge devices (Hypervisor, Open vSwitch)

Managed by SDN-style controller

Efficiency vs. extensibility

Hardware routers

- Fast
- Specific functionality
- Result: many physical devices (routers, firewalls, intrusion detection, ...)

Software routers

- Slow
- Extensible

Can we get the best of both worlds?

RouteBricks approach

[Dobrescu, Egi, Argyraki, Chun, Fall, lannaccone, Knies, Manesh, Ratnasamy, NSDI 2009]

High bandwidth switching fabric built from commodity hardware

Switching fabric challenges

Handle any traffic pattern: for example, all input traffic at a server might go to any one output server

Low degree (ports): we're using commodity hardware

Naïve approach:

Low degree solution

Just one link out for each link in

Total out b/w enough, but doesn't go where we need

Solution (Valiant load balancing): send packet to random intermediate node, then on to destination

VLB guarantees & questions

Guaranteed to nearly full throughput for any traffic demands!

- "nearly" = 2x. Why?
- So, switch fabric needs to be 2x as fast as external links to provide guarantees

Why does sending to a random intermediate node work?

Retrospective

Software routers are not replacing big iron routers

However, increasing use of software in the fast path

- Especially 'middleboxes': load balancing, logging, firewalls, intrusion detection, ...
- Solutions from multiple vendors to speed software processing of data flows (e.g. 10 Gbps)

MPLS design

Why is this more flexible than shortest path routing?

MPLS design

Ingress:

Traffic classification, label packets ("forwarding equivalence class")

Control plane constructs label-switched paths and coordinates labels

Can also stack labels = concatenate paths

MPLS motivation

In the design doc

- High performance forwarding
- Minimal forwarding requirements, so can interface well with many types of media such as ATM
- Flexible control of traffic routing

What matters today?

Flexibility. Widely used to achieve:

- Virtual Private Network (VPN) service along dedicated paths between enterprise sites
- Control backup paths with MPLS Fast ReRoute
- Traffic engineering (load balancing)

Announcements

Still need a project partner?

- Talk to me or stick around after class
- At least one student looking for a wireless project

Next Tuesday

Intradomain routing

Next Thursday

- Lecture cancelled
- Project proposals due (new date)
- Proposal format in syllabus read it!!