
Congestion Control
in the Network

Brighten Godfrey
CS 538 Sept 17 2013

slides ©2010-2013 by Brighten Godfrey unless otherwise noted

How TCP congestion control
is broken

Tends to fill queues (adding latency)

Slow to converge (for short flows or links with high
bandwidth•delay product)

Loss ≠ congestion

May not fully utilize bandwidth

Efficiency

Limitations of TCP CC

Unfair to large-RTT flows (less throughput)

Unfair to short flows if ssthresh starts small

Equal rates isn’t necessarily “fair” or best

Vulnerable to selfish & malicious behavior

• TCP assumes everyone is running TCP!

Fairness

Limitations of TCP CC

Fills queues: adds loss, latency

Slow to converge

Loss ≠ congestion

May not utilize full bandwidth

Unfair to large-RTT

Unfair to short flows

Is equal rates really “fair”?

Vulnerable to selfishness

Limitations of TCP CC

Fills queues: adds loss, latency

Slow to converge

Loss ≠ congestion

May not utilize full bandwidth

Unfair to large-RTT

Unfair to short flows

Is equal rates really “fair”?

Vulnerable to selfishness

Limitations of TCP CC

Hard to use only
end-to-end
information to find
‘right’ rate

Obvious solution:
Get more info
from network

Fills queues: adds loss, latency

Slow to converge

Loss ≠ congestion

May not utilize full bandwidth

Unfair to large-RTT

Unfair to short flows

Is equal rates really “fair”?

Vulnerable to selfishness

Limitations of TCP CC

Hard to use only
end-to-end
information to find
‘right’ rate

Obvious solution:
Get more info
from network

Incentive issues

Congestion control with
help from the network

Getting better info from the net

Random early detection (RED)

• Drops more packets (randomly) as
congestion increases
• Mechanism is entirely within routers

Explicit Congestion Notification (ECN)

• Mark bit in header instead of dropping

But what does the source really want?

• Just tell me the right rate, already!
• eXplicit Control Protocol (XCP)
• Rate Control Protocol (RCP)

Pr
[d

ro
p

pa
ck

et
]

Average queue length

0

1

max

Flows finish slowly
STANFORD HPNG TECHNICAL REPORT TR05-112102 2

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
g

e
 F

lo
w

 D
u

ra
tio

n
 [

se
cs

]

Flow Size [pkts]

XCP
TCP

PS

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300

N
u

m
b

e
r

o
f

A
ct

iv
e

 F
lo

w
s

Time (secs)

XCP
TCP

PS

Fig. 1. The top plot shows the average flow duration versus flow size under
TCP and XCP from a simulation with Poisson flow arrivals, flow sizes are
Pareto distributed with mean = 30 pkts (1000 byte/pkt) and shape = 1.4, link-
capacity = 2.4 Gbps, Round Trip Time = 100 ms, offered load = 0.9. The
bottom plot shows the number of active flows versus time. In both plots the
PS values are computed from analytical expressions [11].

times – increases its rate until it encounters a loss, then enters

congestion-avoidance. Short-lived flows never leave slow-start

and therefore operate below – often well below – their fair-

share rate. Because of this, for a given network load, there are

more active flows at any one time than there would be if they

finished faster, which means the fair-share rate is lower and

the FCT is larger.

A. Example

To illustrate how much longer flows take to complete with

TCP and XCP, when compared to ideal PS, we used ns-

2 [10] to obtain the results shown in Figure 1. The simulation

conditions (explained in the caption) were chosen to be

representative of traffic over a backbone link today, and this

graph is representative of hundreds of graphs we obtained for

a variety of network conditions and traffic models. The values

for PS are derived analytically, and show that flows would

complete an order of magnitude faster than for TCP. There

are several reasons for the long duration of flows with TCP.

First, it takes “slow-start” several round-trip times to find the

fair-share rate. In many cases, the flow has finished before TCP

has found the correct rate. Second, once a flow has reached the

“congestion-avoidance” mode, TCP adapts slowly because of

additive increase. While this was a deliberate choice to help

stabilize TCP, it has the effect of increasing flow duration.

A third reason TCP flows last so long is because of buffer

occupancy. TCP deliberately fills the buffer at the bottleneck,

so as to obtain feedback when packets are dropped. Extra

buffers mean extra delay, which add to the duration of a flow.

Our plots also show eXplicit Control Protocol (XCP) [3].

XCP is designed to work well in networks with large per-

flow bandwidth-delay product. The routers provide feedback,

in terms of incremental window changes, to the sources over

multiple round-trip times, which works well when all flows are

long-lived. But as our plots show, in a dynamic environment

XCP can increase the duration of each flow even further

relative to ideal PS, and so there are more flows in progress

at any instant.

II. UNDERSTANDING FLOW COMPLETION TIMES IN TCP

AND XCP

So why do TCP and XCP result in such long flow durations?

In this section, we will try to explain why both mechanisms

prolong flows unnecessarily. There seem to be four main

reasons: (1) Flows start too slowly and are therefore artificially

stretched over multiple round-trip times, (2) Bandwidth is

allocated unfairly to some flows at the expense of others;

either statically (e.g. TCP favors flows with short RTTs), or

dynamically (XCP allocates excess bandwidth slowly to new

flows), (3) Buffers are filled (TCP) and therefore delay all

packets, and (4) Timeouts and retransmissions due to packet

losses (TCP). We will examine each reason in turn, and use

simple examples to clarify each factor.

A. Stretching flows to last many Round Trip Times (RTT) even

if they are capable of finishing within one/few RTTs

Figure 2 shows an example with TCP and XCP; the top plot

compares the mean flow durations, the middle plot shows the

number of active flows with time and the bottom plot shows

the link utilization.

1) TCP: In Figure 2, we can see that most flows never

leave slow-start and therefore experience the same FCT as they

would if TCP never entered the congestion-avoidancemode. In

slow-start, the FCT for a flow of size L is [log2(L+1)+1/2]×
RTT + L/C (excluding the queuing delay). Flows which

experienced at least one packet drop in their lifetime will enter

the additive increase, multiplicative decrease (AIMD) phase.

Once a flow is in the AIMD phase, it is slow in catching

up with any spare capacity. Slow-start plus slow adaption

by AIMD results in long flow durations. This is illustrated

further by a simple deterministic example in Figure 3. In the

example, the link capacity is 100 pkts/RTT. Two flows, each
with size 50 pkts, arrive at the start of every RTT beginning
from t = 0. In PS, both flows would complete in one RTT,
equilibrium number of flows in system is 2 and the link

utilization would be 100%. With TCP slow-start, the number

of flows in the system evolves like in figure 3. The steady-

state number of flows equals 12 which is six times higher than
PS, consequently the flow duration is six times higher as well.

Similar examples can be constructed with TCP flows in AIMD

phase.

[Dukkipati & McKeown ’05]= fair
queueing

Many flows waiting

STANFORD HPNG TECHNICAL REPORT TR05-112102 2

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
g

e
 F

lo
w

 D
u

ra
tio

n
 [

se
cs

]

Flow Size [pkts]

XCP
TCP

PS

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300

N
u

m
b

e
r

o
f

A
ct

iv
e

 F
lo

w
s

Time (secs)

XCP
TCP

PS

Fig. 1. The top plot shows the average flow duration versus flow size under
TCP and XCP from a simulation with Poisson flow arrivals, flow sizes are
Pareto distributed with mean = 30 pkts (1000 byte/pkt) and shape = 1.4, link-
capacity = 2.4 Gbps, Round Trip Time = 100 ms, offered load = 0.9. The
bottom plot shows the number of active flows versus time. In both plots the
PS values are computed from analytical expressions [11].

times – increases its rate until it encounters a loss, then enters

congestion-avoidance. Short-lived flows never leave slow-start

and therefore operate below – often well below – their fair-

share rate. Because of this, for a given network load, there are

more active flows at any one time than there would be if they

finished faster, which means the fair-share rate is lower and

the FCT is larger.

A. Example

To illustrate how much longer flows take to complete with

TCP and XCP, when compared to ideal PS, we used ns-

2 [10] to obtain the results shown in Figure 1. The simulation

conditions (explained in the caption) were chosen to be

representative of traffic over a backbone link today, and this

graph is representative of hundreds of graphs we obtained for

a variety of network conditions and traffic models. The values

for PS are derived analytically, and show that flows would

complete an order of magnitude faster than for TCP. There

are several reasons for the long duration of flows with TCP.

First, it takes “slow-start” several round-trip times to find the

fair-share rate. In many cases, the flow has finished before TCP

has found the correct rate. Second, once a flow has reached the

“congestion-avoidance” mode, TCP adapts slowly because of

additive increase. While this was a deliberate choice to help

stabilize TCP, it has the effect of increasing flow duration.

A third reason TCP flows last so long is because of buffer

occupancy. TCP deliberately fills the buffer at the bottleneck,

so as to obtain feedback when packets are dropped. Extra

buffers mean extra delay, which add to the duration of a flow.

Our plots also show eXplicit Control Protocol (XCP) [3].

XCP is designed to work well in networks with large per-

flow bandwidth-delay product. The routers provide feedback,

in terms of incremental window changes, to the sources over

multiple round-trip times, which works well when all flows are

long-lived. But as our plots show, in a dynamic environment

XCP can increase the duration of each flow even further

relative to ideal PS, and so there are more flows in progress

at any instant.

II. UNDERSTANDING FLOW COMPLETION TIMES IN TCP

AND XCP

So why do TCP and XCP result in such long flow durations?

In this section, we will try to explain why both mechanisms

prolong flows unnecessarily. There seem to be four main

reasons: (1) Flows start too slowly and are therefore artificially

stretched over multiple round-trip times, (2) Bandwidth is

allocated unfairly to some flows at the expense of others;

either statically (e.g. TCP favors flows with short RTTs), or

dynamically (XCP allocates excess bandwidth slowly to new

flows), (3) Buffers are filled (TCP) and therefore delay all

packets, and (4) Timeouts and retransmissions due to packet

losses (TCP). We will examine each reason in turn, and use

simple examples to clarify each factor.

A. Stretching flows to last many Round Trip Times (RTT) even

if they are capable of finishing within one/few RTTs

Figure 2 shows an example with TCP and XCP; the top plot

compares the mean flow durations, the middle plot shows the

number of active flows with time and the bottom plot shows

the link utilization.

1) TCP: In Figure 2, we can see that most flows never

leave slow-start and therefore experience the same FCT as they

would if TCP never entered the congestion-avoidancemode. In

slow-start, the FCT for a flow of size L is [log2(L+1)+1/2]×
RTT + L/C (excluding the queuing delay). Flows which

experienced at least one packet drop in their lifetime will enter

the additive increase, multiplicative decrease (AIMD) phase.

Once a flow is in the AIMD phase, it is slow in catching

up with any spare capacity. Slow-start plus slow adaption

by AIMD results in long flow durations. This is illustrated

further by a simple deterministic example in Figure 3. In the

example, the link capacity is 100 pkts/RTT. Two flows, each
with size 50 pkts, arrive at the start of every RTT beginning
from t = 0. In PS, both flows would complete in one RTT,
equilibrium number of flows in system is 2 and the link

utilization would be 100%. With TCP slow-start, the number

of flows in the system evolves like in figure 3. The steady-

state number of flows equals 12 which is six times higher than
PS, consequently the flow duration is six times higher as well.

Similar examples can be constructed with TCP flows in AIMD

phase.

[Dukkipati & McKeown ’05]

RCP: finishing flows quickly

Rate Control Protocol [Dukkipati, Kobayashi, Zhang-
Shen, McKeown, IWQoS 2005]

Router’s algorithm:

• Compute fair per-flow rate R(t) at time t as whatever
will fill up the link capacity (roughly)
• Tell end-hosts about this by putting the value in packets,

and recompute every RTT

estimated
of flows

queue
size

spare
capacityold rate

RCP rate computation

Simpler than XCP:

• rates instead of windows
• thus, feedback doesn’t depend on a flow’s RTT
• thus, same feedback to everyone

(How can you estimate # flows?)

R(t) = R(t� d0) +
↵(C � y(t))� � q(t)

d0

N̂(t)

Estimating the number of flows

If guess is wrong, what happens?

• Queue builds up; will reduce rate in next round
• Possibly this estimator could be improved

N̂(t) =
C

R(t� d0)

RCP finishes flows quickly
STANFORD HPNG TECHNICAL REPORT TR05-112102 7

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e

ra
g

e
 F

lo
w

 C
o

m
p

le
ti
o

n
 T

im
e

 [
s
e

c
]

flow size [pkts] (normal scale)

XCP (avg.)
TCP (avg.)
RCP (avg.)
Slow-Start

PS

 0.1

 1

 10

 100

 10000 100000

A
v
e

ra
g

e
 F

lo
w

 C
o

m
p

le
ti
o

n
 T

im
e

 [
s
e

c
]

flow size [pkts] (log scale)

XCP (avg.)
TCP (avg.)
RCP (avg.)
Slow-Start

PS

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
a

x
.

F
lo

w
 C

o
m

p
le

ti
o

n
 T

im
e

 [
s
e

c
]

flow size [pkts] (normal scale)

XCP (max)
TCP (max)
RCP (max)
Slow-Start

PS

Fig. 12. Average Flow Completion Time (AFCT) for different flow sizes
when C = 2.4 Gb/s, RTPD=0.1s, and ρ = 0.9. Flows are pareto distributed
with E[L] = 25 pkts, shape = 1.2. The top plot shows the AFCT for flow
sizes 0 to 2000 pkts; the middle plot shows the AFCT for flow sizes 2000 to
104 pkts; the bottom plot shows the maximum flow completion time among
all flows of the particular size.

much as 30 times higher for flows around 2000 pkts. Note the

logscale of the y-axis.

With longer flows (> 2000 pkts), the ratio of XCP and RCP

delay still remains around 30, while TCP and RCP are similar.

For any fixed simulation time, not only was RCP better for

the flows that completed, but it also finished more flows (and

more work) than TCP and XCP.

The third graph in Figure 12 shows the maximum delay

for a given flow size. Note that in RCP the maximum delay

experienced by the flows is also very close to the average

PS delay. With all flow sizes, the maximum delay for RCP is

smaller than for TCP and XCP. TCP delays have high variance,

often ten times the mean.

More simulations under different network topologies, con-

ditions and traffic characteristics are discussed in [13].

 1

 10

 100

 1 10

R
e
la

tiv
e
 B

a
n
d
w

id
th

 I
m

p
ro

ve
m

e
n

t

Relative Latency Improvement

45 Mbps [1980]

90 Mbps [1981]

417 Mbps [1986]

1.7 Gbps [1988]

2.5 Gbps [1991]

10 Gbps [1997]

flow size = 100 MB
10 MB

1 MB
latency improvement = bandwidth improvement

Fig. 13. Log-log plot of relative bandwidth and flow completion time
improvements for 1, 10, 100MB flows – relative to the first milestone of
45 Mbps introduced in 1980. The time-line for the backbone link capacities
used for this plot are from [17]. The optimistic flow completion time is
computed assuming the flow has the entire link to itself and completes in
slow-start phase. The round trip time used is 40 ms (comparable to RTT
in U.S. backbone). Bandwidth in the network backbone improved by more
than 100X, while the flow completion time improved by less than 2X for a
1MB flow, less than 5X for a 10MB flow and less than 20X for a 100MB
flow. The lagging improvement in flow completion times is primarily due to
TCP’s congestion control mechanism. This plot is inspired by a similar plot by
Patterson [18], illustrating how latency lags bandwidth in computer systems.

V. DISCUSSION: FLOW COMPLETION TIMES LAG BEHIND

THE INCREASE IN LINK BANDWIDTHS

As we’ve seen in several examples, increasing network

bandwidth doesn’t help a flow finish faster if the flow is

limited by the number of RTTs it is made to last. Today,

TCP makes the flows last multiple RTTs even if the flow is

capable of completing within one RTT. While this was not

a concern when link speeds were small and the transmission

delay dominated flow duration, it is no longer the case, and this

problem will only worsen with time: the relative improvements

in bandwidth and FCT in wide area networks is shown in

Figure 13 for different sized flows. The plot shows the most

optimistic improvement in FCT, assuming that the flow has the

entire link capacity to itself. And yet we see that bandwidth

has improved by more than 100X while the flow completion

time has lagged by one to two orders of magnitude. A part of

it clearly is due to the fundamental limitation of propagation

delay, but a significant portion of it is due to TCP’s congestion

control mechanisms. Also, notice in Figure 13 that as the

link speeds increase, the percentage of flows for which there

is a large disparity in link speed and flow completion times

increases. Even if the flows are capable of completing within

a RTT, TCP congestion control makes them last many RTTs,

making it inefficient for the vast majority of the flows. While

we cannot control the fact that the data must take at least

one RTT, it is the premise of this paper that it is better to

design congestion control algorithms to minimize the number

of RTTs.

REFERENCES

[1] A. M. Odlyzko, “The Internet and other networks: Utilization rates and
their implications,” In Information Economics and Policy, 12 (2000),

Enforcing fairness and isolation

Based on slides by Ion Stoica

Problem: no isolation across flows

Assume router uses First In First Out (FIFO) queue

No protection: if a flow misbehaves it will hurt the
other flows

Example: 1 UDP (10 Mbps) and 31 TCP’s sharing a 10
Mbps link

17

0

2.5000

5.0000

7.5000

10.0000

1 5 11 13 15 17 19 21 23 25 27 29 31

RED

Th
ro

ug
hp

ut
(M

bp
s)

Flow Number

UDP

1 32

A first solution

Round robin among different flows [Nagle ’87]

• One queue per flow
• while (1) { send one packet from each queue }

Round robin discussion

Advantages: protection among flows

• Misbehaving flows will not affect the performance of
well-behaving flows
• FIFO does not have such a property

Disadvantages:

• More complex than FIFO: per flow queue/state
• Biased toward large packets: a flow receives service

proportional to the number of packets

Fair Queueing (FQ) [DKS’89]

Define a fluid flow system: a system in which flows
are served continuously

• essentially, bit-by-bit round robin

Advantages

• Each flow will receive exactly its max-min fair rate
• ...and exactly its fair per-packet delay
• ...regardless of packet sizes

Def’n of fairness: Max-Min fairness

If link congested, compute f such that

8

6

2
4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

Implementing Fair Queueing

What we just saw was bit-by-bit round robin

But can’t interrupt transfer of a packet (why not?)

Idea: serve packets in the order in which they would
have finished transmission in the fluid flow system

Strong guarantees: same as having a virtual link of the
max-min fair capacity. Each flow gets:

• Exactly its max-min fair rate (+/- one packet size)
• Exactly its max-min fair per-packet delay (+/- one packet

size) or better

Example

1 2 3 4 5 6Flow 1
(arrival traffic) time

1 2 3 4 5Flow 2
(arrival traffic) time

1 2
3

1 2
4

3 4
5

5 6Service
in fluid flow

system time

1 2 1 3 2 3 4 4 55 6Packet
system time

Problem

Recall: “serve packets in the order in which they
would have finished transmission in the fluid flow
system”

So, need to compute finish time of each packet in the
fluid flow system

... but new packet arrival can change finish times of
existing packets (perhaps all)!

Updating those times would be expensive

Solution: virtual time

Solution: Virtual Time

Key Observation: finish times may change when a new
packet arrives, but the finish order doesn’t

• Only the order is important for scheduling

Solution: maintain the number of rounds needed to
send the remaining bits of the packet

• New packet arrival doesn’t change # remaining rounds
• Does change rounds executed per unit time, but that’s ok

System virtual time = index of the final round in the
bit-by-bit round robin scheme

System Virtual Time: V(t)

Measure service, instead of time

Slope of V(t) = rate at which every active flow receives service

• C = link capacity
• N(t) = number of active flows in fluid flow system at time t

1 2
3

1 2
4

3 4
5

5 6Service
in fluid flow

system real time

real time

vi
rtu

al
 ti

m
e

V
(t)

Define

• = virtual finishing time of packet k of flow i
• = arrival time of packet k of flow i
• = length of packet k of flow i

Virtual finishing time of packet k+1 of flow i is

Order packets by increasing virtual finishing time, and
send them in that order

Fair Queueing implementation

Weighted Fair Queueing (WFQ)

What if we don't want exact fairness?

• Maybe web traffic is more important than file sharing

Assign weight wi to each flow i

And change virtual finishing time to

FQ does not eliminate congestion; it just manages the
congestion

Provides isolation between flows

• complete isolation?

Still need both end-host and router-based congestion
control

• End-host congestion control to adapt rate
• Router congestion control to protect/isolate

FQ summary

Rethinking “fairness”:
Congestion pricing

The Internet routes money;
packets are just a side effect.“ ”

– Unknown, via Dave Clark

What is “fair”?

Flow rate equality!

Easily circumvented

Doesn’t even optimize
for any metric of interest

Fig. 1: Poppycock.

P2P

911

Fairness for real life resources

Plentiful: use as much as you want

• air
• advisor’s grant money

Scarce: pay for what you want

• price set by market
• result (under assumptions):

socially optimal allocation

Fig. 2: Invisible hand
of the market.

Briscoe’s main points

Flow rate fairness (FRF) is not useful

Cost fairness is useful

Flow rate fairness is hard to enforce

Cost fairness is feasible to enforce

Fig 3: Briscoe.

FRF not useful

Doesn’t equalize benefits

• e.g., SMS message vs. a
packet of a video stream

Doesn’t equalize costs

• e.g., “parking lot” network:
long flow causes significant
congestion but is given
equal rate by fair queueing

Therefore, doesn’t equalize
cost or benefit

FRF not useful

Myopic: no notion of fairness across time

In summary, FRF does not optimize utility

• except for strange definitions of utility...

So, even cooperating entities should not use it!

Cost fairness is useful

Economic entities pay for the costs they incur

• This is “fair” (in a real-world sense), not “equal”––and
that’s fine

In other words, networks charge packets for the
congestion they cause

• Can networks lie about congestion?
• Yes. So it’s really a market price, not exactly congestion

Result: senders want to maximize utility

• Will balance benefit with cost (utility = benefit – cost)

Example: light & heavy traffic

Internet: Fairer is Faster TR-CXR9-2009-001

Internet: Fairer is Faster TR-CXR9-2009-001

Internet: Fairer is Faster TR-CXR9-2009-001

Key point: Benefit per bit is
high for light flow and

low for heavy flow.

[Briscoe 2009]

CF is provably useful

Frank Kelly 1997: Cost fairness maximizes aggregate
utility

i.e.: any different outcome results in suboptimal utility

Why won’t anyone
listen to Kelly? Hello??! ... where

did everybody go?

Kelly’s model (one congested link)

Each user i has utility Ui(ri) for rate ri

Each user i pays pi for access to link (its own choice)

Link sets price per unit bandwidth: p = (Sum pj) /C

• thus, ri = pi / p = C pi / (Sum pj)

Theorem: assuming Ui concave, strictly increasing, and
continuously differentiable, then

• A competitive equilibrium exists: setting of pis in which
no user can improve their utility given current price
• This equilibrium maximizes Sum Ui(ri)

ing starts. Such operators continually receive information
on how much real demand there is for capacity while col-
lecting revenue to repay their investments. Such congestion
marking controls demand without risk of actual congestion
deteriorating service.

Once a cost is assigned to congestion that equates to the
cost of alleviating it, users will only cause congestion if they
want extra capacity enough to be willing to pay its cost. Of
course, there will be no need to be too precise about that
rule. Perhaps some people might be allowed to get more
than they pay for and others less. Perhaps some people will
be prepared to pay for what others get, and so on.

But, in a system the size of the Internet, there has to
be be some handle to arbitrate how much cost some users
cause to others. Flow rate fairness comes nowhere near be-
ing up to the job. It just isn’t realistic to create a system
the size of the Internet and define fairness within the sys-
tem without reference to fairness outside the system—in the
real world where everyone grudgingly accepts that fairness
usually means “you get what you pay for”.

Note that we we use the phrase “you get what you pay
for” not just “you pay for what you get”. In Kelly’s original
formulation, users had to pay for the congestion they caused,
which was unlikely to be taken up commercially. But the
reason we are revitalising Kelly’s work is that recent ad-
vances (§4.3.2) should allow ISPs to keep their popular flat
fee pricing packages by aiming to ensure that users cannot
cause more congestion costs than their flat fee pays for.

The details of all this dirty commercial reality don’t have
to concern the research or the networking standards com-
munities. It is sufficient to design protocols so that conges-
tion costs can be integrated together at some higher layer
across different flows and across time, so that senders can
be made accountable for the congestion they cause. Systems
and protocols intended for Internet deployment do not have
to always realise the sort of fairness over time that we find
around us in the real world, but they must be able to.

This subtle connection with the global economy at every
Internet attachment point ensures that there is no need for
some system to decide how far back the history of each in-
dividual’s costs should still be taken into account. Once the
cost that one entity causes to others (integrated over time
and over all its flows) has been suffered by that entity it-
self, it can be forgotten. Just like the costs for all the other
benefits everyone assimilates in their daily lives.

4.3 Enforcement of Fairness

This section drives the final nail into the coffin of flow rate
fairness, exposing flaws that even those within the box have
to turn a blind eye to, in order to convince themselves that
the world within the box is perfectly consistent.

4.3.1 Cheating with Whitewashed or Split Flow IDs

In the real world of deployed networks, if it is easy to
cheat the fairness mechanism to get an unfair allocation,
it’s hardly a useful fairness mechanism. All known flow rate
fairness mechanisms are wide open to cheating.

For instance, if I am the customer of a system giving max-
min flow rate allocations, it is in my interest to split the
identities of my flows into lots of little flows until they are
all less than the minimum allocation. Then the system will
dance to my tune and reduce the allocations of everyone else
in order to increase all the allocations of my little flows. The

Figure 1: Splitting flow identifiers to cheat against
flow rate fairness.

more I split my traffic down across more and more identi-
fiers, the larger share of the resource all my flows taken
together will get.

Further, if a history-based fairness mechanism (§4.1) be-
lieves it should allocate fewer resources to one flow identifier
that it considers has already been given enough, it is triv-
ially easy for the source behind that identifier to create a
new identifier with a whitewashed reputation for its traffic.

And it’s no good imagining that a router will be able to tell
which flow IDs are actually all from the same entity (either
in the security sense or the economic sense), because routers
have to arbitrate between flows emanating from networks
many domains away. They cannot be expected to know
which sets of flow identifiers should be treated as a single
entity. Flows between a pair of IP addresses may even be
attributable to more than one entity, for instance, an IP
address may be shared by many hundreds of accounts on a
Web or e-mail hosting site or behind a NAT.

Bottleneck policers [10, 5, 29], suffer from the same inher-
ent problem. They look for a flow ID at a bottleneck that
is consuming much more bit rate than other flows in order
to police use of TCP. But anyone can cheat by simply run-
ning multiple TCP flows. If the policer looks for cheating
pairs of source-destination IP addresses, without regard to
port numbers, a pair of corresponding nodes can still cheat
by creating extra flows from spoofed source addresses after
telling each other out of band where to send acknowledge-
ments (or just using error correcting coding, not acks).

Alternatively, pairs of corresponding nodes can collude
to share parts of each other’s flows. For instance, if the
three pairs of nodes in Fig 1 are trying to communicate, the
senders can act as stepping stones for each other so that their
three (n) flows appear as nine (n2) across the bottleneck link
in the middle. In effect, they have created a routing overlay,
much like BitTorrent file-sharing software does. If one pair
of näıve nodes competes for this bottleneck against n pairs
of nodes adopting this strategy, it will get about n times
smaller share than each other pair, assuming n is large.

Given identifiers can generally be freely created in cy-
berspace, it is well-known that they shouldn’t be relied on
for resource allocation (or more generally for negative repu-
tation) [9, 13]. Kelly [20] chose cost-based fairness (his term
was ‘pricing per unit share’) because it was immune to this

FRF is hard to enforce

Run your flow longer

Create more flows (similar to sybil attack)

• Multiple TCP connections between same source/
destination (web browsers)
• Spoof source IP / MAC address
• Multiple flows to other destinations (BitTorrent)

Cost fairness is enforceable

You send me a packet; I handle
delivery and charge you for it

How much do I charge?

• Depends on cost on entire
remainder of path!

Not the only way of arranging
payments, but it is convenient

• payments are between
neighbors that already have an
economic relationship

You (src.)

Me
$$ $$ $$

Dest.

Mechanism: Re-Feedback

Key property: every hop knows total congestion along
downstream path

100 100 50 49

49

51 51 1 0

0

First
packet

Second
packet

$

$
0 50 1

0 50 1

Not necessarily about $$

Previous explanation was in terms of money, but
doesn’t have to directly involve money

• Re-feedback is a mechanism
• Doesn’t imply a particular way of implementing

congestion pricing

Possible variants of congestion pricing

• pay per packet?
• monthly allowance?
• only at edges?
• between all ISPs?

Discussion: What if...

Host running a persistent “light” job is interrupted by
heavy flows congesting the net?

Host is compromised? (botnet) Who pays?

If we want cost fairness, is Weighted Fair Queueing
useless?

• No: provides mechanism to isolate flows, virtualize links
• e.g., could use congestion pricing to set WFQ’s weights

Conclusion (Briscoe style!)

“It just isn’t realistic to create a system the size of the
Internet and define fairness within the system without
reference to fairness outside the system.”

Cost fairness optimizes aggregate utility and is feasible
to enforce

Flow rate fairness does not optimize utility and is not
feasible to enforce

• Cease publication on the topic and stop teaching it in
undergraduate courses

Announcements

Announcements

Assignment 1 was due 2pm today

• Accepting late submissions (-15%) till 2pm Wed
• No credit thereafter

A bunch more project ideas

• To be released late tonight (see Piazza)

Next reading: Forwarding hardware

