
Congestion Control
in Data Centers

TA: Chi-Yao Hong
CS 538 Sept 12 2013

Background: Data centers

Why data centers important?

Data center traffic characteristics

[VL2, SIGCOMM’09]

What do we want?

Short flows
complete flows before

their deadlines

Long flows

no deadline, but still
preferable to finish earlier

Low latency is the key

Example: web-facing apps have
strict latency requirements

Revenue decreased by 1% of sales
for every 100 ms latency

Low latency is the key

400 ms slowdown resulted
in a tra!c decrease of 9%

[Yslow 2.0; Stoyan Stefanov]

Users with lowest 10% latency viewed 50% more
pages than those with highest 10% latency

[The secret weapons of the AOL optimization team; Dave Artz]

100 ms slowdown reduces
searches by 0.2-0.4%

[Speed matters for Google Web Search; Jake Brutlag]

Users with 0-1 sec load time have
2x conversion rate of 1-2 sec

 [Is page performance a factor of site
conversion? And how big is it; Walmart Labs]

2.2 sec faster web response
increases 60 million more Firefox

install package downloads per year

[Firefox and Page Load Speed; Blake Cutler]

Improving latency in data centers

partition aggregate model

Server side optimization:
Parallel computation

Improving latency in data centers

Physical interconnect

• Full-bisection bandwidth topology [Fat-tree,
SIGCOMM’08] [VL2, SIGCOMM’09]

• Server-centric topology [BCube, SIGCOMM’09]

• Random graph [Jellyfish, NSDI’12]
Hybrid architecture

• add wireless [Flyways; SIGCOMM’11] [3D beamforming;
SIGCOMM’12]

• add optical switching networks [OSA, NSDI’13]
Switch-side optimization

• detour [Zarifis; SIGCOMM’13 poster]

Network side optimizations

How does TCP congestion control
perform in data centers?

• Incast

•Queue buildup

•Buffer pressure

3 impairments [DCTCP]

What is TCP Incast problem?

• Synchronized flows overflow the switch buffer

Causes?

• (Barrier) synchronized many-to-one traffic pattern

• Short flows (10s KB to 100s KB)

• Small queue buffer (4 to 8 MB shared memory)

• Large default RTO (300 ms)

Incast

• Use larger switch buffers

• Decrease RTOmin

• Desynchronize flows (random delay ~10ms)

Fixing TCP Incasts

Query completion
time [ms]

Queue buildup and buffer pressure

Causes: Long TCP flows occupy switch buffer

Queue buildup: short flow experiences increased delay
90%: RTT < 1ms --- (Bing’s DC)
10%: 1 ms < RTT < 15 ms

Many solutions to Incast do not apply here...

Buffer pressure: 4 MB shared memory, i.e.,
how much buffer per port is not a constant

DCTCP

(adapted from Alizadeh’s slides)

[Alizadeh et al., SIGCOMM’10]

DCTCP: Two goals

Goal #1: Low latency and high burst tolerance
• Ensuring low queue occupancy

Goal #2: Still having high throughput for long flows
•Using most of the network bandwidth

Achieve either goal is not hard; what’s hard is to
achieve both

Explicit Congestion Notification

Switches mark packet’s ECN bit before buffer
overflows

TCP sender treats ECN signals as if a single packet is
dropped — but packets are not actually dropped

More useful for short flows — avoid packet drop,
therefor avoid RTO timeout.

Well supported by today’s commodity switches and
end-hosts

Buffer requirements in TCP

Cwnd%

TCP sawtooth behavior:

B"

Buffer"Size"

Small buffer leads to low throughput:

A single flow needs C x RTT buffer for 100% throughput
Throughput)

100%)

Buffer requirements in TCP

For large # of flows: C x RTT / √N is enough

B"

Cwnd"

Buffer"Size"

Throughput"
100%"

[Appenzeller et al; SIGCOMM’04]

But low statistical multiplexing in data center networks
• 75th percentile: 2 long flows per server

DCTCP: Two Key ideas

1.React in proportion to the extent of congestion, not
its presence

2.Mark based on instantaneous queue length

• Fast feedback to better deal with bursts

ECN Marks TCP DCTCP

1011110111 cut window by
50%

cut window by
40%

0000000001 cut window by
50%

cut window by
5%

DCTCP Algorithm

Switch side:

• mark packet iff queue length > K

Sender side:

• maintain running avg of fraction of marked pkts

In each RTT:

• adaptive window decreases:

Why does it work?

Small buffer occupancies
→ bursts fit
→ low queueing delay

Aggressive marking when queue buffer builds up
→ fast react before packet drops

Adaptive window reduction
→ high throughput

Discussion

• DCTCP mitigates three impairments. Does this give

you optimal latency in data center networks?

• Can we use DCTCP in wide area networks?

• Can we use other switch features to improve the

performance?

• Alok Tiagi’s point

Can we finish flows
even faster?

A case for unfair sharing

Fair sharingScenario

Flow f1 misses its deadline
(incomplete response to user)

deadline aware

Another case for unfair sharing

A
B
C

3

B

C

5 6

C

mean flow completion time = =
3+5+6

3
4.67

Time

Throughput

1

Time

Throughput

1

3

B A

1 6

C

mean flow completion time = =
1+3+6

3
3.33

Scenario
Flow (A, B, C)

with size (1, 2, 3)
no deadline

29% saving
in mean

Order matters

3

B A

1 6

C

mean: 3.33

B A

1 6

C

4

mean: 3.67

B

2

C

6

A

3

mean: 3.67

B

2

C

5

A

6

mean: 4.33

B

6

C

3

A

4

mean: 4.33

B

5

C

3

A

6

mean: 4.67

Relaxing fairness
constraints help

Order matters

�



PDQ: Preemptive Distributed Quick
flow scheduling

[Hong et al.; SIGCOMM’12]

Pretty Damn Quick

PDQ: Idea

Scheduling flows based on flow criticality

relative priority of flows;
transmission order

plug in any desirable value

PDQ: Two primitives

Preemptive scheduling

Less-critical flows yield
to critical flows

Dynamic scheduling

Flow criticality may change
over time

How to choose flow criticality?

3

B A

1 6

C

B A

1 6

C

4

B

2

C

6

A

3

…

How to choose flow criticality?

choose 3

B A

1 6

C 

choose

Scheduling discipline

choose

PDQ’s scheduling disciplines

EDF (Earliest Deadline First)

Optimal for satisfying
flow deadlines

SJF (Shortest Job First)

Optimal for minimizing
mean flow completion time

EDF + SJF

EDF if there’s deadline; give
preference to deadline flows

Policy-based

Assignment that reflects
business priorities

...

PDQ Algorithm

• sender appends flow criticality on packet header

• switch preferentially allocates bandwidth to flows
and tag flow sending rate on packet header

• sender sends with rate given by packet header

sender switch switch receiver

pFabric: Minimal Near-Optimal
Datacenter Transport

[Alizadeh et al.; SIGCOMM’13]

(based on Alizadeh’s slides)

pFabric in 3 sentences

• Packets carry a single priority number

• Switches use very small buffer (10-20 KB per port)
and send highest priority / drop lowest priority
packets

• Hosts send/retransmit aggressively with a minimal rate
control to prevent congestion collapse

Why it works

Buffers are very small (~1 BDP)

• e.g., C=10Gbps, RTT=15us → BDP = 18.75 KB

Worst-case: ~300 packets (with minimal size of 64 B)

• 51.2 ns to find the highest/lowest priority of at most
~300 numbers

• binary tree implementation takes log2(300)=9 clock
cycles

• current ASICs clock cycle = 1-2 ns

Minimal rate control

Flow starts at line rate

Additive increase for every ACK

No fast retransmits, no dupACKs detection

Timeout = 3 times fabric RTT

If timeout too many times, enter probe mode (sending
only probe packet with 1-byte payload) and resume
when it receives ACK

Evaluation

Software Defined Transport

Goal

• Weighted max-min fairness

A flexible and deployable congestion control
protocol that supports a wide range of

transport policies:

• Flow prioritization

• Application-aware scheduling
(e.g., job-level allocation)

... without modifying switches!

Design

Root switch

ToR
switches

Servers

Transport
Controller

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Demand
SDN

Controller
Rate

allocation

Routing
paths

43

Scalable rate allocation

• We handle short, transient flows without the
controller

• A multi-threaded algorithm to simulate the fluid-
level forwarding behavior on every network link

• Each link is a thread

• Based on input flow rate, derives the output
flow rates and signals the allocation to
downstream neighboring links

• Using per-link dirty bit to avoid unnecessary
checking (without placing mutex)

44

Evaluation

Project idea

Announcements

Announcements

Assignment 1 due next Tuesday

Next week reading: Congestion control in the
network

