
Overlay & Peer-to-peer Systems

Guest Lecture by Prof. Indranil Gupta CS 538 December 4 2012

Definitions

Peer-to-peer system: participants have the same functionality and role in the system

- ...as opposed to client-server architecture
- Commonly used to imply file sharing but also used in other contexts (e.g., "BGP peering session")
- At transport level: peer = both client and server

Overlay network: a virtual network whose links are end-to-end paths in another network

Peer-to-peer networks: Intersection of the above two

Or, can also mean "file sharing systems"

In the beginning...

Napster (1999)

- Centralized index server to find the right peer
- Peer-to-peer file transfer

Gnutella (2000)

- Fully decentralized P2P indexing: scoped flooding
- Problems?

Freenet (1999)

- Goal: censorship-resistant key-value content store
- Routing: heuristic clustering of similar keys

In the beginning...

Napster (1999)

Scales poorly, subject to attack (or take-down!)

Gnutella (2000)

Flooding wastes resources, can't find all results

Freenet (1999)

Heuristic key-based routing promising, but no guarantees

Is there a fully decentralized storage system which is guaranteed to find desired results?

Key properties of a DHT

Hashtable interface (fast put(k,v), get(k)=v)

- Freenet: get() might not find results
- DHT: guaranteed to find results, relatively quickly

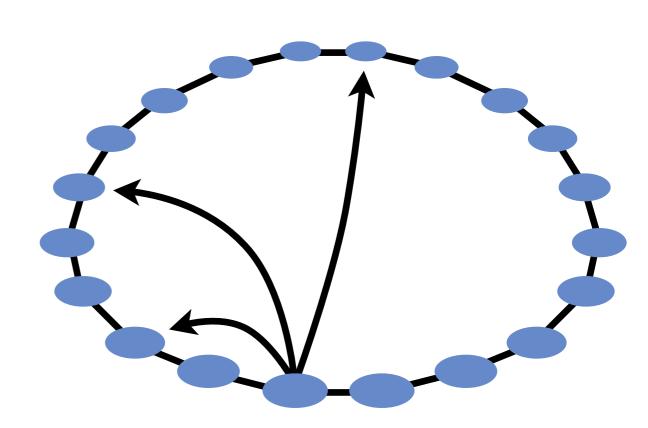
Scalable

- Low memory / communication
- Uses consistent hashing: transfers in expectation I/n of objects when a node leaves/joins

Resilient and decentralized

- Still works if, say, 50% of the nodes suddenly fail
- No centralized index server which could be attacked

DHTs: carefully structured

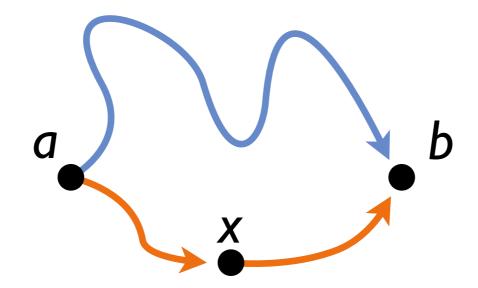

Greedy routing based on distance in keyspace

(Where did we see greedy routing before?)

- Geographic routing
- Small world models
- Grid / torus

What does the DHT topology need for routing...

- ...to work?
- ...to work well?

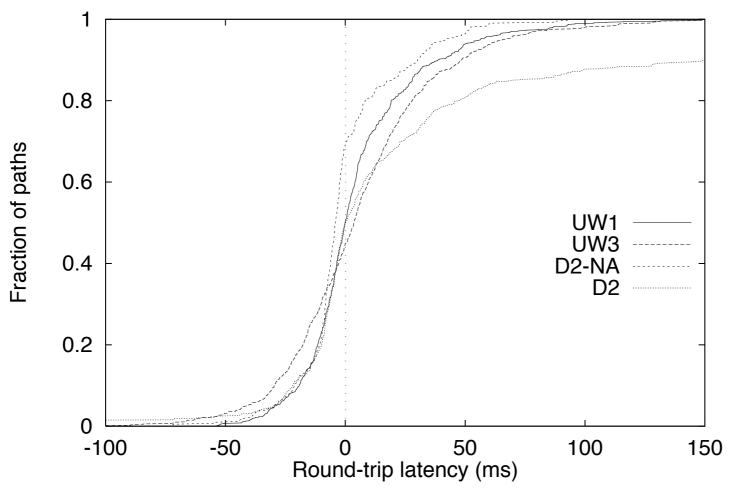


In the other beginning...

Internet routing is suboptimal

- Observed delay d(a,b) may not be best possible (why?)
- Key: Internet does not obey the triangle inequality
- i.e. it can happen that: d(a,x) + d(x,b) < d(a,b)

Idea: Improve it with an overlay


Find a good point x to relay packets!

In the other beginning...

Idea: Improve it with an overlay

• "E2E effects of Internet path selection", [Savage, Collins, Hoffman, Snell, Anderson, SIGCOMM 1999]

CDF of difference between mean RTT on Internet's default path, and best mean RTT on an alternate path

Technique used in production in Akamai's CDN

Building on the Internet's services

Common theme of many overlay networks: provide more advanced services than the Internet provides

- Much easier to deploy new functionality at hosts
- The Internet doesn't even know what's happening to it

Examples

- RON: more reliable, efficient routing
- DHT: flat name routing and key-value store
- i3: indirection, mobility, middlebox support, ...
- Content distribution: a kind of time-delayed multicast

DHT & overlay in the real world

Deployed systems

- Content distribution: Akamai, CoralCDN
- Swarming: DHT for BitTorrent distributed tracker
- File sharing: DHTs in Kad, Overnet/eDonkey
- Storage: Amazon Dynamo
- Botnets: Storm botnet's command & control delivered via DHT

Big impact on many research systems & papers

 Many ideas from DHT / overlay research incorporated into other work, if not entire DHT system

Next up...

Fred and Hilfi