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Science of network measurement

Measurement goes back to the inception of the 
Internet

By the mid-1990s: Internet and its protocols were big, 
wild, organic

• Complex system: hard to predict global effects of 
interacting components
• Distributed multi-party system: can’t see everything that’s 

happening

Network measurement moves from “just” monitoring 
to a science



Challenge #1: Emergent behavior

Example: Model packet arrivals over time at a link

Simplest common model: Poisson process

• Parameter: rate λ   (mean arrivals per unit time)
• Pr[ time till next arrival > t ] = e-λt    (exponential dist.)

Properties

• Memoryless: Even knowing entire history gives no clue as 
to next arrival time
• Number of arrivals in a given time interval concentrates 

around expected value



Temporal patterns of traffic
“On the Self-Similar Nature of Ethernet Traffic”
Leland, Taqqu, Willinger, Wilson, SIGCOMM 1993
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)
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The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)
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description, but a precise concept captured by the following
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autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following

rigorous mathematical definition. Let X = (Xt: t = 0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean µ = E [Xt], finite variance σ2 = E [(Xt − µ)

2], and an
autocorrelation function r (k) = E [(Xt − µ)(Xt + k − µ)]
/E [(Xt − µ)

2] (k = 0, 1, 2, ...) that depends only on k. In
particular, we assume that X has an autocorrelation function of
the form

r (k) ∼ a 1k
−β , as k →∞, (3.2.1)

where 0 < β < 1 (here and below, a 1, a 2,
. . . denote finite

positive constants). For each m = 1, 2, 3, . . . , let
X (m) = (Xk

(m) : k = 1, 2, 3, ...) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m = 1, 2, 3, . . . , X (m) is given by
Xk
(m) = 1/m (Xkm − m + 1 +

. . . + Xkm), (k ≥ 1). Note that for
each m, the aggregated time series X (m) defines a covariance
stationary process; let r (m) denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding
aggregated processes X (m) have the same correlation structure as
X, i.e., r (m) (k) = r (k), for all m = 1, 2, . . . ( k = 1, 2, 3, . . . ).
In other words, X is exactly self-similar if the aggregated
processes X (m) are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H = 1 − β/2 if r (m) (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes (fractional ARIMA(p,d,q) processes) with
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X (m) possess a nondegenerate correlation structure as
m →∞. This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time series X (10000) , X (1000) , X (100) , and X (10) , respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), i.e., var(X (m) ) ∼ a 2m

−β ,
as m →∞, with 0 < β < 1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function Σk

r (k) = ∞ (long-range

dependence), i.e., r (k) satisfies relation (3.2.1); and (iii) the
spectral density f ( . ) obeys a power-law behavior near the
origin (1/f-noise), i.e., f (λ) ∼ a 3λ

−γ , as λ → 0 , with 0 < γ < 1
and γ = 1 − β.

The existence of a nondegenerate correlation structure for the
aggregated processes X (m) as m →∞ is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
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Challenge #2: Lack of visibility

Only a fraction of the system is visible

• For what we can observe, the cause is 
not obvious

Foundational work by Vern Paxson in 
the mid 1990s

• “End-to-End Routing Behavior in the 
Internet”, SIGCOMM 1996
• Loops, asymmetry, instability
• Established Internet measurement 

methodology:  “looking inside the 
black box” via end-to-end 
measurements

Name Description

adv Advanced Network & Services, Armonk, NY
austr University of Melbourne, Australia
austr2 University of Newcastle, Australia
batman National Center for Atmospheric Research, Boulder, CO
bnl Brookhaven National Lab, NY
bsdi Berkeley Software Design, Colorado Springs, CO
connix Caravela Software, Middlefield, CT
harv Harvard University, Cambridge, MA
inria INRIA, Sophia, France
korea Pohang Institute of Science and Technology, South Korea
lbl Lawrence Berkeley Lab, CA
lbli LBL computer connected via ISDN, CA
mid MIDnet, Lincoln, NE
mit Massachusetts Institute of Technology, Cambridge, MA
ncar National Center for Atmospheric Research, Boulder, CO
near NEARnet, Cambridge, Massachusetts
nrao National Radio Astronomy Observatory, Charlottesville, VA
oce Oce-van der Grinten, Venlo, The Netherlands
panix Public Access Networks Corporation, New York, NY
pubnix Pix Technologies Corp., Fairfax, VA
rain RAINet, Portland, Oregon
sandia Sandia National Lab, Livermore, CA
sdsc San Diego Supercomputer Center, CA
sintef1 University of Trondheim, Norway
sintef2 University of Trondheim, Norway
sri SRI International, Menlo Park, CA
ucl University College, London, U.K.
ucla University of California, Los Angeles
ucol University of Colorado, Boulder
ukc University of Kent, Canterbury, U.K.
umann University of Mannheim, Germany
umont University of Montreal, Canada
unij University of Nijmegen, The Netherlands
usc University of Southern California, Los Angeles
ustutt University of Stuttgart, Germany
wustl Washington University, St. Louis, MO
xor XOR Network Engineering, East Boulder, CO

Table 1: Sites participating in the study

measurement in real-time and repeat portions (or all) of the mea-
surement as necessary in order to resolve ambiguities.

5 The Raw Routing Data

5.1 Participating sites

The first routing experiment was conducted from November 8
through December 24, 1994. During this time, we attempted
6,991 traceroutes between 27 sites. We refer to this col-
lection of measurements as . The second experiment, ,
went from November 3 through December 21, 1995. It in-
cluded 37,097 attempted traceroutes between 33 sites. Both
datasets are available from the Internet Traffic Archive, http:
//town.hall.org/Archives/pub/ITA/. Table 1 lists the
sites participating in our study, giving the abbreviation we will use
to refer to the site, a brief description of the site, and its location.

5.2 Measurement failures

In the two experiments, between 5–8% of the traceroutes
failed outright (i.e., we were unable to contact the remote NPD,
execute traceroute and retrieve its output). Almost all of the
failures were due to an inability of npd control to contact the re-
mote NPD.

For our analysis, the effect of these contact failures will lead to
a bias towards underestimating Internet connectivity failures, be-
cause sometimes the failure to contact the remote daemon will re-
sult in losing an opportunity to observe a lack of connectivity be-
tween that site and another remote site ( 4.2).

When conducting the measurements, however, we somewhat
corrected for this underestimation by pairing each measurement of
the virtual path with a measurement of the virtual path

, increasing the likelihood of observing such failures. In
only 5% of the measurement failures was npd control also un-
able to contact the other host of the measurement pair.

6 Routing pathologies
We begin our analysis by classifying occurrences of routing
pathologies—those routes that exhibited either clear, sub-standard
performance, or out-and-out broken behavior.

6.1 Routing loops
In this section we discuss the pathology of a routing loop. For our
discussion we distinguish between three types of loops: a forward-
ing loop, in which packets forwarded by a router eventually return
to the router; an information loop, in which a router acts on con-
nectivity information derived from information it itself provided
earlier; and a traceroute loop, in which a traceroute mea-
surement reports the same sequence of routers multiple times. For
our study, all we can observe directly are traceroute loops, and
it is possible for a traceroute loop to reflect not a forwarding
loop but instead an upstream routing change that happens to add
enough upstream hops that the traceroute observes the same
sequence of routers as previously. Because of this potential ambi-
guity, we require a traceroute measurement to show the same
sequence of routers at least three times in order to be assured that
the observation is of a forwarding loop.

In general, routing algorithms are designed to avoid forwarding
loops, provided all of the routers in the network share a consistent
view of the present connectivity. Thus, loops are apt to form when
the network experiences a change in connectivity and that change is
not immediately propagated to all of the routers [Hu95]. One hopes
that forwarding loops resolve themselves quickly, as they represent
a complete connectivity failure.

While some researchers have downplayed the significance of
temporary forwarding loops [MRR80], others have noted that loops
can rapidly lead to congestion as a router is flooded with multiple
copies of each packet it forwards [ZG-LA92], and minimizing loops
is a major Internet design goal [Li89]. To this end, BGP is designed
to never allow the creation of inter-AS forwarding loops, which it
accomplishes by tagging all routing information with the AS path
over which it has traversed.

Persistent routing loops. For our analysis, we considered
any traceroute showing a loop unresolved by end of the
traceroute as a “persistent loop.” 10 traceroutes in

exhibited persistent routing loops. See [Pa96] for details.
In , 50 traceroutes showed persistent loops. Due to 's

higher sampling frequency, for some of these loops we can place
upper bounds on how long they persisted, by looking for surround-
ing measurements between the same hosts that do not show the

This technique is based on the observation that forwarding loops occur
only in the wake of a routing information loop.
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Discussion

“The Collateral Damage of Internet Censorship by 
DNS Injection” [Anonymous, CCR 2011]

What are the main take-away conclusions?

• DNS injection censorship causes collatoral damage, 
censoring outside its jurisdiction

Rank Region Affected Resolvers Affected Rate

1 IR 157 88.20%
2 MY 163 85.34%
3 KR 198 79.20%
4 HK 403 74.63%
5 TW 1146 66.13%
6 IN 250 60.10%
10 IT 392 37.23%
14 JP 1437 29.39%
16 RU 835 25.26%
18 US 3032 24.22%
20 CA 272 23.65%
25 DE 470 20.04%

Total 109 Affected Regions

Table 5: In different regions, the open resolvers af-
fected because of querying for blacklisted keywords.

DNS Level Affected Resolvers Affected Rate

Root 1 0.002%
TLD 11573 26.40%

Authoritative 99 0.23%

Table 6: Number of affected resolvers in different
level.

fected resolvers. The second one, .xn--3eb707e, shares the
same name infrastructure with the .kr ccTLD.
It seems strange that the number of affected resolvers

for .iq, .co, .travel, .no, .pl, .nz, .hk, .jp, .uk,
.fi, .ca are all around 90. We check the location of their
name servers and find that it is not a coincidence: UltraDNS
(AS 12008) hosts some authority servers for all these TLDs
except .hk.
Limited by space, we only present the detailed information

for the most affected TLD: .de. As shown in Figure 3, over
70% of the experimental resolvers from KR suffer collateral
damage for .de queries, such as www.epochtimes.de.
Similar to probing TLD servers, we finally constructed

queries like KEYWORD.NXDOMAIN.authority.tld (e.g., www.
twitter.com.abssdfds.ibm.com) to explore paths from the
resolvers to authoritative name servers for several domains.
We select 82 top popular domains from Alexa sites (out-

side of China). We see that queries for six domains could
potentially trigger censorship on 30–90 resolvers, as shown in
Figure 4. Although the numbers of affected domains and re-
solvers seem small comparing to the results of TLDs testing,
this may only represent the tip of the iceberg, considering
the over-zealous pattern matching adopt by censorship and
the huge number of domain names in the whole Internet.

4.4 Further Analysis on Measurement Results
Table 5 and Table 6 give the total number of resolvers

suffering from collateral damage because of paths to root,
TLDs and the top 82 domain names. 26.41% of the exper-
imental resolvers are polluted, and they are distributed in
109 regions. The most affected country is Iran, 88.20% of
its experimental resolvers suffer the collateral damage.
Unlike the worries presented by Mauricio [8], Table 6

shows that the primary damage arises from censored transit
paths to TLD servers. Our result partly confirms Mauricio
[8]’s claim that the operator of I-Root server, Netnod, “with-

drew their anycasted routes until their host (CNNIC) could
secure assurances that the tampering would not recur”. Be-
sides, since the roots themselves are highly anycasted, it is
unlikely that a path to a root needs to go through China.

To find out why the collateral damage happened, we con-
struct the topology of ASes neighboring CNNIC in Figure 5
using the data from the project of Internet Topology Col-
lection [10]. According to Figure 5, AS31529, which is the
AS of a .de TLD server (194.0.0.53), is a customer of CN-
NIC AS24151. Meanwhile, AS24151 is also customers of
other foreign ASes. As a result, traffic from foreign ASes
to .de TLD server may pass through China, and then the
collateral damage happens. We illustrate this with the fol-
lowing case. We choose a node from lookinglass [1], which
lies in the same AS (AS39737) in Romania as an affected
resolver (89.37.120.6) does, and review the AS paths to
the 6 TLD servers for .de from BGP data. Finally, we find
that the AS path from AS39737 to a .de TLD server (a.
nic.de,194.0.0.53) goes through a censoring AS (AS7497)
in China, which is the cause of the collateral damage on this
resolver. We show the AS path in Figure 5: 39737, 6939,
10026, 7497, 24151, 31529.

AS 24151
CNNIC CRITICAL-AP

(CN)

AS 31529
 DENIC eG

(DE)

AS 23596
EDNSKR1 NIDA

KR
AS 24136

 CNNIC-AP

AS3356 
(LEVEL3,US)

 AS3549 
(GBLX Global 
Crossing, US) AS4635 

HKIX-
RS1 HK

AS4641 
ASN-

CUHKNET 
HK

ASes in 
China...

AS4847
 CNIX-AP

AS7497 
CSTNET-AS-

AP(CN)

AS8763 DENIC-
AS DENIC eG

DE

AS9700 
KRNIC-AS-

KR 

AS 10026 
Pacnet 

Global (HK)

AS 6939
Hurricane 

Electric (US)

AS 39737
Net Vision 

Telcom SRL 
(RO)

AS 1280
 (ISC, US)

Figure 5: Topology of ASes neighboring CNNIC

5. DISCUSSION
The cause of the collateral damage presented in this paper

is the censorship activities by ISPs providing transit, not
just connectivity. We hope that this paper will raise the
awareness of the collateral damage caused by indiscriminate
DNS censorship.

To avoid the collateral damage while keeping the censor-
ship policies, one possibility would be for the ISPs to apply
more strict checks to avoid polluting transit queries. If ISPs
only censor the customers, not the transit, they may pre-
vent the collateral damage. However, because of the closed
nature of many censorship activities (such as the DNS fil-
ter in China), it is unclear to us if there are any technical
challenges for those ISPs to implement such policy or not.

If the censoring ISPs do not change their current practice
of DNS-injection, another possibility is for neighboring ISPs
to consider them invalid for transit: the neighbors should
prefer alternate paths and not advertise transit whenever
an alternate path exists. In particular, the TLD operators
should monitor their peering arrangements to check for cen-
sored paths.
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Discussion

We typically use many vantage points in order to “see 
inside the black box” of the Internet.  How did this 
paper use that technique and why was it rather easy?

in [3], we find that the most common source of pollution
exists on the paths between the resolvers and the TLD au-
thorities, particularly the paths to .de and .kr authorities.
The rest of the paper is organized as follows. In § 2 we

give a brief introduction to DNS resolution and how packet
injection can disrupt the process. Then we analyze the cause
for the collateral damage caused by DNS injection in § 3. In
§ 4 we describe our experiment methodologies and present
the experiment results. We have a discussion in § 5 before
concluding in § 6.

2. BACKGROUND
The standard DNS resolution process [11, 12, 7] consists

of several pieces, including the stub resolver on the user’s
computer, the recursive resolver, the root servers (“.”), Top
Level Domain (TLD) authorities, and the site’s authority
name servers. A typical DNS query process that involves all
these servers is illustrated in Figure 1.
If an attacker (e.g. a hacker, an ISP, or a government) has

the ability of monitoring any of the steps in the DNS query
process, he can inject an additional DNS response(without
suppressing the legitimate one), replying with a forged re-
sponse which has the appropriate query question and ID but
with a bogus DNS answer, mapping the queried domain to
either an invalid IP address or an IP address controlled by
himself. In the absence of DNSSEC validation, the resolver
will generally accept the faked answer because it arrives ear-
lier than the real one, and, as a result, the access to the
sensitive site will be blocked or redirected.
The ease of this attack makes it naturally an effective

censorship mechanism. It is well known that the GFC uses
this mechanism. A past survey queried more than 800 DNS
resolvers in China and found that 99.88% of them were
affected by the GFC [9]. And [9] also found that GFC
sent tampered DNS responses based on keywords in the do-
main name. For example, it injects a faked reply for “twit-
ter.computer.com” because “twitter.com” is a blocked do-
main name.
Unfortunately, the censor appears to over-react to tran-

sit DNS queries as well. It inspects all of the transit DNS
queries and injects bogus responses, causing collateral dam-
age to non-censored networks. The collateral damage of
GFC was first discussed in a DNS operation mailing list
when a Chilean operator found that queries from Chile and
California to I.RootServers.NET sometimes experienced DNS
pollution [8]. In [3], Brown et al. analyzed this incident and
determined that this kind of pollution could affect many
countries because three root DNS server nodes (F, I, and J)
have anycast instances in China. They believed that after
Netnod withdrew the anycast routes for the Chinese I-root
name server from CNNIC, the collateral damage should dis-
appear. However, our work showed this was not the case.
We discovered quantities of collateral damage for TLD au-
thorities through dedicated measurement experiments.

3. CAUSES OF COLLATERAL DAMAGE
We assume that DNS censors use over-zealous pattern

matching DNS requests, like GFC. Although pattern match-
ing causes a lot of collateral damages(i.e., blocking “twit-
ter.computer.com” because of “twitter.com”), in this paper
we focus only on those because of transit DNS queries.
Collateral damage occurs when a DNS query from a recur-

Recursive Resolver
(Cache Server)Authoritative 

Name Server
ns.sensitive.com

TLD Server
ns.com

DNS injector
(ISP, Gov.; hacker)

4. www.sensitive.com?
User(Stub Resolver)

2. www.sensitive.com?3. www.sensitive.com?

1. www.sensitive.com?

Root Server
"."

Passive inspection without suppressing 
the legitimate DNS replies

Figure 1: DNS query process and DNS injection

sive resolver enters a censored network, causing the censor-
ship mechanism to react. Although intuition suggests that
this would be a rare occurrence, there exists several factors
which may cause the censor to receive and react to DNS
queries from outsiders.

Iterative Queries: A recursive resolver does not send
limited queries, such as asking the root for just the name
servers of the desired TLD. Instead, if it lacks cache entries
for the TLD authorities, it sends query with entire domain
name to a root server. Similarly, the resolver sends the query
with entire domain name to a TLD authority if there are no
cache entries for the domain’s authority.

This may be further complicated by “out-of-bailiwick” [2]
NS records. A fairly complicated but not uncommon example
is given below. Suppose the DNS authorities for example.
com are ns1.example.net In the absence of cached data, a
resolver will handle a query of www.example.com by first
querying a root server and later a .com TLD authority. The
reply from the .com TLD will now cause the resolver to
query for ns1.example.net before resuming the query for
www.example.com. Thus the resolver will query for www.
example.com three times: to a root server, to a .com TLD
server, and to ns1.example.net, and at least two queries
for ns1.example.net: to a root and to a .net TLD server.
Thus a simple “lookup” may generate numerous queries, and
the disruption of any by censorship would cause resolution
to fail.

Redundant Servers and Anycast: Most DNS deploy-
ments use multiple servers in multiple networks to increase
reliability [4], and the actual selection of particular author-
ities by a recursive resolver is a complex topic, with name
servers using various algorithms. Thus, with 13 different
roots and 13 servers for the global TLD .com, a resolver
may experience collateral damage if a path to any one of
these 26 IPs passes into a censored network.

Further complicating the picture is the use of anycast [13]
DNS authorities, where a single IP address may represent a
widely deployed system of servers. Two resolvers in different
networks may reach different physical servers, along very
different paths, even though they are attempting to contact
the same IP address.

Censored Transit and Dynamic Routing: The paths
from the resolver to the authorities is dynamic, routing through
a series of Autonomous Systems (AS). If one transit AS im-
plements censorship, then all traffic which passes through
that AS experiences censorship, even if both the source and
destination are in non-censored networks. Routing changes
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43,842 of these
in 173 countries!



Discussion

How could you counteract this censorship?

• Threat of depeering?
• Interesting thought from Jonathan Gill: “It would be 

interesting to see if a DNS client could obfuscate the 
hostname they are requesting in such a way that would 
bypass censorship regular expressions, yet yield valid 
results.”



A word of caution

The most important difference between 
computer science and other scientific fields 
is that: We build what we measure. Hence, 
we are never quite sure whether the 
behavior we observe, the bounds we 
encounter, the principles we teach, are truly 
principles from which we can build a body 
of theory, or merely artifacts of our 
creations. ... this is a difference that should, 
to use the vernacular, ‘scare the bloody hell 
out of us!’

“

”– John Day


