Scalable routing

Brighten Godfrey CS 538 September 27 2012

slides ©2010-2012 by Brighten Godfrey unless otherwise noted

How do we route in really big networks?

ELECTIVEDIS UGEMOLIK2:

Ω(*n*) memory per node

• at least store next hop to *n* destinations

Ω(*n*) messages per node per unit time

- assuming each node moves once per unit time
- also must recompute routes each of these times

if $n = 1,000,000,000$ and "unit time" = one day,

- \approx 100–10,000x more fast path mem. than routers today
- 11,600 updates per second
- 4.4 Mbit/sec if updates are 50 bytes

How can we scale better than Ω(*n*) per node?

Routing in Manhattan

Recipe for scaling

1. Convert name to address

- name: arbitrary
- address: hint about location
- conversion uses distributed database (e.g., DNS)
- 2. Nodes have incomplete local view of network
- 3. To route, combine local view with dest. address

Challenge: how do we summarize the network in the partial view and address?

• And what *exactly* are we trying to achieve?

Addresses are small

Node state is small

Routes are short

route length

• stretch = shortest path length

How does Manhattan routing do?

- Assume square grid of *n* nodes $(\sqrt{n} \times \sqrt{n})$
- Address is (street, avenue); nodes store neighbors' addr.
- Address size: $2 \log_2(\sqrt{n}) = \log_2 n$
- Node state: $\approx 4 \log_2 n$
- Route length: shortest (stretch 1) *if we know address!*

Outline

Scalable routing in structured networks

- Manhattan routing
- Greedy routing
- NIRA

Scalable routing in arbitrary networks

- **Hierarchy**
- Compact routing

Structured networks

Grid

Torus

A plethora of structured graphs!

Hypercube

Supercomputers, distributed hash tables

Fat tree Supercomputers, data centers

Small world

distributed hash tables

Technique common in many structured networks

Scheme:

- Each node knows addresses of itself & neighbors
- Given two addresses, can estimate "distance" between them: dist(*s*,*t*)
- Forwarding at node *v*: send to neighbor *w* with lowest distance to destination *d* (minimize dist(*w*,*d*))

What structure does this require?

- Compact addresses that can "summarize" location
- Good estimate of distance dist(*s*,*t*) given two addresses
	- No local minima in dist()! (Q:Why could there be?)

Greedy routing examples

#1: Manhattan routing

- Address: (*x*, *y*) coordinate on grid
- Distance 'estimation' of (x, y) to $(x', y') = |x-x'| + |y-y'|$

#2: Greedy geographic routing

- Address: physical location (e.g., (*x*,*y*) coord. from GPS)
- Distance estimation: Euclidean distance

Greedy Perimeter Stateless Routing

[Karp, Kung, MobiCom '00] ing Kard, Kung, Mobillom, UUT nodes in the network, and increasing mobility rate. As these fac- ΓV app V_{max} M_{obs} C_{max} ' $\Lambda \Lambda$ μ Nai p, Nully, Piodicolli vo

Address is physical location, e.g., from GPS Routing protocol message cost: How many routing protocol packets does a routing algorithm send? point quantities is pointed. To antion nization of neighbors' beacons in the set of persons in the \mathcal{L} $s = f_{\text{source}} \cap \text{DC}$ **B.g., ITOIII GFS** interval is *B*, uniformly distributed in 0 5*B* 1 5*B* .

Distance estimate is Euclidean distance uciidean c **DISTATICE ESTITTALE IS** or gone out-of-range, and deletes the neighbor from its table. The era 11 Mac 11 Mac 11 Mac 12 Mac 1

If we get stuck... Greedy forwarding's great advantage is its reliance only on knowl-

- = no neighbor is closer to *^x* than we are! \bullet = no neighbor is closer to port applications for military users, post-disaster rescuers, ϵ than we are! edge of the forwarding node's immediate neighbors. The state re- \bullet = no neighbor is closer to wireless network, not the total number of destinations in the network, not destinate \mathbf{r} than we are!
- Then planarize graph and traverse perimeter of void \bullet en avere de permiseur en vers of neighbors within a node's radio range must be substantially less than the total number of the number of t traverse perimeter of vol rent between beacons as that neighbor moves. The accuracy of the

"Small world" effect demonstrated by Milgram ['67]

Kleinberg's model: *n* x *n* lattice, plus long range edges

Result: greedy routing finds short $(O(log² n))$ paths with high probability if and only if $r = 2$ \mathbf{P} is the definition of \mathbf{P} in the network models that network models that \mathbf{P}

Non-greedy: NIRA *[Yang et al'07]*

- at the provider. A dashed line represents a peering connection. links), and down (customer links) routes go up to core (provider links), over (peering
- contractual relationships (Section VI). • i.e., valley-free

Address is effectively a subgraph, not just a number!

• here "address" means "destination-specific location info"

Up-graphs are small

Union of source and dest subgraphs is all we need

• exploits Internet's current structure to find good paths

Q: How well does NIRA satisfy our goals?

- small address
- small node state
- low stretch

But what if our network does not have a "special" structure?

No structure? Make one!

- 2-level hierarchy: nodes in clusters
- each node knows how to reach one node of each cluster and all nodes in its own cluster

Problems:

- Some paths very long
- Location-dependent addresses (as in earlier techniques)

128.112.128.81

Can we achieve our key goals?

- Low state
- Low stretch (short paths)
- Short addresses

Or, does scalability force us to give something up?

Given arbitrary graph, scheme must:

- Construct state (forwarding tables) at each router
- Specify forwarding algorithm:
	- Input: Forwarding table, incoming packet
	- Output: Packet's next hop (+ optionally change header)

Goals:

- Minimize maximum state at each router (FIB memory)
- Minimize maximum stretch:

max s,t ² s $\rightsquigarrow t$ shortest path length $s \leftrightarrow t$ route length

• Reasonably small packet headers (e.g., O(log *n*))

Compact routing theory

[Peleg & Upfal '88, Awerbuch et al. '90, ..., Cowen '99, Thorup & Zwick '01, Abraham et al. '04]

Worst-case stretch

Name-dependent Addresses assigned by routing protocol Name-independent Arbitrary ("flat") names e.g., DNS or MAC address

Compact routing theory

Worst-case stretch

Landmarks

route length = dist. to landmark + dist. to *t* ≤ *d*(*s*,*t*) + *d*(*t*,*L*(*t*)) + *d*(*L*(*t*),*t*)

triangle inequality

Case $\left| \frac{d(s,t)}{dt} \right| \geq d(t,L(t))$: further than landmark

• route length $\leq d(s,t) + d(t,L(t)) + d(L(t),t) \leq 3d(s,t)$

Case 2: $d(s,t) < d(t,L(t))$: closer than landmark

- Trouble!
- Idea: in Case 2, just remember the shortest path.

Vicinities

 $\frac{1}{2}$ node $V(s)$ = nodes *t* s.t. $d(s,t) < d(t,L(t))$

V(*s*) = nodes *t* s.t. $d(s,t) < d(s,L(s))$

Requires "handshaking", but convenient to implement

 $\tilde{\Theta}(\sqrt{n})$ random landmarks: $\tilde{\Theta}(\sqrt{n})$ -size vicinities How big are *V(t)*? Need a landmark in my vicinity.

"The sum of many small independent random variables is almost always close to its expected value."

 $X_i = m$ independent $(0,1)$ random variables

 $X = \sum X_i$, $E[X] = \mu$

For any $0 \le \delta \le 2e - 1$,

$$
\Pr[X < (1 - \delta)\mu] < e^{-\mu \delta^2/2}
$$
\n
$$
\Pr[X > (1 + \delta)\mu] < e^{-\mu \delta^2/4}
$$

See, e.g., Motwani & Raghavan, Theorems 4.1 - 4.3

Show that any node *v* always has ~ln *n* landmarks in its vicinity if we use about $\sqrt{c\cdot n\ln n}$ landmarks $\frac{1}{2}$ $c \cdot n \ln n$

 $X_i = \mathsf{I}$ if *i*th closest node to *v* is landmark, else $X_i = \mathsf{0}$

$$
Pr[X_i] = \frac{\sqrt{c \cdot n \ln n}}{n}
$$

\n
$$
E[X] = (\text{Number of nodes in vicinity}) \cdot Pr[X_i]
$$

\n
$$
E[X] = \sqrt{c \cdot n \ln n} \cdot \frac{\sqrt{c \cdot n \ln n}}{n}
$$

\n
$$
= c \ln n
$$

\n
$$
Pr\left[X < \frac{1}{2}c \ln n\right] < e^{-(c \ln n) \cdot \frac{1}{4} \cdot \frac{1}{2}} = e^{\ln n^{-c/8}} = n^{-c/8}
$$

Analysis

Stretch

- \leq 3 if outside vicinity (after "handshake")
- \bullet = 1 if inside vicinity

State (data plane)

- Routes to landmarks:
- Routes within vicinity:

$$
O(\sqrt{n \log n} \cdot \log n) = \tilde{\Theta}(\sqrt{n})
$$

$$
O(\sqrt{n \log n} \cdot \log n) = \tilde{\Theta}(\sqrt{n})
$$

Address size

- Simple implementation: depends on path length, but very short in practice
- More complicated/clever storage of route from landmark to destination: $\Theta(\log n)$

State in example networks

Stretch in example networks

Routing on flat names with low stretch and state

• we assumed source knows destination address

Other points state-stretch tradeoff space

• we saw state $\neg n^{1/2}$, stretch 3

Why you cannot do better than this

• ...in the general case (dense graphs)

Why you can do better than this

• ...if the network is sparse (few edges), as essentially all real networks are

Distributed compact routing

• How do you compute FIBs without global view?

How to handle interdomain routing policies

• no one knows!

Tuesday: Invited Lecture

Theo Benson, Princeton / Duke

- *• "Demystifying and controlling the performance of data center networks"*
- In 2405 SC, not here
- **Thursday**
	- Two readings on reliability

