Interdomain Routing and Connectivity

Brighten Godfrey CS 538 September 25 2012

slides ©2010-2012 by Brighten Godfrey unless otherwise noted

Choosing paths along which messages will travel from source to destination.

Distributed path finding

Optimize link utilization (traffic engineering)

React to dynamics

High reliability even with failures

Scale

All of intradomain's problems

Bigger scale

Multiple parties

- No central control
- Conflicting interests
- Attacks

Harder to change architecture

- Intradomain evolution: RIP, ISIS, OSPF, MPLS, OpenFlow, ...
- Interdomain: BGP.

BGP: Border Gateway Protocol

Distance vector variant

- Remember path instead of distance
- Hence, "path vector" instead of "distance vector"

Why path vector?

- Avoid DV's transient loops; but more importantly...
- Support policies: can pick any path offered by neighbors, not necessarily the shortest (Link State cannot)
- Support privacy: path choice policy is applied locally, not announced globally

BGP: The picture at one router

Route selection process

Step	Attribute	Controlled by local or neighbor AS?
1.	Highest LocalPref	local
2.	Lowest AS path length	neighbor
3.	Lowest origin type	neither
4.	Lowest MED	neighbor
5.	eBGP-learned over iBGP-learned	neither
6.	Lowest IGP cost to border router	local
7.	Lowest router ID (to break ties)	neither

[Caesar, Rexford, IEEE Network Magazine, 2005]

This process is extended in many real implementations.

Route selection: prefer customer over peer over provider

Route export (most common): to/from customer only ("valley-free")

Interconnection: Traditional view

Hierarchical, limited peering at lower tiers

Interconnection: Modern view

Significant and increasing peering at lower tiers

Significant peering

- Estimated 200,000 peerings just in Europe
- More than 2x as many as non-peering links!

These peerings missed in past measurements

Figure 2: Peering links and visibility in control/data plane (normalized by number of detected P-P links).

("Looking Glass")

CDN

Ent. net.

What's the purpose of an IXP?

• "Metcalf's law": value of net is $O(n^2)$ when *n* participants

Why don't top-tier ISPs peer much at the IXP?

How might router-level interconnection differ from AS-level peering? Would this paper's conclusions be the same for router-level?

[Ager, Chatzis, Feldmann, Sarrar, Uhlig, Willinger, SIGCOMM 2012]

Project proposals

- Due tonight, II:59 pm, plain text email to Brighten
- Be sure to read spec in Syllabus and include related work
- Comments back to you next week

Part Two of the course: Grand Challenges

- scalability
- reliability
- selfishness
- security & privacy
- complexity