
Forwarding
Architecture

Brighten Godfrey
CS 538 September 18 2012

slides ©2010-2011 by Brighten Godfrey unless otherwise noted

Building a fast router

Partridge: 50 Gb/sec router

A fast IP router

Good exhibition of the guts of a router and problems
to be solved in router architecture

Routing vs. forwarding

Control plane

• Decides how data should flow through the network
• Uses operator configuration & distributed routing

protocols
• Output: Forwarding table
- Given a packet header, can find instructions for what

to do with it
- Relatively simple data structure (lookup table, tree, ...)

Data plane

• Forwards data through the network
• Input: Forwarding table

Today

Upcoming lectures

Bus

Simplistic router diagram

What’s wrong with this picture?

line
card

packets

line
card

packets

line
card

packets

line
card

packets
Forwarding Table /

Forwarding Information Base (FIB) /
“Route Memory”

Inside the router
238 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 3, JUNE 1998

Fig. 1. MGR outline.

A. Design Summary

A simplified outline of the MGR design is shown in Fig. 1,

which illustrates the data processing path for a stream of

packets entering from the line card on the left and exiting

from the line card on the right.

The MGR consists of multiple line cards (each supporting

one or more network interfaces) and forwarding engine cards,

all plugged into a high-speed switch. When a packet arrives

at a line card, its header is removed and passed through the

switch to a forwarding engine. (The remainder of the packet

remains on the inbound line card). The forwarding engine

reads the header to determine how to forward the packet and

then updates the header and sends the updated header and

its forwarding instructions back to the inbound line card. The

inbound line card integrates the new header with the rest of

the packet and sends the entire packet to the outbound line

card for transmission.

Not shown in Fig. 1 but an important piece of the MGR

is a control processor, called the network processor, that

provides basic management functions such as link up/down

management and generation of forwarding engine routing

tables for the router.

B. Major Innovations

There are five novel elements of this design. This section

briefly presents the innovations. More detailed discussions,

when needed, can be found in the sections following.

First, each forwarding engine has a complete set of the

routing tables. Historically, routers have kept a central master

routing table and the satellite processors each keep only a

modest cache of recently used routes. If a route was not in a

satellite processor’s cache, it would request the relevant route

from the central table. At high speeds, the central table can

easily become a bottleneck because the cost of retrieving a

route from the central table is many times (as much as 1000

times) more expensive than actually processing the packet

header. So the solution is to push the routing tables down

into each forwarding engine. Since the forwarding engines

only require a summary of the data in the route (in particular,

next hop information), their copies of the routing table, called

forwarding tables, can be very small (as little as 100 kB for

about 50k routes [6]).

Second, the design uses a switched backplane. Until very

recently, the standard router used a shared bus rather than

a switched backplane. However, to go fast, one really needs

the parallelism of a switch. Our particular switch was custom

designed to meet the needs of an Internet protocol (IP) router.

Third, the design places forwarding engines on boards

distinct from line cards. Historically, forwarding processors

have been placed on the line cards. We chose to separate them

for several reasons. One reason was expediency; we were not

sure if we had enough board real estate to fit both forwarding

engine functionality and line card functions on the target

card size. Another set of reasons involves flexibility. There

are well-known industry cases of router designers crippling

their routers by putting too weak a processor on the line

card, and effectively throttling the line card’s interfaces to

the processor’s speed. Rather than risk this mistake, we built

the fastest forwarding engine we could and allowed as many

(or few) interfaces as is appropriate to share the use of the

forwarding engine. This decision had the additional benefit of

making support for virtual private networks very simple—we

can dedicate a forwarding engine to each virtual network and

ensure that packets never cross (and risk confusion) in the

forwarding path.

Placing forwarding engines on separate cards led to a fourth

innovation. Because the forwarding engines are separate from

the line cards, they may receive packets from line cards that

[Partridge et al ’98]

Full routing table
local to each FE

Switched backplane

Fast FE separate
from line cards

Common intermediate format
across protocols

Network processor for
special case packets

Switching fabric

Operates in epochs

• 128 bytes sent by each line card to next-hop line card
• Each line card can send to only one other card, and can

receive from only one other card

Allocator assigns inputs to outputs & tells line cards

What fundamental problem is being solved?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0 0 1 0 1 0 0

1 1 1 1 0 0 0

0 1 1 1 0 0 1

1 0 1 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 1 0 1

0 1 1 0 0 1 0

... to outputs

Inputs ready to send...

Maximum bipartite matching

Maximize number of matched input-output pairs, such
that each input & output only matched once

50 Gbit/s router uses approximate solution

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0 0 1 0 1 0 0

1 1 1 1 0 0 0

0 1 1 1 0 0 1

1 0 1 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 1 0 1

0 1 1 0 0 1 0

... to outputs

Inputs ready to send...

Beyond the 50 Gb/sec router

Many more problems to solve

Buffering (how big?)

Queueing (where? what order?)

FIB memory (how fast, large, and expensive?)

FIB algorithms (what data structure? how many
memory accesses?)

Specialized functionality

Specialized functionality

Modern routers are jacks-of-all-trades:

• load balance across links
• access control
• filtering attacks
• quality of service
• accounting, traffic metering
• virtual private networks
• Protocol support: IPv4, IPv6, MPLS, ethernet, ...
• ...

Can we make forwarding flexible, extensible?

Data plane flexibility over the ages

1990s: Software routers

• Zebra, later Quagga, Click, Xorp, Open vSwitch

1997: Label switching (MPLS)

• Set up explicit paths for classes of packets

1999: Active networks

• Packet header carries (pointer to) program code

2008: Software Defined Networks

• Open interface to data plane, programmed by software
controller

Scaling software routers

Efficiency vs. extensibility

Hardware routers

• Fast
• Specific functionality
• Result: many physical

devices (routers,
firewalls, intrusion
detection, ...)

Software routers

• Slow
• Extensible

Can we get the best of both worlds?

RouteBricks approach

can be modified through a software-only upgrade, and router
developers are spared the burden of hardware design and
development. In addition, leveraging commodity servers
would allow networks to inherit the many desirable prop-
erties of the PC-based ecosystem, such as the economic
benefits of large-volume manufacturing, a widespread sup-
ply/support chain, rapid advances in semiconductor tech-
nology, state-of-the-art power management features, and so
forth. In other words, if feasible, this could enable networks
that are built and programmed in much the same way as end-
systems are today. The challenge, of course, lies in scaling
this approach to high-speed networks.

There exist interesting design points between these two
ends of the spectrum. It is perhaps too early to know which
approach to programmable routers is superior. In fact, it is
likely that each one offers different tradeoffs between pro-
grammability and traditional router properties (performance,
form factor, power consumption), and these tradeoffs will
cause each to be adopted where appropriate. As yet how-
ever, there has been little research exposing what tradeoffs
are achievable. As a first step, in this paper, we focus on one
extreme end of the design spectrum and explore the feasi-
bility of building high-speed routers using only PC server-
based hardware and software.

There are multiple challenges in building a high-speed
router out of PCs: one of them is performance; equally im-
portant are power and space consumption, as well as choos-
ing the right programming model (what primitives should
be exposed to the router’s software developers, such that
a certain level of performance is guaranteed as in a tradi-
tional hardware router). In this paper, we focus on perfor-
mance; specifically, we study the feasibility of scaling soft-
ware routers to the performance level of their specialized
hardware counterparts. A legitimate question at this point
is whether the performance requirements for network equip-
ment are just too high and our exploration is a fool’s er-
rand. The bar is indeed high. In terms of individual link/port
speeds, 10Gbps is already widespread; in terms of aggre-
gate switching speeds, carrier-grade routers [5] range from
10Gbps up to 92Tbps! Software routers, in comparison,
have had trouble scaling beyond the 1–5Gbps range [16].

Our strategy to closing this divide is RouteBricks, a router
architecture that parallelizes router functionality across mul-
tiple servers and across multiple cores within a single server.
Parallelization across servers allows us to incrementally
scale our router capacity by adding more servers. Paralleliz-
ing tasks within a server allows us to reap the performance
benefits offered by the trend towards greater parallelism in
server hardware in the form of multiple sockets, cores, mem-
ory controllers, and so forth. We present RouteBricks’ de-
sign and implementation, and evaluate its performance with
respect to three packet-processing applications: packet for-
warding, traditional IP routing, and IPsec encryption. We
designed RouteBricks with an ambitious goal in mind—to
match the performance of high-end routers with 10s or 100s

Figure 1: High-level view of a traditional router and a
server cluster-based router.

of 1Gbps or 10Gbps ports. The results we present lead us
to be cautiously optimistic about meeting this goal. We find
that RouteBricks approaches our target performance levels
for realistic traffic workloads, but falls short for worst-case
workloads. We discover why this is the case and show that,
fortunately, what is required to overcome this limitation is
well aligned with current server technology trends.

We continue with a discussion of our guiding design prin-
ciples and roadmap for the remainder of this paper.

2 Design Principles
Our ultimate goal is to make networks easier to program
and evolve, and this leads us to explore a router architecture
based on commodity, general-purpose hardware and operat-
ing systems. In this section, we summarize the design prin-
ciples that emerged from translating this high-level goal into
a practical system design.

Parallelism across servers. We want to design a router
with N ports, each port with full-duplex line rate R bps.
The role of the router is to receive the packets arriving at
all these ports, process them, and transfer each incoming
packet from its input port to the desired output port (which is
typically determined by processing the packet’s IP headers).
This router’s functionality can thus be broken into two main
tasks: (1) packet processing, like route lookup or classifica-
tion, and (2) packet switching from input to output ports. In
current hardware routers, packet processing typically hap-
pens at the linecard, which handles from one to a few ports,
while packet switching happens through a switch fabric and
centralized scheduler; as a result, each linecard must pro-
cess packets at a rate proportional to the line rate R, while
the fabric/scheduler must switch packets at rate NR (i.e., it
must handle the aggregate traffic that traverses the router).
Existing software routers, on the other hand, follow a “sin-
gle server as router” approach; as a result, the server/router
must perform switching and packet processing at rate NR.

In many environments, N and R can be fairly high. The
most common values of R today are 1, 2.5 and 10Gbps, with
40Gbps being deployed by some ISPs; N can range from ten
up to a few thousand ports. As specific examples: a popular
mid-range “edge” router supports up to 360 1Gbps ports [3];

2

[Dobrescu, Egi, Argyraki, Chun, Fall,
Iannaccone, Knies, Manesh,
Ratnasamy, NSDI 2009]

Parallelism within servers

Parallelism
across servers

High bandwidth switching fabric
built from commodity hardware

external lines

inter-server
“switch”

Switching fabric challenges

Handle any traffic pattern: for example, all input traffic
at a server might go to any one output server

Low degree: we’re using commodity hardware

Naïve approach:

Useless: might
as well just use

one server!

Low degree solution

Just one link out for each link in

Total out b/w enough, but doesn’t go where we need

Solution (Valiant load balancing): send packet to random
intermediate node, then on to destination

external lines

inter-server
“switch”

VLB guarantees & questions

Guaranteed to nearly full throughput for any traffic
demands!

• “nearly” = 2x. Why?
• So, switch fabric needs to be 2x as fast as external links

to provide guarantees

Why does sending to a random intermediate node
work?

MPLS

MPLS design

a network

3
15

15

7

7

egress
label in
header

...
3
20
...

Swap in label 15; out port 1
Swap in label 3; out port 2

Why is this more flexible than shortest path routing?

20 3
3 9

9

Forwarding table

MPLS design

Control plane constructs label-switched paths and
coordinates labels

Can also stack labels = concatenate paths

a network

Ingress:
Traffic classification, label
packets (“forwarding
equivalence class”)

3
15

15

7

7

egress

MPLS motivation

In the design doc

• High performance forwarding
• Minimal forwarding requirements, so can interface well

with many types of media such as ATM
• Flexible control of traffic routing

What matters today?

Flexibility. Widely used to achieve:

• Virtual Private Network (VPN) service along dedicated
paths between enterprise sites
• Control backup paths with MPLS Fast ReRoute
• Traffic engineering (load balancing)

Announcements

Today: Assignment 1 due

Thursday: Intradomain routing

Next Tuesday

• Project proposals due
• Proposal format in syllabus
• Need a partner? Check Piazza or hang around after class
- https://piazza.com/class#fall2012/cs538/7

