
CS 538 Fall 2012

CS 538: Advanced Computer Networks Fall 2012

Assignment 1: Experimental Data and Tools

Assignment 1 Due: 3:30 PM CT, September 18, 2012

1 Introduction

The main goal of this assignment is to get hands-on experience with tools for experimental networking
research. In addition, the assignment will hopefully remind you about some core networking material.
Specifically we will get our hands dirty in three parts:

• Analysis of public Internet BGP routing traces (§2)

• TCP throughput experiments with Mininet, a network emulator (§3)

• OpenFlow functionality with Mininet (§4)

You may choose one of the above three parts to do for this assignment, according to your interests.
We encourage you, however, to check them all out. We’re providing them because they should be useful for
research projects in this class, and checking out what experiments you can do may also give you ideas about
what research you might want to do.

Submission instructions. This assignment is due at the start of class on the date listed above. Submit
by email to the TA, Giang Nguyen (nguyen59@illinois.edu). Acceptable formats are PDF (preferred), or
plain text email, with attached figures and code files. (Word .doc is not preferred. Please export to PDF.)
The subject of the email should be:

CS538 hw1 submission: firstname lastname NetID

Collaboration policy. You’re encouraged to discuss the assignment, solution strategies, and coding strate-
gies with your classmates. However, your solution and submission must be coded and written yourself. Please
see the policy on cheating stated in the course syllabus.

2 The Global Internet

On January 25, 2011, a popular uprising began in Egypt that would ultimately bring an end to the 29-year
regime of Hosni Mubarak. On January 27, 2011, attempting to inhibit the Facebook- and Twitter-organized
protests, the Egyptian government shut off essentially all Internet service to the country of 82 million people
— a unique event in the history of the Internet.

Your mission is to answer the question, How long does it take to sever all global networked communications
of the 15th largest country in the world? Because of the open and decentralized nature of the Internet, you
can answer this question using publicly-available Internet routing information.

This document guides you through the process, including a sample parser for the BGP data. However,
the main point of this section is to get a feel for the BGP data by visualizing an interesting event in the data
set. If you would like to write your own parser rather than using ours, or explore an interesting aspect of
the data other than what we suggest, or even explore a completely different event (there are many besides
the Egyptian disconnection), you are welcome to do so. Check with us first if you have any doubts about
appropriateness.

1



CS 538 Fall 2012

2.1 Getting started

The Route Views Project maintains data of routing behavior on the live Internet, and stores these traces
for later analysis. Multiple years of data sets are available. To produce the data, Route Views maintains a
number of collectors. Each collector has BGP connections to several ISPs’ routers. The collectors log two
types of data:

• occasional snapshots of the collector’s entire routing table (Routing Information Base, or RIB); and

• continuous logs of the BGP update messages received from the neighboring routers.

You can download Route Views data from: http://archive.routeviews.org/
Download the package of code for this part: http://courses.engr.illinois.edu/cs538/assignments/

a1-bgp.tar.gz Inside, you’ll find a tool called libbgpdump which processes both kinds of Route Views
data; they both use the “MRT” format. Compile this by running ./configure and then make in the
libbgpdump-1.4.99.11 directory. This builds a program called bgpdump, which, when given some input
file (./bgpdump routeviews data file) will produce a human-readable text version of the data. Note the
input file can be either a bzipped (.bz2) MRT file like you will get directly from the Route Views repository,
or an un-bzipped MRT file. Take bgpdump and the Route Views data for a spin as follows:

1. From Route Views, download the first RIB snapshot from January 27, 2011, from the London Internet
Exchange (LINX) collector.

2. Run bgpdump on the RIB snapshot. What does each field mean?

3. Search the bgpdump output to find any1 RIB entry associated with your computer’s public IP address.
(Hint: you could do this by finding associated IP prefixes or AS numbers. You can use a whois database
(e.g., http://whois.arin.net/ui/) to find the IP prefix and origin AS number associated with an IP
address.)

4. Can you use the above entry to determine the sequence of ISPs through which packets will flow when
traveling from one of the LINX routers in London to your personal computer?

What to submit: The sequence of ISPs (AS numbers and/or business names) from the last step.

2.2 Measuring Egyptian route withdrawals

Next, we want to use the Route Views data to figure out how long it took Egypt to leave the Internet. To
do this, we will use an imperfect but simple approach: We will count how many Egyptian-related prefix
withdrawals we have seen over time. Due to the dynamic nature of the Internet, there are continually
announcements and withdrawals even under normal conditions. But we’ll see one period of time with a
very high rate of Egyptian withdrawals, and that period will correspond to Egypt’s disconnection from the
Internet.

Although you’re welcome to write your own parser if you prefer (or use the libbgpdump library), we have
written an incomplete parser for you. In the package of code included with this problem set, you’ll find a
program called simple bgp parse.c. This program expects to receive, on its standard input, the output
of bgpdump. It scans through the BGP RIB entries or updates, and does two things. First, when it sees
“interesting” entries, it remembers that the associated IP prefixes are interesting. Second, it keeps track of
how many withdrawals of “interesting” prefixes it has seen, and prints out a running total.

What is “interesting” is a matter of opinion. The default version of the program is quite dull and thinks
nothing is interesting. As described below, you will need to decide how to pick out the “interesting” entries,
in order to learn which prefixes are associated with Egypt.

1There may multiple RIB entries for a single IP prefix, because each Route Views collector reports prefix advertisements
received from multiple routers.

2

http://archive.routeviews.org/
http://courses.engr.illinois.edu/cs538/assignments/a1-bgp.tar.gz
http://courses.engr.illinois.edu/cs538/assignments/a1-bgp.tar.gz
http://whois.arin.net/ui/


CS 538 Fall 2012

1. From Route Views, download the London Internet Exchange (LINX) collector’s Updates data, from
near the time of Egypt’s departure from the net. That happened sometime between 21:00 and 23:00
UTC on January 27, 2011, so you’ll want to grab all the LINX Updates data at least in that interval.
Process these files with bgpdump, and send the output of all that to the (unmodified) simple bgp parse

program. It should output the total number of updates seen. (For your own interest: In the data you
downloaded, what time did the first and last update messages occur, and what was the average rate
of updates per second during this period?)

Tip: You might find the command bzcat useful. For new Unix users: to send multiple files to a
program’s standard input, you can run a command like: cat file1 file2 file3 | my program.

2. Modify simple bgp parse so that it thinks BGP RIB entries for advertisements that originated at
Egyptian ASes are “interesting”. (Hint 1: this only takes a few lines of code. Hint 2: the following
Autonomous System (AS) numbers belong to Egyptian ISPs: 5536, 8452, 24835, 24863, and 36992.
Hint 3: Think about what part of the BGP RIP entry information you can to figure out which
advertisements were originated by Egyptian ASes.)

3. Now, run your modified simple bgp parse. This time, on standard input, feed it the output of bgpdump
from the RIB file that you downloaded, concatenated with the output of bgpdump on the Update files.
(The RIB output lets us learn which prefixes are interesting, and then we can count the occurences of
interesting withdrawals in the updates.) Note that the output of bgpdump from the RIB file is large
(about 2 GB), so if you are running on university machines, you might want to put this in /tmp rather
than in your home directory. And clean up when you’re done.

The output should now be a list of pairs of numbers; read the comment near the end of simple bgp parse.c

for a description. Using that data, draw a plot showing time on the x axis, and total number of Egyptian
prefix withdrawals seen so far on the y axis.

You can use any plotting tool you want, but we have included an example of how to use Gnuplot in
the package of code included with this problem set. Gnuplot is very useful and easy to get started
with. In the gnuplot example directory, run the command gnuplot example.gpl which will produce
example.pdf. You should be able to inspect example.dat and example.gpl and modify them to suit
your purposes.

What to submit: Your plot from the last step. If everything worked, it should show a slowly increasing
number of withdrawals seen, and then it should increase quickly for a period — a “withdrawal storm”,
corresponding to the disconnection of Egypt from the Internet – and then the rate of withdrawals should
slow down again. Based on your plot, how long did that high-rate “withdrawal storm” last?

3 Mininet TCP experiment

Experimentation is an important part of networking research. However, large-scale experiments can some-
times be hard to achieve, e.g., due to lack of machines. In this section, you will learn how to use Mininet2,
a relatively new experimental platform that can scale to hundreds or more emulated “nodes” running on a
single machine. Mininet takes advantage of Linux support for network namespaces3 to virtualize the network
on a single machine, so that different processes on the same machine can see their own network environments
(like network interfaces, ARP tables, routing tables, etc.), distinct from other processes. Combined with the
Mininet software, this enables a single machine to emulate a network of switches and hosts. The emulated
processes, however, do see the same real/physical file system. Mininet is designed with OpenFlow4 in mind,
and in the second part, you will also learn to use it.

2http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
3http://lwn.net/Articles/219794/
4http://www.openflow.org/

3

http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
http://lwn.net/Articles/219794/
http://www.openflow.org/


CS 538 Fall 2012

3.1 Prepare the VM

1. Install Virtualbox from https://www.virtualbox.org/wiki/Downloads. VMware should also work;
adjust your VM configurations accordingly. (It is possible to install Mininet directly on your Linux
system, but for simplicity we’ll use the virtual machine here.)

2. Download and unzip the VM with Mininet already installed from https://github.com/downloads/

mininet/mininet/mininet-vm-ubuntu11.10-052312.vmware.zip

3. In VirtualBox, create (not “Add”) a new VirtualBox VM

(a) For “Operating System” and “Version,” select “Linux” and “Ubuntu,” respectively.

(b) At the “Virtual Hard Disk” page, select “Use existing hard disk,” and select the Mininet-VM.vmdk
file just unzipped.

(c) For the newly created machine, go to “Settings”→ “Network” and make “Adapter 1” a “Bridged
Adapter”. This assumes your VM is allowed to obtain an IP address from your local network.
Alternately, you can use “NAT Adapter.” For more information on networking with VirtualBox,
see http://www.virtualbox.org/manual/ch06.html

4. Start the VM

5. Log in with openflow for both username and password

6. Make sure eth0 is up:

(a) run the command:
ifconfig eth0

(b) check the inet addr field. If it does not have an IP address, then run the command:
sudo dhclient eth0

and repeat step a.

7. Install the Mininet modifications and skeleton code we created for this assignment (this requires an
external connection, i.e., a working bridged or NAT adapter)

(a) Obtain the tarball
wget http://courses.engr.illinois.edu/cs538/assignments/hw1.tgz

(b) Install with command
sudo tar xfz hw1.tgz -C /

(c) Note the following files:

i. hw1a.py

ii. hw1b.py

iii. pox/pox/samples/mycontroller.py

8. Install polipo web proxy, and lighttpd webserver (this requires an external connection, i.e., a working
bridged or NAT adapter)
sudo apt-get install polipo lighttpd -y

9. Create a 40MB random file:
sudo dd if=/dev/urandom of=/var/www/bigfile bs=4k count=10k

10. Install a GUI in the VM:

(a) Install the GUI
sudo apt-get install openbox xinit -y

(b) Start it
startx

4

https://www.virtualbox.org/wiki/Downloads
https://github.com/downloads/mininet/mininet/mininet-vm-ubuntu11.10-052312.vmware.zip
https://github.com/downloads/mininet/mininet/mininet-vm-ubuntu11.10-052312.vmware.zip
http://www.virtualbox.org/manual/ch06.html


CS 538 Fall 2012

(c) Right-click on the desktop and select “Terminal emulator”

Alternately you may use SSH to log in to the VM remotely, with GUI (X11) forwarding. With
SSH, you will need to enable X-forwarding (e.g., ssh -X on *NIX hosts) when you ssh into the VM.
NOTE: this requires you have an X server running on the host. See a description of how to do this
on various platforms at http://www.openflow.org/wk/index.php/OpenFlow_Tutorial#Download_

Files. Alternative for Mac OS X: install the Developer Tools (a free download from the App Store)
and open /Applications/Utilities/X11.

3.2 TCP throughput vs. latency

Suppose you read a paper wherein the evaluation shows that if you split a TCP connection over a high RTT
path into two separate connections — by using a proxy placed approximately between the two hosts, each
with half the original RTT — then you will achieve higher throughput than you would without the proxy.
Let’s replicate this experiment using Mininet.

First, you can familiarize yourself with Mininet by following http://yuba.stanford.edu/foswiki/bin/

view/OpenFlow/MininetWalkthrough, with particular emphasis on the “Custom Topologies” section. The
Wireshark and XTerm parts of the walkthrough are why we installed the GUI above.

The setup of our experiment will be a web client and a web server seperated by a 200ms RTT path.
Additionally there is a web proxy on the path from the client to the server. The proxy is approximately
100ms RTT from the client as well as the server. The client will fetch a large file from the server in two
ways: (1) directly, and (2) by using the proxy.

You will be working off the hw1a.py skeleton. Create the following network topology, using the same
Python API as in the “Custom Topologies” section in the walkthrough. Optionally use the “name” parameter
when calling add node() — see hw1a.py for example usage. (This optional parameter is a change we made
to the stock Mininet code.) Otherwise the host will use Mininet’s default naming scheme. The host’s name
is most useful if/when you use Mininet’s interactive interface.

client ------- switch ------- server

50 ms | 50 ms

|

| 1 ms

|

proxy

Set link delays (not RTTs) as specified in the topology above using the “delay” parameter when calling
add edge(). See hw1a.py for example usage. (This parameter is another change we made to the stock
Mininet code, but an upcoming release of Mininet should allow controlling link latency.)

NOTE: You might see errors link dst status change failed: RTNETLINK answers: File exists.
These are harmless and can be ignored.

Once you have created the topology and started the network, you will start the web proxy and web
server on the respective hosts, by using the host’s cmd() API — see hw1a.py for example — to execute these
commands:

• On the server host, start the lighttpd web server like so:
killall -9 lighttpd ; lighttpd -f /etc/lighttpd/lighttpd.conf

• On the proxy host, start the polipo proxy like so:
killall -9 polipo ; polipo proxyAddress=<proxyIP> proxyPort=<proxyport> &

where <proxyIP> is the proxy’s IP address (as assigned by Mininet), and <proxyport> is some port
number of your choice, e.g., 8080.

• On the client, to fetch the file directly from the web server:
time wget -q -O /dev/null http://<serverIP>/bigfile

5

http://www.openflow.org/wk/index.php/OpenFlow_Tutorial#Download_Files
http://www.openflow.org/wk/index.php/OpenFlow_Tutorial#Download_Files
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/MininetWalkthrough
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/MininetWalkthrough


CS 538 Fall 2012

• On the client, to fetch the file via the proxy:
time http proxy=<proxyIP>:<proxyport> wget -q -O /dev/null http://<serverIP>/bigfile

where <serverIP> is the server’s IP address (as assigned by Mininet).

For each scenario (direct v.s. via-proxy), fetch the file 20 times.

To run your experiment: sudo python hw1a.py

What to submit:

1. Your completed hw1a.py

2. A CDF plot comparing the file-fetch-time performance of the two scenarios

3. Your interpretation/explanation of the result

4 OpenFlow in Mininet

In this exercise, you will gain a basic understanding of OpenFlow and create a custom OpenFlow controller
to control your switches. This section assumes you have already set up Mininet (§3.1).

Quite simply, OpenFlow allows for “programmable” network devices, e.g., switches. With Mininet, each
switch will connect to the controller specified when the switch is launched. When the switch receives an
Ethernet frame, it consults its forwarding table for what to do with the frame. If it cannot determine what
to do with the frame, the switch sends the frame (and some extra information such as the input switch port)
to the controller, which will then instruct the switch on what to do with the frame. To avoid this extra work
on every such frame, the controller can install a new rule/match in the switch’s forwarding table, so that
the switch can forward future similar frames without having to contact the controller.

The controller framework you will use for this exercise is POX5 (in Python), with the current “best”
documentation at https://openflow.stanford.edu/display/ONL/POX+Wiki

The two files you will work on are:

• hw1b.py

• pox/pox/samples/mycontroller.py

NOTE: You will start your controller (instructions below) before starting the Mininet experiment. We
have made the controller listen on the localhost port 12345 (hardcoded). When your Mininet network starts,
its switches will connect to the controller on this port. This is already done for you in the provided files.

In this exercise, you will create this topology:

client1

\

\

switch1 ------ switch2 ---- server1

/ \ /

/ \ /

client2 switch3

where these three links have specified delays:

• switch1 – switch2: 20ms

• switch1 – switch3: 20ms

• switch3 – switch2: 20ms

5http://www.noxrepo.org/pox/about-pox/

6

https://openflow.stanford.edu/display/ONL/POX+Wiki
http://www.noxrepo.org/pox/about-pox/


CS 538 Fall 2012

The switches will direct client1’s flows along the shorter switch1 – switch2 path (in *both* directions),
and client2’s flows along the longer switch1 – switch3 – switch2 path (again, in *both* directions).

For most intents and purposes, switch3 does not exist. It exists only for switch1 to forward frames
with srcMAC=client2 dstMAC=server1 to it, and for switch2 to forward frames with srcMAC=server1
dstMAC=client2 to it. For instance, in cases where switch1 or switch2 needs to flood a frame, it should not
flood that frame to switch3.

See the files for more information.

How to Run Your Experiment:
You will want to open two terminals: one for the controller, the other for Mininet.

1. Clear Mininet:
sudo mn -c

Do this before starting the controller. Otherwise, switches still hanging around from a previous run
might be trying to connect to the controller, which might, or might not, confuse your controller logic.

2. Start your controller:
python pox/pox.py --no-cli samples.mycontroller

3. Run your Mininet in the other terminal window:
sudo python hw1b.py

The hw1b.py skeleton already contains “verification” code at the end, where it uses ping to check the
RTTs between client1 and server (should be approx. 40ms), and client2 and server (should be approx. 80ms).
If your experiment shows these RTTs, then you have correctly implemented the exercise.

What To Submit: Your hw1b.py and mycontroller.py files.

7


	Introduction
	The Global Internet
	Getting started
	Measuring Egyptian route withdrawals

	Mininet TCP experiment
	Prepare the VM
	TCP throughput vs. latency

	OpenFlow in Mininet

