Overview

- Course information
 - Personnel
 - Course Logistics
 - Format of Various Tasks
 - Projects Discussion
 - Grading
Instructor Introduction

Klara Nahrstedt

- PhD 1995 from Department of Computer and Information Science, University of Pennsylvania
- Research:
 - Networking (routing, QoS management, pricing),
 - Multi-modal Distributed systems (overlay multicast, peer-to-peer systems, service composition, resource management),
 - Mobile computing – smart phones protocols – P2P, video streaming over mobile phones, group management, …
 - Operating systems (soft-real-time scheduling, caching),
 - Multimedia applications (multi-view 3D tele-immersive systems, multi-camera systems, collaborative environments, mobile multimedia, P2P IPTV, multi-view 360 Video Streaming)
 - Multimedia and critical infrastructure security (watermarking, real-time security)
 - Cloud computing/Edge Computing
 - Internet of Thing
Course Logistics

Office Assistant:
- Candice Steidinger (steidin2@illinois.edu)
- If you need to meet with me outside of office hours, please ask Candice for an appointment. She has access to my calendar and will help you very fast.

Teaching Assistant: no TA
- Any questions you have, please, email
 - Instructor klara@illinois.edu with subject line “CS537

Class Time: Tuesday and Thursday 12:30-1:45pm

Class Place: 1302 Siebel Center

Zoom link will be available as well
Course Logistics

- **Instructor Office Hours:**
 - **Time:** Tuesday and Thursday 2:00-3:00pm CST
 - UIUC on-campus in-person students (3104 SC)
 - **Time:** Tuesday and Thursday 3:00-4:00pm CST
 - Online students (zoom)

- **Class Website – Reading List will be posted on September 25, 2022**

- **Discussion, Announcements, and Postings:**
 - Campuswire app (please, check that you received invitation, can access and post on campuswire app)

- **Grading Center:** Canvas
Required Readings for CS 537

- Papers in Reading List
 - Papers will be posted on September 25
 - Students will sign up for papers to present

- https://courses.grainger.illinois.edu/cs537/fa2023
Other Readings for CS 537

IoT Books and Papers
- “Internet of Things and Big Data Analytics”, Edited by P. Raj et al, CRC Press, 2020
- “Analytics for the Internet of Things (IoT)”, Andrew Minteer, Packt Publishing, 2017
- …. Many conference and journal papers from ACM and IEEE professional orgs
 - ACM IOTDI (Internet of Things Design and Implementation)
 - ACM IPSN (Information Processing of Sensor Networks)
 - IEEE MASS (International Conference on Mobile Ad-Hoc and Smart Systems)
 - ACM/IEEE CPS-IOT Week, (other symposia)
 - ACM SEC (Symposium on Edge Computing)
 - ACM SenSys
 - Many conferences on cloud computing (e.g., ACM SoCC – Symposium on Cloud Computing)

Multimedia/Immersive Computing Books and Papers
- … many other conference and journal papers from ACM and IEEE professional orgs
 - ACM International Conference on Multimedia,
 - ACM MMSys (Multimedia Systems)
 - ACM ICMR, (International Conference on Multimedia Retrieval)
 - IEEE ICME (International Conference on Multimedia and Expo)
 - IEEE CVPR (International Conference on Computer Vision and Pattern Recognition)
 - IEEE ICASSP (International Conference on Acoustics, Speech, and Signal Processing)
 - ACM and IEEE TMM (Transactions on Multimedia)
 - ACM SIGGRAPH
Course Prerequisites

- It is helpful if you have taken at least one of these classes in your undergrad studies
 - CS 425 (distributed systems undergrad) and/or
 - CS 438 (networking systems undergrad)
 - CS 437 (Internet of Things systems undergrad)
 - 400-level computer vision class
Goal of the Course

- **Expand breadth of knowledge** in the area of multi-modal IoT systems through
 - Learn new Multi-Modal IoT-specific system and networking concepts
 - Learn new mathematical and design tools to model and design complex systems that run multi-modal IoT systems

- **Learn scientific tools for your MS/PhD theses**
 - Learn how to evaluate scientific papers
 - Learn how to prepare and present a scientific work as lecture
 - Learn how to present related work
 - Learn how to prepare project proposal
 - Learn how to prepare project presentation and final project report
Class Format

- Class will consist of partially
 - lecturing by instructor, guest lecturer and
 - lecturing by students based on reading list
 - paper discussions

- Students' responsibility
 - Attend lectures
 - Read papers!!
 - Work on presentations, take-home midterm exam, project, lectures
 - Look for new material and post on campuswire when you find interesting papers, tools, other material to share
Workload (1)

Lecturing and Q&A

- Student presents paper(s) (1-2 papers) – depending on the size of class by September 25
- There will be a sign-up sheet to sign up for presentation(s)

Instructions regarding sign-up sheet and selection will be placed on campuswire.

Paper assignment will be on a first-come-first-serve policy

- Student presents the papers synchronously
- Instructor evaluates the lectures, and discussions
Workload (2)

- **Take-Home Midterm Exam**
 - Questions will be asked from Lectured material and papers presented prior to exam
 - Problems will include material covered in papers and lectures to answer the midterm questions
Workload (3)

- Final project will include three parts:
 - 1. project proposal
 - 2. project presentation in class
 - 3. project paper
Lecturing

- Each student needs to present paper(s)
 - Each student selects choice of papers in sign-up sheet
 - Details about sign-up sheet will be posted on campuswire
 - Selection of papers will be based on First Come First Serve
 - Assignments will be posted on the class website in the Reading List

- The sign-up sheet will open on September 25 and close on September 27, 2023
Lecture Format for Papers’ Presentation

- Paper presentation should be **20 minutes maximum** to leave at least 10 minutes for discussion.

- You should plan 1-2 minutes per slide, so having around 15-20 slides.
 - Use simple strong contrast colors
 - Do not make the slide too busy

- **Post your slides on campuswire before lecture or send it to instructor**
Lecture Format (2)

Your presentation should include

- **Motivation of the problem** (why are we looking at this issue? What is the environment where the problem resides?)
- **Problem Description** (What is the problem and what are the challenges of the problem?)
- **Background** (How did other people solve this problem and why isn’t this enough?)
- **Novel approach** (solution described in the paper)
- **Validation of approach**
- **Conclusion with Pros and Cons of Paper**
Take-Home Midterm Exam

- Midterm exam will be
 - Posted on October 23 (Monday 11:59pm)
 - Due on October 30 (Monday 11:59pm)

- Use lectures, web material and papers to find answers

- Submit midterm-exam solutions in pdf format to klara@illinois.edu, subject line: “CS537 – Midterm”
Final Project (1)

- Each student must work on a **class project** in multi-modal/IoT system/network area
 - Consider continuation of your research projects if it has IoT context
 - Consider exploring new topic towards your research
 - Come and see instructor during office hours if you need suggestions for class project (or setup a meeting via Candice with the instructor)
 - You can work **alone**, or in **group of 2-3 students**
 - Depending on the size of the project group, corresponding complexity of the project and clear division ‘who does what’ is required and expected.
Final Project (2)

- The project should have research flavor (so no survey for final project)
- You are encouraged to
 - develop new algorithm/protocol and/or application and/or
 - improve existing algorithm/protocol/application and
 - validate via comparative simulation or real implementation
 - run QoE experiments on Video 360 and other IoT data
 - develop analysis tool for public IoT data
 - evaluate/measure existing multi-modal IoT system/tool
 - evaluate existing analytics tools on existing IoT data
 -
Project Proposal Format (1)

Format:

- ACM format, single column, font 11 Arial (or Times New Roman), pdf
- Specify name, title, class number
- Length: max 4 pages;

Proposal: Introduction

- Motivation and description of problem
 - explain why it is a problem
 - How did others solve the problem?
 - How do you plan to solve the problem?
 - What is broader impact of your solution?
Project Proposal Format (2)

Proposal: Possible Approaches you consider to take
- Picture of framework/architecture you want to explore
- Algorithm you want to explore and compare/improve
- Experiment(s) you want to conduct

Proposal: Action Plan
- By when you want to do what?

Proposal: References
- Papers you want to read and use in your research (at least 3 references must be included – read related work before you propose a project)
Project Presentation and Report Formats

- **Presentation format** should be similar to the lecture format
 - Talk about your problem, challenges, solution and validation.
 - Conclude with lessons learned

- **Report format** should be written like a scientific conference/workshop paper in ACM format (available on web)
 - Read and review papers carefully
Project Deadlines

Project Proposal: October 9 (Monday), 11:59pm

- Submit to klara@illinois.edu
- Subject: cs537: Project proposal

Meet with Instructor for Project Proposal feedback:

- October 10 and 12, 2-4 pm (Office Hours)
- October 17: 2-4 pm (if more time is needed, new times will be allocated)
- Sign-up sheet will be provided
Project Deadlines

Project Presentation: November 28, November 30 and December 5

- Sign-up sheet will be available
- Depending on number of project, time slots will be allocated
 - Depending on number of students in the class, number of project in the class, we will inform each group about the allotted presentation time.
Project Deadlines

- **Final Project Report** Deadline: December 13, 11:59pm (Wednesday)

- Depending on the size of the project group
 - 1 person project: min **6 pages** – double column ACM Format paper (with references, pictures, tables)
 - 2 person project: min **8 pages** – double column ACM Format paper (with references, pictures, tables)
 - 3 person project: min **10 pages** – double column ACM Format (with references, pictures, tables)
Facilities and Equipment

- Engineering workstations-linux machines
- Use laptop cameras or mobile-phones cameras
- Software: gstreamer, ffmpeg, GPAC, kvazaar (HEVC encoder), MATLAB, Jupyter Notebook, Phyton, Graphana, MQTT (and other pub/sub systems), other IoT and vision software packages
- Data: papers point to various data sources or ask instructor for dataset pointers
- If you have any further questions regarding the software, please, contact instructor
 - More software can be installed based on project demands – email for help to engrit-help@illinois.edu (and instructor)
Grading

- Take-Home Midterm Exam: 35%
- Paper(s) Presentation: 15%
- Final Project: 50%
 - Project Proposal (5%)
 - Project Presentation (15%)
 - Project Final Report (30%)
Grading policy

Gradebook system: canvas

It is your responsibility to check announcements in

- Lectures
- Campuswire – postings and lecture/paper presentation slides
- Class website
- Media space – lectures will be recorded and posted on media space
- Canvas grade book
Re-grading policy

- Students have 1 week (after the grade is released into the gradebook) to request for re-grading
- Re-grading requests need to be in writing to the instructor
- After the re-grading period, no re-grading request will be granted.
Summary

- Any questions you may have, please, email to
- Instructor: klara@illinois.edu

- Have a great semester Fall 2023!