CS 537

Advanced Topics in Internet of Things Lecture 1 – Introduction (Course Organization)

Klara Nahrstedt Fall 2021

Overview

Course information
 Personnel,
 Policy,
 Schedule,
 Grading,
 Projects Discussion

Instructor Introduction

Klara Nahrstedt

PhD 1995 from Department of Computer and Information Science, University of Pennsylvania

Research:

- Networking (routing, QoS management, pricing),
- Multi-modal Distributed systems (overlay multicast, peer-to-peer systems, service composition, resource management),
- Mobile computing smart phones protocols P2P, video streaming over mobile phones, group management, …
- Operating systems (soft-real-time scheduling, caching),
- Multimedia applications (multi-view 3D tele-immersive systems, multi-camera systems, collaborative environments, mobile multimedia, P2P IPTV, multi-view 360 Video Streaming)
- Multimedia and critical infrastructure security (watermarking, realtime security)
- Cloud computing/Edge Computing
- Internet of Things
 CS 537 Fall 2021

Course Logistics

Office Assistant:

- □ Candice Steidinger (<u>steidin2@illinois.edu</u>)
- If you need to meet with me outside of office hours, please ask Candice for an appointment. She has access to my calendar and will help you very fast.
- Teaching Assistant: Ayush Sarkar
 - Any questions you have, please, email
 - Instructor <u>klara@illinois.edu</u> with subject line "CS537 or
 - Teaching assistant <u>ayushs2@illinois.edu</u>
- Class Time: Tuesday and Thursday 2:00-3:30pm
- Class Place: virtual zoom
- Zoom link is available on compass2g

- Course Logistics
 Instructor Office Hours:
 Tuesday and Thursday 4:00pm 5:00pm CST
 Use the same zoom link as for the class
 Phone: 217-244-6624
- Class Website Reading List on the website and compass2g
- Discussion, Announcements, and Postings:
 - Compass2g app
 - □ *Campuswire* app
- Grading Center: <u>https://compass2g.illinois.edu</u>

Required Readings for CS 537

- Papers in Reading List (posted on class website)
 - □ https://courses.grainger.illinois.edu/cs537/fa2021
- Lectures and Discussion in class
 - □ Papers in class plus optional papers

Other Readings for CS 537

IoT Books and Papers

- "Internet of Things and Big Data Analytics", Edited by P. Raj et al, CRC Press, 2020
- "Analytics for the Internet of Things (IoT)", Andrew Minteer, Packt Publishing, 2017
- Many conference and journal papers from ACM and IEEE professional orgs
 - ACM IOTDI (Internet of Things Design and Implementation)
 - ACM IPSN (Information Processing of Sensor Networks)
 - □ IEEE MASS (International Conference on Mobile Ad-Hoc and Smart Systems)
 - □ ACM/IEEE CPS-IOT Week),
 - □ ACM SEC (Symposium on Edge Computing)
 - Many conferences on cloud computing (e.g., ACM SoCC Symposium on Cloud Computing)

Multimedia Books and Papers

- *Media Coding and Content Processing*, Ralf Steinmetz, Klara Nahrstedt, Prentice Hall, 2002
- Multimedia Systems, Ralf Steinmetz, Klara Nahrstedt, Springer Verlag, 2004 (online book free)
- many other conference and journal papers from ACM and IEEE professional orgs
 - ACM International Conference on Multimedia,
 - ACM MMSys (Multimedia Systems)
 - ACM ICMR, (International Conference on Multimedia Retrieval)
 - IEEE ICME (International Conference on Multimedia and Expo)
 - IEEE CVPR (International Conference on Computer Vision and Pattern Recognition)
 - IEEE ICASSP (International Conference on Acoustics, Speech, and Signal Processing)
 - ACM and IEEE TMM (Transactions on Multimedia)

CS 537 - Fall 2021

Course Prerequisites

- It is helpful if you have taken at least one of these classes in your undergrad studies
 - CS 425 (distributed systems undergrad) and/or
 - □ CS 438 (networking systems undergrad)
 - CS 437 (Internet of Things systems undergrad)
 - □ 400-level computer vision class

Goal of the Course

- Expand breath of knowledge in the area of multi-modal IoT systems through
 - □ Learn new Multi-Modal IoT-specific system and networking concepts
 - Learn new mathematical and design tools to model and design complex systems that run multi-modal IoT systems
- Learn scientific tools for your MS/PhD theses
 - □ Learn how to critique scientific papers (review)
 - □ Learn how to ask questions and prepare answers
 - (More and more conferences ask for rebuttals to reviewers' questions)
 - □ Learn how to prepare and present a scientific work as lecture
 - □ Learn how to present related work
 - □ Learn how to prepare project proposal
 - □ Learn how to prepare project presentation and final project report

Class Format

Class will consist of partially

- □ lecturing by instructor, TA, guest lecturer and
- Iecturing by students based on reading list
- paper discussions

Students' responsibility

- Attend lectures
- □ Read papers!!
- Work on presentations, questions, reviews, evaluation, midterm exam, project, lectures
- Look for new material and post on campuswire when you find interesting papers, tools, other material to share

Workload (1a)

Lecturing and Q&A

- Student presents **1** paper presentation (Paper #1)
- Student presents 2nd paper (Paper #2)
- TA will setup a sign-up sheet with papers and students can select papers for presentations

Workload (1b)

- Instructions regarding sign-up sheet and selection will be placed on campuswire.
- Paper assignment will be on a first-come-firstserve policy
 - Student presents the papers synchronously in zoom-class
 - Instructor evaluates the lectures, and discussions

Workload (2)

Paper Reviews and Evaluation of Reviews

- Each student selects three papers for review which are
 - different from Paper #1
 - different from Paper #2
 - different weeks (3 reviews should be from papers over 3 weeks – one paper per week to review).

□ Send your selected three papers to the TA.

- Review information will be then posted on campuswire.
 - Reviews will be evaluated by the TA

Workload (3)

Take-Home Midterm Exam

 Questions will be asked from Lectured material and papers presented prior to exam
 Problems will include material covered in papers and lectures to answer the midterm questions

Workload (4)

- Final project will include three parts:
- 1. project proposal
- 2. project presentation in class
- 3. project paper

Lecturing

Each student needs to present <u>Paper #1</u> and <u>Paper</u> <u>#2</u>

Each student selects choice of papers in sign-up sheet

- Details about sign-up sheet will be posted on campuswire
- Selection of papers will be based on First Come First Serve
- Assignments will be posted on the class website in the Reading List

The sign-up sheet will open on September 13 and close on September 17, 2021

Lecture Format for Papers' Presentation

- Paper presentation should be <u>20</u> minutes maximum to leave at least 10 minute for discussion
- You should plan 1-2 minutes per slide, so having around 15-20 slides
 - □ Use simple strong contrast colors
 - □ Do not make the slide too busy
- Post your slides on campuswire before lecture or send it to TA/instructor

Lecture Format (2)

- Your presentation should include
 - Motivation of the problem (why are we looking at this issue? What is the environment where the problem resides?)
 - Problem Description (What is the problem and what are the challenges of the problem?)
 - Background (How did other people solve this problem and why isn't this enough?)
 - □ Novel approach (solution described in the paper)
 - Validation of approach
 - □ Conclusion with Pros and Cons of Paper

CS 537 - Fall 2021

Paper Reviews

- Each student sends list of 3 papers (different from the 2 papers to present and each review is done in different week)
 - □ Email to TA your three papers to be reviewed
 - □ Use the review format as specified in this lecture
 - Post the review on campuswire under "paper_reviews" chatroom
- Deadline for each Review is <u>day before the paper</u> is presented (11:59pm)
- TA evaluates reviews

Peer Reviews Format

Review should include:

- □ Title, authors, venue of the published paper
- Short overview of the paper (what is the main idea of the paper) few sentences
- 3-5 pros items— positive sides of the paper why was the paper accepted
- 3-5 cons items negative sides of the paper what are still missing pieces of the work;

Comments on how would you improve the paper?

- Note: review should be ½-1 page long; write full sentences and be clear (don't just put keywords)
 - □ Think like a reviewer and member of a technical conference committee

Evaluation of Reviews

- Summary of the paper (concise description of the idea)
- The pros and cons items if they are valid
- Improvement suggestions to the paper
- What the reviewer has done well and what could be improved

Take-Home Midterm Exam

- Midterm exam will be (<u>Note change!!!</u>)
 Posted on October 25 (Monday 11:59pm)
 Due on November 1 (Monday 11:59pm)
- Use lectures, web material and papers to find answers
- Submit midterm-exam solutions in pdf format to <u>klara@illinois.edu</u>, subject line: "CS537 – Midterm"

Final Project (1)

- Each student must work on a class project in multi-modal/IoT system/network area
 - Consider continuation of your research projects if it has IoT context
 - □ Consider exploring new topic towards your research
 - Come and see instructor during office hours if you need suggestions for class project (or setup a meeting via Candice with the instructor)

□ You can work **alone**, or in **group of 2-3 students**

Depending on the size of the project group, corresponding complexity of the project and clear division 'who does what' is required and expected.

Final Project (2)

- The project should have research flavor (so no survey for final project)
- You are encouraged to
 - develop new algorithm/protocol and/or application and/or
 - □ improve existing algorithm/protocol/ application and
 - validate via comparative simulation or real implementation
 - □ run QoE experiments on Video 360 and other IoT data
 - □ develop analysis tool for public IoT data
 - evaluate/measure existing multi-modal IoT system/tool
 - Evaluate existing analytics tools on existing IoT data

....

Project Proposal Format (1)

Format:

- ACM format, single column, font 11 Arial (or Times New Roman), pdf
- □ Specify name, title, class number

□Length: 2-3 pages;

Proposal: Introduction

Motivation and description of problem

- explain why it is a problem
- How did others solve the problem?
- How do you plan to solve the problem?
- What is broader impact of your solution?

Project Proposal Format (2)

- Proposal: Possible Approaches you consider to take
 - □ Picture of framework/architecture you want to explore
 - □ Algorithm you want to explore and compare/ improve
 - Experiment(s) you want to conduct
- Proposal: Action Plan
 - □ By when you want to do what?

Proposal: References

Papers you want to read and use in your research (at least 3 references must be included – read related work before you propose a project)

Project Presentation and Report Formats

- Presentation format should be similar to the lecture format
 - Talk about your problem, challenges, solution and validation.
 - Conclude with lessons learned

Report format should be written like a scientific conference/workshop paper in ACM format (available on web)
 Read and review papers carefully

Project Deadlines

- Project Proposal: October 4 (Monday), 11:59pm
 - □ Submit to klara@Illinois.edu
 - □ Subject: cs537: Project proposal
- Meet with Instructor for Project Proposal feedback:
 - □ October 12 and 14, 4-5pm (Office Hours)
 - October 13: 1-3:30pm, 4:30-6pm
 - □ October 14: 8-1:30pm
 - □ Sign-up sheet will be provided

Project Deadlines

- Project Presentation: November 30, December 1 and December 7
 - □ Sign-up sheet will be available
 - Depending on number of project, time slots will be allocated
 - Depending on number of students in the class, number of project in the class, we will inform each group about the allotted presentation time.

Project Deadlines

- Final Project Report Deadline: December 15, 11:59pm (Wednesday)
- Depending on the size of the project group
 - 1 person project: min 6 pages double column ACM Format paper (with references, pictures, tables)
 - 2 person project: min 8 pages double column ACM Format paper (with references, pictures, tables)
 - □ 3 person project: min **10 pages** double column ACM Format (with references, pictures, tables)

Facilities and Equipment

- Engineering workstations-linux machines
- Use laptop cameras or mobile phones cameras or just images/videos on Internet
- Software: gstreamer, ffmpeg, GPAC, kvazaar (HEVC encoder), MATLAB, Jupyter Notebook, Phyton, Graphana, MQTT (and other pub/sub systems), other IoT and vision software packages
- If you have any further questions regarding the software, please, contact the TA
 - More software can be installed based on project demands email for help to <u>engrit-help@illinois.edu</u> (and TA)
 - Any problems with engineering workstations/multi-modal software – email for help to <u>engrit-help@illinois.edu</u> (and TA)

Grading

- Take-Home Midterm Exam: 21 %
- Paper #1 Presentation : 10 %
- Paper #2 Presentation: 10%
- Paper Three Reviews: 9% (each review 3%)
- Final Project : 50%
 - □ Project Proposal (5%)
 - □ Project Presentation (18%)
 - □ Project Final Report (27%)

Grading policy

- Gradebook system: TBD
- Late policy
 - □ 3 Bonus Days for Review posting!!!
- It is your responsibility!
 - Check announcements in lectures, campuswire, or class website
 - □ Please, email to TA and/or instructors

Re-grading policy

- Students have 1 week (after the grade is released into the compass 2g gradebook) to request for re-grading
- Re-grading requests need to be in writing to the instructor/TA
- After the re-grading period, no re-grading request will be granted.

Summary

- Any questions you may have, please, email to
- Instructor : <u>klara@illinois.edu</u>
- TA: <u>ayushs2@illinois.edu</u>

Have a great semester Fall 2021!