Synchronization

Serif Yesil, Josep Torrellas

2/19/2019

Outline

1) High level synchronization primitives

2) Components of a synchronization primitive
a) Waiting algorithms and their tradeoffs

3) Hardware synchronization primitives
a) Most common primitives
b) Simple lock implementation & bus contention
c) LL/SC primitives

4) Compare and Swap & ABA problem

5) Examples of hardware synchronization primitives
a) Lock prefixes (Intel X86)

b) Full/Empty Bits (HEP)
c) Message combining (NYU Ultracomputer)
d) Synchronization words (lllinois CEDAR)

6) Key points of the paper by Goodman et al.

CS533 SYNCHRONIZATION-1 2

Why Do We Need Synchronization?

JAddition and deletion of elements from a shared (work) queue

JAccess to critical sections
JEnforcement of low-level data dependencies within loop iterations

ISynchronizing across multiple processors/threads

CS533 SYNCHRONIZATION-1 3

High Level Mechanisms for
Synchronization

JIMutual exclusion, point-to-point events and global events

JLocks/mutexes: grant access to one process only
IBarriers: no process advances beyond it until all have arrived
ISemaphores: control access to a shared resource in a concurrent execution

IMonitors: synchronization construct that allows threads to have both mutual exclusion and the
ability to wait (block) for a certain condition to become true

JAIll implemented in libraries/systems
JOther examples in runtimes?

CS533 SYNCHRONIZATION-1 4

Components of Sync. Events

JAcquire method: how do we acquire the synchronization event?

JIWaiting algorithm: what happens if we try to acquire the synchronization event but it is
acquired by some other process/thread

JRelease method: how to inform other processes when we past synchronization event?

JAcquire and release methods: defined semantically by the operation

CS533 SYNCHRONIZATION-1 5

Waiting algorithm

Blocking: preempt waiting process

° The process does not spin but simply blocks (suspends) itself and releases the processor if it finds that it
needs to wait.

° It will be awoken and made ready to run again when the release it was waiting for occurs.

Busy-wait: process repeatedly tests shared variables to determine when it can proceed

o Busy-waiting means that the process spins in a loop that repeatedly tests for a variable to change its
value.

> A release of the synchronization event by another processor changes the value of the variable, allowing
the process to proceed.

CS533 SYNCHRONIZATION-1 6

Tradeoffs?

Blocking

> Higher overhead: suspending and resuming a process involves the operating system, the runtime
system

o Makes the processor available to other threads with useful work

Busy-waiting
o Avoids the cost of suspension
o Consumes the processor and memory system bandwidth while waiting.

CS533 SYNCHRONIZATION-1 7

Tradeoffs?

Blocking is strictly more powerful than busy waiting, because if the process or thread that is
being waited upon is not allowed to run, the busy-wait will never end.

Busy-waiting is better:
o When the waiting period is short.

> Network/Cache can tolerate hot spots.
o Cannot be pre-empted (OS)

Blocking is better:
o When the waiting period is long and there are other processes to run.

CS533 SYNCHRONIZATION-1 8

Hardware Mechanisms for
Synchronization

All high level synchronization mechanisms can be implemented in hardware
o Speed advantage
o Functionality and flexibility disadvantage

What is the minimum hardware support that can implement all high level synchronization
mechanisms?
° Focus on shared memory

CS533 SYNCHRONIZATION-1 9

Primitives for Synchronization

Uninterruptible instruction or instruction sequence
o Capable of atomic read-modify-write (RMW)

° Atomic exchange
o Fetch-and-increment
o Test & Set

Non-atomic sequence of instructions that detect if intervening access
> Load-linked and Store-conditional
° Can be used to implement more complex primitives

CS533 SYNCHRONIZATION-1 10

Semantics of Primitives

bool TAS(bool *a): JTest-and-set: set a value if unset.
atomic {t := *a; *a := true; return t }

ISwap: exchange values in memory locations
word Swap(word *a, word w): with register
atomic {t:= *a; *a:=w; returnt}

JFetch-And-Increment: increments value,

int fetchAndincrement(int *a): returns previous value stored in the memory

atomic{t:=*a; *a:=t+1; returnt} location

int fetchAndAdd(int *a, int n): JFetch-And-Add: increments value with a

atomic {t:=*a; *a:=t+n; returnt} constant, return value stored in the memory
location

bool CAS(word *a, word old, word new):
atomic { t := (*a = old); if (t) *a := new; return t } dCompare-and-swap: compares the value
stored in memory location with a given value,
if same swaps it with new value

€S533 SYNCHRONIZATION-1 11

Implementing a Simple Lock

acquire | Lock: test-and-set R1, lock_mem acquire | Lock: Id R1, lock_mem
bnz R1, Lock bnz R1, Lock
ret test-and-set R1, lock_mem
release | Unlock: st lock_mem, #0 bnz R1, Lock
ret ret
release | Unlock: st lock_mem, #0
ret

Think about cache coherence & bus transactions

CS533 SYNCHRONIZATION-1

12

Implementing a Simple Lock

acquire

Lock: test-and-set R1, lock_mem
bnz R1, Lock
ret

release

Unlock: st lock_mem, #0
ret

JIWhen lock is successfully acquired -> 1 exclusive
read operation is done on the bus

JWhen lock acquire is unsuccessful, every check
generates an exclusive read operation on the bus

IHigh number of transactions on the bus

CS533 SYNCHRONIZATION-1

13

Implementing a Simple Lock

JWhen locking is successful, 1 read and 1

acquire

Lock: Id R1, lock_mem
bnz R1, Lock
test-and-set R1, lock_mem
bnz R1, Lock
ret

exclusive read is observed on the bus

JIWhen locking is unsuccessful

JEach processor reads the value from its own
cache with |d. Loops until lock is released

release

Unlock: st lock_mem, #0
ret

JO(N?) transactions on the bus
JEach time lock is unset, all processors issue an

exclusive access, but only 1 is successful

Is there a method or methods of locking that get better performance than Test and Test and Set lock?

CS533 SYNCHRONIZATION-1

14

Note on Lock Performance

JLatency
JLatency of operations to acquire the lock

1 operation in Test&Set lock
12 operations in Test&Test&Set lock

JInterconnect traffic (bus requests)
JHow many requests are we generating on the bus

JUnlimited vs O(N?)

IStorage cost
11 word for both of them

IFairness?
JEvery processor gets the same chance to acquire the lock?

CS533 SYNCHRONIZATION-1 15

Reducing Implementation Complexity

JUse 2 instructions, where the 2" one returns
Problem with CAS: it combines a load and a store a value from which it can be deduced whether
into a single instruction the pair was executed as if atomic

LILL: returns value of location. Remembers the
value

bool CAS(word *a, word old, word new):

atomic {t := (*a = old); if (t) *a := new; return t } ISC: fails if contents of location have been
changed between LL and SC

Jalso fails if processor context switches between

word LL(word *a):

LL and SC
atomic { remember a; return *a} an
bool SC(word *a, word w): 1Can be used to implement other primitives
atomic {t := (a is remembered, and has not been like Fetch & increment

evicted since LL)
if (t) *a :=w; returnt}

CS533 SYNCHRONIZATION-1 16

CAS with LL/SC

cas(addr, old, new): (ILL/SC is universal
A=LL(addr
if (A =(= old)){ JOther primitive with LL/SC
if (SC(new, addr)) return 1; JFetch&Add
else return 0; JFetch&Inc etc.
} return O;

CS533 SYNCHRONIZATION-1 17

CAS ABA Problem

CAS depends on value comparison

May introduce correctness issues

1: void push(node** top, node* new):
2: node* old

3: repeat

4: old := *top

5: new—next := old

6: until CAS(top, old, new)

1: node* pop(node** top):

2: node* old, new

3: repeat

4: old := *top

5 if old = null return null
6 new := old—next

7: until CAS(top, old, new)

8

return old

CS533 SYNCHRONIZATION-1

18

1: void push(node** top, node* new): 1: node* pop(node** top):
2: node* old 2: node* old, new
3: repeat 3: repeat)
4: old := *top 4: old := *top Note: CAS compares
5: new—next := old 5 if old = null return null the address of nodes
6: until CAS(top, old, new) 6 new := old—next not the value of a
7: until CAS(top, old, new) node!
8: return old
THREAD1 THREAD?2
pop(&top) pop(&top)

push(&top, &B)
push(&top, &A)

CS533 SYNCHRONIZATION-1 19

1: void push(node** top, node* new): 1: node* pop(node** top):
2: node* old 2: node* old, new
3: repeat 3: repeat
4: old := *top 4: old := *top
5: new—snext := old 5 if old = null return null
6: until CAS(top, old, new) 6 new := old—next
7: until CAS(top, old, new)
8: return old
THREAD1 THREAD2
pop(&top) pop(&top)

o Executes until line 6

ush(&top, &B
o Stuck at line 7 P (P)

push(&top, &A)

CS533 SYNCHRONIZATION-1 20

THREAD1

pop(&top)

1: void push(node** top, node* new):
2: node* old

3: repeat

4: old := *top

5: new—next := old

6: until CAS(top, old, new)

o Executes until line 6

o Stuck at line 7

1: node* pop(node** top):
2: node* old, new
3: repeat
4: old := *top
5 if old = null return null
6 new := old—next
7: until CAS(top, old, new)
8: return old
THREAD?2

A = pop(&top)

push(&top, &B)
push(&top, &A)

After: top

L C

CS533 SYNCHRONIZATION-1

21

THREAD1

pop(&top)

1: void push(node** top, node* new):
2: node* old

3: repeat

4: old := *top

5: new—next := old

6: until CAS(top, old, new)

o Executes until line 6

o Stuck at line 7

1: node* pop(node** top):
2: node* old, new
3: repeat
4: old := *top
5 if old = null return null
6 new := old—next
7: until CAS(top, old, new)
8: return old
THREAD?2
pop(&top)

push(&top, &B)

push(&top, &A)

Before:

After:

CS533 SYNCHRONIZATION-1

1: void push(node** top, node* new):
2: node* old

3: repeat

4: old := *top

5: new—next := old

6: until CAS(top, old, new)

THREAD1

pop(&top)
o Executes until line 6

o Stuck at line 7

Before:

1: node* pop(node** top):
2: node* old, new
3: repeat
4: old := *top
5 if old = null return null
6 new := old—next
7: until CAS(top, old, new)
8: return old
THREAD?2
pop(&top)

push(&top, &B)

‘ push(&top, &A)

After: top A B C

CS533 SYNCHRONIZATION-1

23

1: void push(node** top, node* new): 1: node* pop(node** top):

2: node* old 2: node* old, new

3: repeat 3: repeat

4: old := *top 4: old := *top

5: new—next := old 5: if old = null return null

6: until CAS(top, old, new) 6: new = old— next old==A & top==A 2>

7 until CAS(top, old, new) CAS successful
8: return old
New top=C

THREAD1 THREAD?2
pop(&top) pop(&top)

o Continue executing line 7

push(&top, &B)
push(&top, &A)

top

Before:

CS533 SYNCHRONIZATION-1 24

Solutions

Devote part of each to-be-CAS ed word to a sequence number that is updated in pop on a
successful CAS.

Two word long compare and swap operations
o Cmpexchgl6b in Intel

Re-write the code to pass a push value, and had the method allocate a new node to hold it.
Symmetrically, pop would deallocate the node and return the value it contained.

Use LL/SC. If the memory location received invalidation, SC will fail.

CS533 SYNCHRONIZATION-1 25

Examples of Hw. Sync. Primitives

JIBM 370: Compare and swap instruction

JIntel X86: Lock prefixes

ISPARC: swap involving a register and memory
IMIPS: LL/SC instructions

IHEP

INYU Ultracomputer

JIBM RP3

Jlllinois Cedar

CS533 SYNCHRONIZATION-1 26

Lock Prefixes on Intel

JBus blocking
(IHold the bus until load and store components are finished

JCache blocking
1Get exclusive ownership of data with cache coherence

(Prevent other processor accessing the line in the cache

J“In the days of Intel 486 processors, the lock prefix used to assert a lock on the bus along with a
large hit in performance.

IStarting with the Intel Pentium Pro architecture, the bus lock is transformed into a cache lock.

JA lock will still be asserted on the bus in the most modern architectures if the lock resides in
uncacheable memory or if the lock extends beyond a cache line boundary splitting cache lines.

JBoth of these scenarios are unlikely, so most lock prefixes will be transformed into a cache lock which is much
less expensive.” *

*https://software.intel.com/en-us/articles/implementing-
scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-

CS533 SYNCHRONIZATION-1 27

HEP

JEach word in memory has Full/Empty (F/E) bit

Bit is tested in hardware before a RD/WR if special symbol is prepended to the var name

IThe RD/WR blocks until the test succeeds: RD until full WR until empty
JProducer consumer type access

JWhen test succeeds, the bit is set to the opposite value, indivisibly with the RD/WR

CS533 SYNCHRONIZATION-1 28

HEP

Advantages:
o Very efficient for low level dependences (compare to locks)

Disadvantages:
o F/E bits
° Logic to initialize the bits
o Support to queue a process if test fails

° Logic to implement indivisible ops

CS533 SYNCHRONIZATION-1 29

NYU Ultracomputer

Atomic Fetch & Add:
o Send a message to a memory location with a constant

Advantages:
o Useful in certain cases: get the next iteration of a loop

o |f the network has hardware to combine messages to the same location, primitive tolerates contentions

CS533 SYNCHRONIZATION-1 30

Message Combining

Y < F&A(X, v)

JIWhen two fetch-and-adds referencing the same shared variable, say F&A(X, e) and F&A(X,f),
meet at a switch

Jthe switch forms the sum e + f transmits the combined request F&A(X, e +f), and stores the value e in its
local memory

JWhen the value Y is returned to the switch in response to F&A(X, e +f)
Jthe switch transmits Y to satisfy the original request F&A(X, e)
Jand transmits Y + e to satisfy the original request F&A(X,f).

FERIX, e) —>

+—7T FAA (X, e+ fl—o
FRA X f1— I

g4 T+e e

CS533 SYNCHRONIZATION-1 31

Example

F&A (X,3)

D|n|t|a| Value Of X iS 5 @ F&A (X,1) Switch Memory
JTwo F&As are executed x |5
JF&A(X,3): should return 5 and update X to
be 8 FBAQGE) [
JF&A(X,1): should return 8 and update X to e " emeny
be 9 Combine (1,3), Store 3, ? x |5
Send F&A(X,4
5
Switch < Memory
@ Return 5 to intermediate Z y 5
switch
- 5
Return correct values for [E - Swien vemory
original F&As X

CS533 SYNCHRONIZATION-1 32

Message Combining

Advantages:
o Multiple requests in parallel
o Less traffic (scalable)

> Time complexity depends on the network not the number of parallel requests

Disadvantages:
> Very complex network
> Slows down the rest of the messages
o Complex hardware

o For Fetch & Add: adder in each memory module

> For message combining: Special, complex queuing logic at each switch in the network

CS533 SYNCHRONIZATION-1 33

IBM RP3

Atomic Fetch & Phi:
o Add, And, Or, Min, Max, Store, Store if zero
° Hardware required: logic in the shared memory to implement the 7 atomic operations

CS533 SYNCHRONIZATION-1 34

Illinois Cedar

Scheme to complement a vectorizing compiler
by resolving data dependences at runtime

° More parallelism can be obtained from a
program

o Targets data dependence in loops

DOI, = 1, 10
DOL =1, 10
S A(LL) = B, +1,L) + C{I,,L)
Ss B(I,.I) = A(I,-1,L,) * D(I,,I)
ENDDO
ENDDO

CS533 SYNCHRONIZATION-1

Two solutions
> Execute outer loop in serial

o Distribute into two loops for S1 and S2

DO I] = 1, 10
DOL =1,10
S A(,,L) = B(I;+1,1,) + C(,.I,)
~ ENDDO
ENDDO
DO I] = 1, lﬂ
DOL =1,10
S, B{,,,) = A(I;—-1,)) * D(,,I,)
ENDDO

ENDDO

35

On HEP

IMark A and B arrays to use Full/Empty bits

DOALLI, = 1, 10

JIn S1, read on B sets the bit, write on A sets the bit DOALLL = 1, 10
JOperation of A: S #A(I,,Ip) = #BI,+1.1) + CI,.L)
I,.I,) = #A(1,—1,1,) * D(1,.1
JOn S1 check full/empty bit of A(I1, 12) = Is Empty? 52 #B%E.INI?))DOALI(.,II 1 1)_ L)
O If unset write the value and set the bit ENDDOALL

JOn S2 check full/empty bit of A(I11-1, 12) = Is Full?

L) If set write the value and unset the bit

L) Otherwise wait until set

CS533 SYNCHRONIZATION-1 36

Illinois Cedar

JAssume that the synchronization is required on an array variable A.
ISynchronization variables: Each data element of the synchronization variable A(l)

1General atomic instruction that operates on synchronization variables

ISynch var is 2 words: Key and Value

JOperations on A(l).key: regular Fetch, Store, Increment, Decrement, Increment&Fetch,
Decrement&Fetch, and No Action.

JOperations on A(l).value: regular Fetch, Store, and NoAction.

JHW required: special processor at each mem module

{addr; (cond); op on key; op on value}
if * in condition: spin until true

Can derive more general atomic primitives. Check

the paper for more examples.

{X; (X.key == 1)#; decrement; fetch}
this is F/E bit test for a read option

CS533 SYNCHRONIZATION-1

Notes on Paper

Three main features:

EIACr)Teghanism for first-come first-serve queueing. Reduces the complexity of acquiring a semaphore
to O(N

INo hardware FetchAndPhi operations in hardware
A software combining method is proposed

JA notify primitive implemented in hardware for global barrier completion

Assumptions of the paper:
IShared memory processor with cache coherence

JBroadcast is supported in the interconnect

JHardware combining is not implemented

CS533 SYNCHRONIZATION-1 38

Synchronization Primitives and syncbits

Each memory (cache) line is associated with a syncbit

Advantages:
ISynchronization memory allocated proportional to data memory
JOperations on syncbits can be implemented as extensions to cache coherence

Disadvantage:

JSyncbits are associated with a cache line. Two words requiring syncbits can’t be
mapped to the same line

CS533 SYNCHRONIZATION-1 39

Test&Set, Unset,
Queue on Synchit(QOSB)

QOSB: non-blocking operation on syncbit address that adds the issuing processor to the syncbit
queue

Executes QOSB instruction before Test&Set operations
JIf requesting processor is not in the queue, adds it to the queue
IProcessor spins on Test&Set locally

JWhen syncbit is unset (head of the queue removed), next processor waiting in the queue is
notified

Broadcast Notify: A restricted write broadcast to eliminate hotspot contention

Fetch-and-Phi: software combining method is used

CS533 SYNCHRONIZATION-1 40

Hardware Extensions/Operations for
QOSB

QOSB instruction performs two operations
° |t allocates space for a shadow copy of the line in the local cache with the shadow syncbit set. Allocates

an entry in the queue
° |t performs a remote access for getting exclusive copy of the data
° If a shadow copy exists in the local cache, no remote accesses performed

Two additional cache state
o Shadow: invalid copy in the queued processors

o Sticky: valid copy at the head of the queue
° In memory data invalid state

41

CS533 SYNCHRONIZATION-1

Interaction with Primitives

When a processor holding the line receives a QOSB
o Requesting processor is queued

> Note that shadow lines are invalid, data space for shadow lines can be used to keep track of pointers for
the next element in the queue

° Note that memory line is invalid, memory line can be used to store head pointer

Test&Set:
o Fail if a local shadow copy exists

Unset:
° |t removes the head of queue.
° Initiate transfer for the next element in the queue

CS533 SYNCHRONIZATION-1 p)

References

JSection 5.6 of Culler&Singh Book
(ISmall, bus-based shared memory machines

IShared Memory Synchronization (Michael L. Scott) M&C Synthesis Lectures in Computer
Architecture

). Goodman et al. "Efficient Synchronization Primitives for Large Scale Cache-Coherent
Multiprocessors". ASPLOS 1989.

JGottlieb, Allan et al. “NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer”.
|EEE Transactions on Computers 1983.

) Chuan-Qi Zhu et al. “A Scheme to Enforce Data Dependence on Large Multiprocessor Systems”. IEEE
Transactions on Software Engineering 1987.

JImplementing Scalable Atomic Locks for Multi-Core Intel® EM64T and IA32 Architectures.
https://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-
em64t-and-ia32-architectures

CS533 SYNCHRONIZATION-1 43

