
Synchronization
Serif Yesi l , Josep Torrellas

2/19/2019

CS533 SYNCHRONIZATION-1 1

Outline
1) High level synchronization primitives

2) Components of a synchronization primitive
a) Waiting algorithms and their tradeoffs

3) Hardware synchronization primitives
a) Most common primitives
b) Simple lock implementation & bus contention
c) LL/SC primitives

4) Compare and Swap & ABA problem

5) Examples of hardware synchronization primitives
a) Lock prefixes (Intel X86)
b) Full/Empty Bits (HEP)
c) Message combining (NYU Ultracomputer)
d) Synchronization words (Illinois CEDAR)

6) Key points of the paper by Goodman et al.

CS533 SYNCHRONIZATION-1 2

Why Do We Need Synchronization?
❑Addition and deletion of elements from a shared (work) queue

❑Access to critical sections

❑Enforcement of low-level data dependencies within loop iterations

❑Synchronizing across multiple processors/threads

CS533 SYNCHRONIZATION-1 3

High Level Mechanisms for
Synchronization
❑Mutual exclusion, point-to-point events and global events

❑Locks/mutexes: grant access to one process only

❑Barriers: no process advances beyond it until all have arrived

❑Semaphores: control access to a shared resource in a concurrent execution

❑Monitors: synchronization construct that allows threads to have both mutual exclusion and the
ability to wait (block) for a certain condition to become true

❑All implemented in libraries/systems
❑Other examples in runtimes?

CS533 SYNCHRONIZATION-1 4

Components of Sync. Events
❑Acquire method: how do we acquire the synchronization event?

❑Waiting algorithm: what happens if we try to acquire the synchronization event but it is
acquired by some other process/thread

❑Release method: how to inform other processes when we past synchronization event?

❑Acquire and release methods: defined semantically by the operation

CS533 SYNCHRONIZATION-1 5

Waiting algorithm
Blocking: preempt waiting process

◦ The process does not spin but simply blocks (suspends) itself and releases the processor if it finds that it
needs to wait.

◦ It will be awoken and made ready to run again when the release it was waiting for occurs.

Busy-wait: process repeatedly tests shared variables to determine when it can proceed
◦ Busy-waiting means that the process spins in a loop that repeatedly tests for a variable to change its

value.

◦ A release of the synchronization event by another processor changes the value of the variable, allowing
the process to proceed.

CS533 SYNCHRONIZATION-1 6

Tradeoffs?
Blocking

◦ Higher overhead: suspending and resuming a process involves the operating system, the runtime
system

◦ Makes the processor available to other threads with useful work

Busy-waiting
◦ Avoids the cost of suspension

◦ Consumes the processor and memory system bandwidth while waiting.

CS533 SYNCHRONIZATION-1 7

Tradeoffs?
Blocking is strictly more powerful than busy waiting, because if the process or thread that is
being waited upon is not allowed to run, the busy-wait will never end.

Busy-waiting is better:
◦ When the waiting period is short.

◦ Network/Cache can tolerate hot spots.

◦ Cannot be pre-empted (OS)

Blocking is better:
◦ When the waiting period is long and there are other processes to run.

CS533 SYNCHRONIZATION-1 8

Hardware Mechanisms for
Synchronization
All high level synchronization mechanisms can be implemented in hardware

◦ Speed advantage

◦ Functionality and flexibility disadvantage

What is the minimum hardware support that can implement all high level synchronization
mechanisms?

◦ Focus on shared memory

CS533 SYNCHRONIZATION-1 9

Primitives for Synchronization
Uninterruptible instruction or instruction sequence

◦ Capable of atomic read-modify-write (RMW)

◦ Atomic exchange

◦ Fetch-and-increment

◦ Test & Set

Non-atomic sequence of instructions that detect if intervening access
◦ Load-linked and Store-conditional

◦ Can be used to implement more complex primitives

CS533 SYNCHRONIZATION-1 10

Semantics of Primitives
bool TAS(bool *a):
atomic { t := *a; *a := true; return t }

word Swap(word *a, word w):
atomic { t := *a; *a := w; return t }

int fetchAndIncrement(int *a):
atomic { t := *a; *a := t + 1; return t }

int fetchAndAdd(int *a, int n):
atomic { t := *a; *a := t + n; return t }

bool CAS(word *a, word old, word new):
atomic { t := (*a = old); if (t) *a := new; return t }

❑Test-and-set: set a value if unset.

❑Swap: exchange values in memory locations
with register

❑Fetch-And-Increment: increments value,
returns previous value stored in the memory
location

❑Fetch-And-Add: increments value with a
constant, return value stored in the memory
location

❑Compare-and-swap: compares the value
stored in memory location with a given value,
if same swaps it with new value

CS533 SYNCHRONIZATION-1 11

Implementing a Simple Lock
acquire Lock: test-and-set R1, lock_mem

bnz R1, Lock
ret

release Unlock: st lock_mem, #0
ret

CS533 SYNCHRONIZATION-1 12

acquire Lock: ld R1, lock_mem
bnz R1, Lock
test-and-set R1, lock_mem
bnz R1, Lock
ret

release Unlock: st lock_mem, #0
ret

Think about cache coherence & bus transactions

Implementing a Simple Lock
acquire Lock: test-and-set R1, lock_mem

bnz R1, Lock
ret

release Unlock: st lock_mem, #0
ret

❑When lock is successfully acquired -> 1 exclusive
read operation is done on the bus

❑When lock acquire is unsuccessful, every check
generates an exclusive read operation on the bus

❑High number of transactions on the bus

CS533 SYNCHRONIZATION-1 13

Implementing a Simple Lock
❑When locking is successful, 1 read and 1
exclusive read is observed on the bus

❑When locking is unsuccessful
❑Each processor reads the value from its own

cache with ld. Loops until lock is released

❑O(N2) transactions on the bus
❑Each time lock is unset, all processors issue an

exclusive access, but only 1 is successful

CS533 SYNCHRONIZATION-1 14

acquire Lock: ld R1, lock_mem
bnz R1, Lock
test-and-set R1, lock_mem
bnz R1, Lock
ret

release Unlock: st lock_mem, #0
ret

Is there a method or methods of locking that get better performance than Test and Test and Set lock?

Note on Lock Performance
❑Latency
❑Latency of operations to acquire the lock

❑1 operation in Test&Set lock

❑2 operations in Test&Test&Set lock

❑Interconnect traffic (bus requests)
❑How many requests are we generating on the bus

❑Unlimited vs O(N2)

❑Storage cost
❑1 word for both of them

❑Fairness?
❑Every processor gets the same chance to acquire the lock?

CS533 SYNCHRONIZATION-1 15

Reducing Implementation Complexity

word LL(word *a):
atomic { remember a; return *a }

bool SC(word *a, word w):
atomic { t := (a is remembered, and has not been
evicted since LL)
if (t) *a := w; return t }

❑Use 2 instructions, where the 2nd one returns
a value from which it can be deduced whether
the pair was executed as if atomic

❑LL: returns value of location. Remembers the
value

❑SC: fails if contents of location have been
changed between LL and SC
❑also fails if processor context switches between

LL and SC

❑Can be used to implement other primitives
like Fetch & increment

CS533 SYNCHRONIZATION-1 16

Problem with CAS: it combines a load and a store
into a single instruction

bool CAS(word *a, word old, word new):
atomic { t := (*a = old); if (t) *a := new; return t }

CAS with LL/SC
cas(addr, old, new):

A=LL(addr)
if (A == old){

if (SC(new, addr)) return 1;
else return 0;

} return 0;

❑LL/SC is universal

❑Other primitive with LL/SC
❑Fetch&Add

❑Fetch&Inc etc.

CS533 SYNCHRONIZATION-1 17

CAS ABA Problem
CAS depends on value comparison

May introduce correctness issues

CS533 SYNCHRONIZATION-1 18

THREAD1

pop(&top)

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)

CS533 SYNCHRONIZATION-1 19

top A CInitial Stack:

Note: CAS compares
the address of nodes
not the value of a
node!

THREAD1

pop(&top)
◦ Executes until line 6

◦ Stuck at line 7

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)

CS533 SYNCHRONIZATION-1 20

top A CInitial Stack:

new C

old A

THREAD1

pop(&top)
◦ Executes until line 6

◦ Stuck at line 7

THREAD2

A = pop(&top)

push(&top, &B)

push(&top, &A)

CS533 SYNCHRONIZATION-1 21

top Cnew C

old A
top A C

After:

Before:

THREAD1

pop(&top)
◦ Executes until line 6

◦ Stuck at line 7

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)

CS533 SYNCHRONIZATION-1 22

top CB
new C

old A

top C

After:

Before:

THREAD1

pop(&top)
◦ Executes until line 6

◦ Stuck at line 7

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)

CS533 SYNCHRONIZATION-1 23

top CBA

new C

old A

top CB

After:

Before:

THREAD1

pop(&top)
◦ Continue executing line 7

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)

CS533 SYNCHRONIZATION-1 24

top CBAnew C

old A

old==A & top==A →
CAS successful
New top=C

top CBA

After:

Before:

Solutions
Devote part of each to-be-CAS ed word to a sequence number that is updated in pop on a
successful CAS.

Two word long compare and swap operations
◦ Cmpexchg16b in Intel

Re-write the code to pass a push value, and had the method allocate a new node to hold it.
Symmetrically, pop would deallocate the node and return the value it contained.

Use LL/SC. If the memory location received invalidation, SC will fail.

CS533 SYNCHRONIZATION-1 25

Examples of Hw. Sync. Primitives
❑IBM 370: Compare and swap instruction

❑Intel X86: Lock prefixes

❑SPARC: swap involving a register and memory

❑MIPS: LL/SC instructions

❑HEP

❑NYU Ultracomputer

❑IBM RP3

❑Illinois Cedar

CS533 SYNCHRONIZATION-1 26

Lock Prefixes on Intel
❑Bus blocking
❑Hold the bus until load and store components are finished

❑Cache blocking
❑Get exclusive ownership of data with cache coherence
❑Prevent other processor accessing the line in the cache

❑“In the days of Intel 486 processors, the lock prefix used to assert a lock on the bus along with a
large hit in performance.

❑Starting with the Intel Pentium Pro architecture, the bus lock is transformed into a cache lock.

❑A lock will still be asserted on the bus in the most modern architectures if the lock resides in
uncacheable memory or if the lock extends beyond a cache line boundary splitting cache lines.
❑Both of these scenarios are unlikely, so most lock prefixes will be transformed into a cache lock which is much

less expensive.” *

CS533 SYNCHRONIZATION-1 27

*https://software.intel.com/en-us/articles/implementing-
scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-
architectures

HEP
❑Each word in memory has Full/Empty (F/E) bit

❑Bit is tested in hardware before a RD/WR if special symbol is prepended to the var name

❑The RD/WR blocks until the test succeeds: RD until full WR until empty
❑Producer consumer type access

❑When test succeeds, the bit is set to the opposite value, indivisibly with the RD/WR

CS533 SYNCHRONIZATION-1 28

HEP
Advantages:

◦ Very efficient for low level dependences (compare to locks)

Disadvantages:
◦ F/E bits

◦ Logic to initialize the bits

◦ Support to queue a process if test fails

◦ Logic to implement indivisible ops

CS533 SYNCHRONIZATION-1 29

NYU Ultracomputer
Atomic Fetch & Add:

◦ Send a message to a memory location with a constant

Advantages:
◦ Useful in certain cases: get the next iteration of a loop

◦ If the network has hardware to combine messages to the same location, primitive tolerates contentions

CS533 SYNCHRONIZATION-1 30

Message Combining
❑Y F&A(X, v)

❑When two fetch-and-adds referencing the same shared variable, say F&A(X, e) and F&A(X,f),
meet at a switch
❑the switch forms the sum e + f transmits the combined request F&A(X, e +f), and stores the value e in its

local memory

❑When the value Y is returned to the switch in response to F&A(X, e +f)
❑the switch transmits Y to satisfy the original request F&A(X, e)

❑and transmits Y + e to satisfy the original request F&A(X,f).

CS533 SYNCHRONIZATION-1 31

Example
❑Initial value of X is 5

❑Two F&As are executed
❑F&A(X,3): should return 5 and update X to

be 8

❑F&A(X,1): should return 8 and update X to
be 9

CS533 SYNCHRONIZATION-1 32

Combine (1,3), Store 3,
Send F&A(X,4)

Return 5 to intermediate
switch

Return correct values for
original F&As

1

2

3

4

Message Combining
Advantages:

◦ Multiple requests in parallel

◦ Less traffic (scalable)

◦ Time complexity depends on the network not the number of parallel requests

Disadvantages:
◦ Very complex network

◦ Slows down the rest of the messages

◦ Complex hardware
◦ For Fetch & Add: adder in each memory module

◦ For message combining: Special, complex queuing logic at each switch in the network

CS533 SYNCHRONIZATION-1 33

IBM RP3
Atomic Fetch & Phi:

◦ Add, And, Or, Min, Max, Store, Store if zero

◦ Hardware required: logic in the shared memory to implement the 7 atomic operations

CS533 SYNCHRONIZATION-1 34

Illinois Cedar
Scheme to complement a vectorizing compiler
by resolving data dependences at runtime

◦ More parallelism can be obtained from a
program

◦ Targets data dependence in loops

Two solutions
◦ Execute outer loop in serial

◦ Distribute into two loops for S1 and S2

CS533 SYNCHRONIZATION-1 35

On HEP
❑Mark A and B arrays to use Full/Empty bits

❑In S1, read on B sets the bit, write on A sets the bit

❑Operation of A:
❑On S1 check full/empty bit of A(I1, I2) → Is Empty?
❑ If unset write the value and set the bit

❑On S2 check full/empty bit of A(I1-1, I2) → Is Full?
❑ If set write the value and unset the bit

❑Otherwise wait until set

CS533 SYNCHRONIZATION-1 36

Illinois Cedar
❑Assume that the synchronization is required on an array variable A.
❑Synchronization variables: Each data element of the synchronization variable A(I)

❑General atomic instruction that operates on synchronization variables

❑Synch var is 2 words: Key and Value
❑Operations on A(I).key: regular Fetch, Store, Increment, Decrement, Increment&Fetch,

Decrement&Fetch, and No Action.

❑Operations on A(I).value: regular Fetch, Store, and NoAction.

❑HW required: special processor at each mem module

CS533 SYNCHRONIZATION-1 37

Can derive more general atomic primitives. Check
the paper for more examples.

Notes on Paper
Three main features:

❑A mechanism for first-come first-serve queueing. Reduces the complexity of acquiring a semaphore
to O(N)

❑No hardware FetchAndPhi operations in hardware
❑A software combining method is proposed

❑A notify primitive implemented in hardware for global barrier completion

Assumptions of the paper:

❑Shared memory processor with cache coherence

❑Broadcast is supported in the interconnect

❑Hardware combining is not implemented

CS533 SYNCHRONIZATION-1 38

Synchronization Primitives and syncbits
Each memory (cache) line is associated with a syncbit

Advantages:

❑Synchronization memory allocated proportional to data memory

❑Operations on syncbits can be implemented as extensions to cache coherence

Disadvantage:

❑Syncbits are associated with a cache line. Two words requiring syncbits can’t be
mapped to the same line

CS533 SYNCHRONIZATION-1 39

Test&Set, Unset,
Queue_on_Syncbit(QOSB)
QOSB: non-blocking operation on syncbit address that adds the issuing processor to the syncbit
queue

Executes QOSB instruction before Test&Set operations

❑If requesting processor is not in the queue, adds it to the queue

❑Processor spins on Test&Set locally

❑When syncbit is unset (head of the queue removed), next processor waiting in the queue is
notified

Broadcast Notify: A restricted write broadcast to eliminate hotspot contention

Fetch-and-Phi: software combining method is used

CS533 SYNCHRONIZATION-1 40

Hardware Extensions/Operations for
QOSB
QOSB instruction performs two operations

◦ It allocates space for a shadow copy of the line in the local cache with the shadow syncbit set. Allocates
an entry in the queue

◦ It performs a remote access for getting exclusive copy of the data

◦ If a shadow copy exists in the local cache, no remote accesses performed

Two additional cache state
◦ Shadow: invalid copy in the queued processors

◦ Sticky: valid copy at the head of the queue

◦ In memory data invalid state

CS533 SYNCHRONIZATION-1 41

Interaction with Primitives
When a processor holding the line receives a QOSB

◦ Requesting processor is queued

◦ Note that shadow lines are invalid, data space for shadow lines can be used to keep track of pointers for
the next element in the queue

◦ Note that memory line is invalid, memory line can be used to store head pointer

Test&Set:
◦ Fail if a local shadow copy exists

Unset:
◦ It removes the head of queue.

◦ Initiate transfer for the next element in the queue

CS533 SYNCHRONIZATION-1 42

References
❑Section 5.6 of Culler&Singh Book
❑Small, bus-based shared memory machines

❑Shared Memory Synchronization (Michael L. Scott) M&C Synthesis Lectures in Computer
Architecture

❑J. Goodman et al. "Efficient Synchronization Primitives for Large Scale Cache-Coherent
Multiprocessors". ASPLOS 1989.

❑Gottlieb, Allan et al. “NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer”.
IEEE Transactions on Computers 1983.

❑ Chuan-Qi Zhu et al. “A Scheme to Enforce Data Dependence on Large Multiprocessor Systems”. IEEE
Transactions on Software Engineering 1987.

❑Implementing Scalable Atomic Locks for Multi-Core Intel® EM64T and IA32 Architectures.
https://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-
em64t-and-ia32-architectures

CS533 SYNCHRONIZATION-1 43

