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Why Do We Need Synchronization?
❑Addition and deletion of elements from a shared (work) queue

❑Access to critical sections

❑Enforcement of low-level data dependencies within loop iterations

❑Synchronizing across multiple processors/threads
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High Level Mechanisms for 
Synchronization
❑Mutual exclusion, point-to-point events and global events

❑Locks/mutexes: grant access to one process only

❑Barriers: no process advances beyond it until all have arrived

❑Semaphores: control access to a shared resource in a concurrent execution

❑Monitors:  synchronization construct that allows threads to have both mutual exclusion and the 
ability to wait (block) for a certain condition to become true

❑All implemented in libraries/systems
❑Other examples in runtimes?
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Components of Sync. Events
❑Acquire method: how do we acquire the synchronization event?

❑Waiting algorithm: what happens if we try to acquire the synchronization event but it is 
acquired by some other process/thread

❑Release method: how to inform other processes when we past synchronization event?

❑Acquire and release methods: defined semantically by the operation
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Waiting algorithm
Blocking: preempt waiting process

◦ The process does not spin but simply blocks (suspends) itself and releases the processor if it finds that it 
needs to wait. 

◦ It will be awoken and made ready to run again when the release it was waiting for occurs.

Busy-wait: process repeatedly tests shared variables to determine when it can proceed
◦ Busy-waiting means that the process spins in a loop that repeatedly tests for a variable to change its 

value. 

◦ A release of the synchronization event by another processor changes the value of the variable, allowing 
the process to proceed.
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Tradeoffs?
Blocking

◦ Higher overhead: suspending and resuming a process involves the operating system, the runtime 
system 

◦ Makes the processor available to other threads with useful work

Busy-waiting
◦ Avoids the cost of suspension

◦ Consumes the processor and memory system bandwidth while waiting.
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Tradeoffs?
Blocking is strictly more powerful than busy waiting, because if the process or thread that is 
being waited upon is not allowed to run, the busy-wait will never end.

Busy-waiting is better: 
◦ When the waiting period is short. 

◦ Network/Cache can tolerate hot spots. 

◦ Cannot be pre-empted (OS)

Blocking is better: 
◦ When the waiting period is long and there are other processes to run.
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Hardware Mechanisms for 
Synchronization
All high level synchronization mechanisms can be implemented in hardware

◦ Speed advantage

◦ Functionality and flexibility disadvantage

What is the minimum hardware support that can implement all high level synchronization 
mechanisms?

◦ Focus on shared memory
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Primitives for Synchronization
Uninterruptible instruction or instruction sequence

◦ Capable of atomic read-modify-write (RMW)

◦ Atomic exchange

◦ Fetch-and-increment

◦ Test & Set 

Non-atomic sequence of instructions that detect if intervening access
◦ Load-linked and Store-conditional

◦ Can be used to implement more complex primitives
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Semantics of Primitives
bool TAS(bool *a): 
atomic { t := *a; *a := true; return t }

word Swap(word *a, word w): 
atomic { t := *a; *a := w; return t }

int fetchAndIncrement(int *a): 
atomic { t := *a; *a := t + 1; return t }

int fetchAndAdd(int *a, int n): 
atomic { t := *a; *a := t + n; return t }

bool CAS(word *a, word old, word new):
atomic { t := (*a = old); if (t) *a := new; return t }

❑Test-and-set: set a value if unset. 

❑Swap: exchange values in memory locations 
with register

❑Fetch-And-Increment: increments value, 
returns previous value stored in the memory 
location

❑Fetch-And-Add: increments value with a 
constant, return value stored in the memory 
location

❑Compare-and-swap: compares the value 
stored in memory location with a given value, 
if same swaps it with new value
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Implementing a Simple Lock
acquire Lock: test-and-set R1, lock_mem

bnz R1, Lock
ret

release Unlock: st lock_mem, #0
ret
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acquire Lock:  ld R1, lock_mem
bnz R1, Lock
test-and-set R1, lock_mem
bnz R1, Lock
ret

release Unlock: st lock_mem, #0
ret

Think about cache coherence & bus transactions



Implementing a Simple Lock
acquire Lock: test-and-set R1, lock_mem

bnz R1, Lock
ret

release Unlock: st lock_mem, #0
ret

❑When lock is successfully acquired -> 1 exclusive 
read operation is done on the bus

❑When lock acquire is unsuccessful, every check 
generates an exclusive read operation on the bus

❑High number of transactions on the bus
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Implementing a Simple Lock
❑When locking is successful, 1 read and 1 
exclusive read is observed on the bus

❑When locking is unsuccessful
❑Each processor reads the value from its own 

cache with ld. Loops until lock is released 

❑O(N2) transactions on the bus
❑Each time lock is unset, all processors issue an 

exclusive access, but only 1 is successful
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acquire Lock:  ld R1, lock_mem
bnz R1, Lock
test-and-set R1, lock_mem
bnz R1, Lock
ret

release Unlock: st lock_mem, #0
ret

Is there a method or methods of locking that get better performance than Test and Test and Set lock? 



Note on Lock Performance
❑Latency 
❑Latency of operations to acquire the lock

❑1 operation in Test&Set lock

❑2 operations in Test&Test&Set lock

❑Interconnect traffic (bus requests)
❑How many requests are we generating on the bus

❑Unlimited vs O(N2) 

❑Storage cost
❑1 word for both of them

❑Fairness?
❑Every processor gets the same chance to acquire the lock?
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Reducing Implementation Complexity

word LL(word *a): 
atomic { remember a; return *a }

bool SC(word *a, word w):
atomic { t := (a is remembered, and has not been 
evicted since LL)
if (t) *a := w; return t }

❑Use 2 instructions, where the 2nd one returns 
a value from which it can be deduced whether 
the pair was executed as if atomic

❑LL: returns value of location. Remembers the 
value

❑SC: fails if contents of location have been 
changed between LL and SC
❑also fails if processor context switches between 

LL and SC

❑Can be used to implement other primitives 
like Fetch & increment
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Problem with CAS: it combines a load and a store 
into a single instruction

bool CAS(word *a, word old, word new):
atomic { t := (*a = old); if (t) *a := new; return t }



CAS with LL/SC
cas(addr, old, new):

A=LL(addr)
if (A == old){

if (SC(new, addr)) return 1; 
else return 0;

} return 0;

❑LL/SC is universal

❑Other primitive with LL/SC
❑Fetch&Add

❑Fetch&Inc etc.
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CAS ABA Problem
CAS depends on value comparison 

May introduce correctness issues
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THREAD1

pop(&top)

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)
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top A CInitial Stack:

Note: CAS compares 
the address of nodes 
not the value of a 
node!



THREAD1

pop(&top)
◦ Executes until line 6

◦ Stuck at line 7

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)
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top A CInitial Stack:

new C

old A



THREAD1

pop(&top)
◦ Executes until line 6

◦ Stuck at line 7

THREAD2

A = pop(&top)

push(&top, &B)

push(&top, &A)
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top Cnew C

old A
top A C

After:

Before:



THREAD1

pop(&top)
◦ Executes until line 6

◦ Stuck at line 7

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)
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top CB
new C

old A

top C

After:

Before:



THREAD1

pop(&top)
◦ Executes until line 6

◦ Stuck at line 7

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)
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top CBA

new C

old A

top CB

After:

Before:



THREAD1

pop(&top)
◦ Continue executing line 7

THREAD2

pop(&top)

push(&top, &B)

push(&top, &A)
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top CBAnew C

old A

old==A & top==A →
CAS successful
New top=C

top CBA

After:

Before:



Solutions
Devote part of each to-be-CAS ed word to a sequence number that is updated in pop on a 
successful CAS.

Two word long compare and swap operations  
◦ Cmpexchg16b in Intel

Re-write the code to pass a push value, and had the method allocate a new node to hold it. 
Symmetrically, pop would deallocate the node and return the value it contained.

Use LL/SC. If the memory location received invalidation, SC will fail.
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Examples of Hw. Sync. Primitives
❑IBM 370: Compare and swap instruction

❑Intel X86: Lock prefixes

❑SPARC: swap involving a register and memory

❑MIPS: LL/SC instructions

❑HEP

❑NYU Ultracomputer

❑IBM RP3

❑Illinois Cedar
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Lock Prefixes on Intel
❑Bus blocking
❑Hold the bus until load and store components are finished

❑Cache blocking
❑Get exclusive ownership of data with cache coherence
❑Prevent other processor accessing the line in the cache

❑“In the days of Intel 486 processors, the lock prefix used to assert a lock on the bus along with a 
large hit in performance. 

❑Starting with the Intel Pentium Pro architecture, the bus lock is transformed into a cache lock. 

❑A lock will still be asserted on the bus in the most modern architectures if the lock resides in 
uncacheable memory or if the lock extends beyond a cache line boundary splitting cache lines. 
❑Both of these scenarios are unlikely, so most lock prefixes will be transformed into a cache lock which is much 

less expensive.” *
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*https://software.intel.com/en-us/articles/implementing-
scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-
architectures



HEP
❑Each word in memory has Full/Empty (F/E) bit

❑Bit is tested in hardware before a RD/WR if special symbol is prepended to the var name

❑The RD/WR blocks until the test succeeds: RD until full WR until empty
❑Producer consumer type access

❑When test succeeds, the bit is set to the opposite value, indivisibly with the RD/WR
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HEP
Advantages:

◦ Very efficient for low level dependences (compare to locks)

Disadvantages:
◦ F/E bits

◦ Logic to initialize the bits

◦ Support to queue a process if test fails

◦ Logic to implement indivisible ops
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NYU Ultracomputer
Atomic Fetch & Add: 

◦ Send a message to a memory location with a constant

Advantages:
◦ Useful in certain cases: get the next iteration of a loop

◦ If the network has hardware to combine messages to the same location, primitive tolerates contentions
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Message Combining
❑Y F&A(X, v)

❑When two fetch-and-adds referencing the same shared variable, say F&A(X, e) and F&A(X,f), 
meet at a switch
❑the switch forms the sum e + f transmits the combined request F&A(X, e +f), and stores the value e in its 

local memory 

❑When the value Y is returned to the switch in response to F&A(X, e +f)
❑the switch transmits Y to satisfy the original request F&A(X, e) 

❑and transmits Y + e to satisfy the original request F&A(X,f). 
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Example
❑Initial value of X is 5

❑Two F&As are executed
❑F&A(X,3): should return 5 and update X to 

be 8

❑F&A(X,1): should return 8 and update X to 
be 9
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Combine (1,3), Store 3, 
Send F&A(X,4)

Return 5 to intermediate 
switch

Return correct values for 
original F&As

1

2

3

4



Message Combining
Advantages:

◦ Multiple requests in parallel

◦ Less traffic (scalable)

◦ Time complexity depends on the network not the number of parallel requests

Disadvantages:
◦ Very complex network

◦ Slows down the rest of the messages

◦ Complex hardware
◦ For Fetch & Add: adder in each memory module

◦ For message combining: Special, complex queuing logic at each switch in the network
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IBM RP3
Atomic Fetch & Phi:

◦ Add, And, Or, Min, Max, Store, Store if zero

◦ Hardware required: logic in the shared memory to implement the 7 atomic operations
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Illinois Cedar
Scheme to complement a vectorizing compiler 
by resolving data dependences at runtime

◦ More parallelism can be obtained from a 
program

◦ Targets data dependence in loops

Two solutions
◦ Execute outer loop in serial

◦ Distribute into two loops for S1 and S2
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On HEP
❑Mark A and B arrays to use Full/Empty bits

❑In S1, read on B sets the bit, write on A sets the bit

❑Operation of A:
❑On S1 check full/empty bit of A(I1, I2) → Is Empty?
❑ If unset write the value and set the bit 

❑On S2 check full/empty bit of A(I1-1, I2) → Is Full?
❑ If set write the value and unset the bit

❑Otherwise wait until set

CS533 SYNCHRONIZATION-1 36



Illinois Cedar
❑Assume that the synchronization is required on an array variable A. 
❑Synchronization variables: Each data element of the synchronization variable A(I)

❑General atomic instruction that operates on synchronization variables

❑Synch var is 2 words: Key and Value
❑Operations on A(I).key: regular Fetch, Store, Increment, Decrement, Increment&Fetch, 

Decrement&Fetch, and No Action.

❑Operations on A(I).value: regular Fetch, Store, and NoAction.

❑HW required: special processor at each mem module
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the paper for more examples.



Notes on Paper
Three main features:

❑A mechanism for first-come first-serve queueing. Reduces the complexity of acquiring a semaphore 
to O(N)

❑No hardware FetchAndPhi operations in hardware
❑A software combining method is proposed

❑A notify primitive implemented in hardware for global barrier completion

Assumptions of the paper: 

❑Shared memory processor with cache coherence

❑Broadcast is supported in the interconnect

❑Hardware combining is not implemented
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Synchronization Primitives and syncbits
Each memory (cache) line is associated with a syncbit

Advantages:

❑Synchronization memory allocated proportional to data memory

❑Operations on syncbits can be implemented as extensions to cache coherence

Disadvantage:

❑Syncbits are associated with a cache line. Two words requiring syncbits can’t be 
mapped to the same line
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Test&Set, Unset, 
Queue_on_Syncbit(QOSB)
QOSB: non-blocking operation on syncbit address that adds the issuing processor to the syncbit
queue

Executes QOSB instruction before Test&Set operations

❑If requesting processor is not in the queue, adds it to the queue

❑Processor spins on Test&Set locally

❑When syncbit is unset (head of the queue removed), next processor waiting in the queue is 
notified

Broadcast Notify: A restricted write broadcast to eliminate hotspot contention

Fetch-and-Phi: software combining method is used
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Hardware Extensions/Operations for 
QOSB
QOSB instruction performs two operations

◦ It allocates space for a shadow copy of the line in the local cache with the shadow syncbit set. Allocates 
an entry in the queue

◦ It performs a remote access for getting exclusive copy of the data

◦ If a shadow copy exists in the local cache, no remote accesses performed

Two additional cache state
◦ Shadow: invalid copy in the queued processors

◦ Sticky: valid copy at the head of the queue

◦ In memory data invalid state
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Interaction with Primitives
When a processor holding the line receives a QOSB

◦ Requesting processor is queued 

◦ Note that shadow lines are invalid, data space for shadow lines can be used to keep track of pointers for 
the next element in the queue

◦ Note that memory line is invalid, memory line can be used to store head pointer

Test&Set:
◦ Fail if a local shadow copy exists

Unset:
◦ It removes the head of queue. 

◦ Initiate transfer for the next element in the queue
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