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ABSTRACT
Barriers, locks, and flags are synchronizing operations widely used
by programmers and parallelizing compilers to produce race-free
parallel programs. Often times, these operations are placed subop-
timally, either because of conservative assumptions about the pro-
gram, or merely for code simplicity.

We propose Speculative Synchronization, which applies the phi-
losophy behind Thread-Level Speculation (TLS) to explicitly par-
allel applications. Speculative threads execute past active barriers,
busy locks, and unset flags instead of waiting. The proposed hard-
ware checks for conflicting accesses and, if a violation is detected,
the offending speculative thread is rolled back to the synchronization
point and restarted on the fly. TLS’s principle of always keeping a
safe threadis key to our proposal: in any speculative barrier, lock, or
flag, the existence of one or more safe threads at all times guarantees
forward progress, even in the presence of access conflicts or specula-
tive buffer overflow. Our proposal requires simple hardware and no
programming effort. Furthermore, it can coexist with conventional
synchronization at run time.

We use simulations to evaluate 5 compiler- and hand-parallelized
applications. Our results show a reduction in the time lost to syn-
chronization of 34% on average, and a reduction in overall program
execution time of 7.4% on average.

1 INTRODUCTION
Proper synchronization between threads is crucial to the correct ex-
ecution of parallel programs. Popular synchronization operations
used by programmers and parallelizing compilers include barriers,
locks, and flags. For example, parallelizing compilers typically use
global barriers to separate sections of parallel code. Also, program-
mers frequently use locks and barriers in the form of M4 macros [22]
or OpenMP directives [5] to ensure that codes are race-free.
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Often times, synchronization operations are placed conserva-
tively. This happens when the programmer or the compiler cannot
determine whether code sections will be race-free at run time. For
example, data may be accessed through a hashing function where
conflicts are only occasional. Conservative synchronization may
also be used for simplicity, if disambiguation is possible but requires
an effort that the programmer or the compiler cannot afford. Unfor-
tunately, conservative synchronization may come at a performance
cost when it stalls threads unnecessarily. In these cases, we would
like threads to execute the synchronized code without stalling.

Recent research in Thread-Level Speculation (TLS) has proposed
mechanisms for optimistically executing nonanalyzable serial codes
in parallel (e.g. [4, 10, 12, 19, 23, 31]). Under TLS, special sup-
port checks for cross-thread dependence violations at run time, and
forces offending speculative threads to squash and restart on the fly.
At all times, there is at least one safe thread. While speculative
threads venture into unsafe program sections, the safe thread exe-
cutes code nonspeculatively. As a result, even if all the speculative
work is useless, forward progress is guaranteed by the safe thread.

In this paper, we propose Speculative Synchronization, which ap-
plies the philosophy behind TLS to explicitly parallel (rather than
serial) applications. Speculative threads go past active barriers, busy
locks, and unset flags instead of waiting. The hardware monitors for
conflicting accesses. If a violation is detected, the offending specu-
lative thread is rolled back to the synchronization point and restarted
on the fly.

TLS’s principle of always keeping a safe thread is key to our pro-
posal. In any speculative barrier, lock, or flag, the existence of one
or more safe threads at all times guarantees forward progress, even
in the presence of access conflicts and speculative buffer overflow.
This fact, plus the support for speculative barriers and flags, sets our
proposal apart from lock-free optimistic synchronization schemes of
similar hardware simplicity, such as Transactional Memory [16] and
Speculative Lock Elision [27]. In these schemes, which only ap-
ply to critical sections, the speculative mechanism by itself does not
guarantee forward progress (Section 7).

Speculative Synchronization requires simple hardware: one bit
per line and some simple logic in the caches, plus support for regis-
ter checkpointing. Moreover, by retargeting high-level synchroniza-
tion constructs to use this hardware (e.g. M4 macros or OpenMP
directives), Speculative Synchronization can be made transparent to
programmers and parallelizing compilers. Finally, Speculative Syn-
chronization is fully compatible with conventional synchronization
and can coexist with it at run time.

Overall, our evaluation of 5 compiler- and hand-parallelized ap-
plications shows promising results: the time lost to synchronization
is reduced by 34% on average, while the overall program execution
time is reduced by 7.4% on average.

This paper is organized as follows: Section 2 outlines the con-



cept of Speculative Synchronization; Section 3 describes its imple-
mentation and Section 4 its software interface; Section 5 presents
the evaluation environment and Section 6 the evaluation itself; Sec-
tion 7 compares our approach to two relevant lock-free optimistic
synchronization schemes, and proposes Adaptive Speculative Syn-
chronization; finally, Section 8 describes other related work.

2 CONCEPT

2.1 Thread-Level Speculation
TLS extracts speculative threads from serial code and submits them
for execution in parallel with a safe thread. Speculative threads ven-
ture into unsafe program sections. The goal is to extract parallelism
from the code.

TLS is aware of the order in which such program sections would
run in a single-threaded execution. Consequently, threads are as-
signed epoch numbers, where the lowest one corresponds to the safe
thread. As threads execute, the hardware checks for cross-thread de-
pendence violations. For example, if a thread reads a variable and,
later on, another thread with a lower epoch number writes it, a true
dependence has been violated. In this case, the offending reader
thread is squashed and restarted on the fly. In many TLS systems,
name dependences never cause squashes.

Speculative threads keep their unsafe memory state in buffers; in
many TLS proposals, processor caches fulfill this role. If a thread is
squashed, its memory state is discarded. If, instead, all the thread’s
predecessors complete successfully, the thread becomes safe. Then,
it can merge its memory state with that of the system.

When the memory state of a speculative thread is about to over-
flow its buffer, the thread simply stalls. It will either resume execu-
tion when all its predecessors complete successfully, or restart from
the beginning if it gets squashed before then. However, the safe
thread never gets squashed due to dependences or buffer overflow.
Therefore, forward progress of the application is guaranteed.

2.2 Speculative Synchronization
Speculative Sychronization applies TLS’s concepts to explicitly par-
allel (rather than serial) codes. The goal is to enable extra concur-
rency in the presence of conservatively placed synchronization and,
sometimes, even when data access conflicts between threads do ex-
ist. To attack the problem, we limit the scope of TLS’s concepts in
two ways. First, we do not support any ordering among speculative
threads; instead, we use a single epoch number for all of them. Sec-
ond, in addition to true dependences, we trigger a squash even when
name dependences are violated across threads. These two limita-
tions simplify the hardware substantially.

Under Speculative Sychronization, threads are allowed to spec-
ulatively execute past active barriers, busy locks, and unset flags.
Under conventional synchronization, such threads would be wait-
ing; now they are allowed to execute unsafe code. However, every
lock, flag, and barrier has one or more safethreads: in a lock, the
lock owner is safe; in a flag, the producer is safe; in a barrier, the
lagging threads are safe. Safe threads cannot get squashed or stall
due to speculation. Therefore, forward progress of the application is
guaranteed.

A synchronized region is concurrently executed by safe and spec-
ulative threads, and the hardware checks for cross-thread depen-
dence violations. As in TLS, as long as dependences are not vio-
lated, threads are allowed to proceed. Access conflicts between safe
and speculative threads are not violations if they happen in order,
i.e. the access from the safe thread happens before the access from
the speculative one. Any out-of-orderconflict between a safe and a
speculative thread causes the squashing of the speculative thread and

its rollback to the synchronization point. No ordering exists among
speculative threads; thus, if two speculative threads issue conflict-
ing accesses, one of them is squashed and rolled back to the syn-
chronization point. Overall, since safe threads can make progress
regardless of the success of speculative threads, performance in the
worst case is still in the order of conventional synchronization.

Speculative threads keep their memory state in caches until they
become safe. When a speculative thread becomes safe, it commits
(i.e., makes visible) its memory state to the system. The circum-
stances under which a speculative thread becomes safe differ be-
tween locks, flags, and barriers; we explain this next. Finally, if the
cache of a speculative thread is about to overflow, the thread stalls
and waits to becomes safe.

In the following, we limit our discussion to deadlock-free paral-
lel codes; codes that can deadlock at run time are out of our scope.
Furthermore, without loss of generality, we assume a release con-
sistency model. Adapting to stricter models is trivial. Moreover,
Speculative Sychronization remains equally relevant in these mod-
els because barriers, locks, and flags are widely used in all cases.

2.3 Speculative Locks
Among the threads competing for a speculative lock, there is always
one safe thread—the lock owner. All other contenders venture into
the critical section speculatively. Figure 1(a) shows an example of
a speculative lock with five threads. Thread A found the lock free
and acquired it, becoming the owner. Thread A is, therefore, safe.
Threads B, C, and E found the lock busy and proceeded into the
critical section speculatively. Thread D has not yet reached the ac-
quire point and is safe.

The existence of a lock owner has implications. The final out-
come has to be consistent with that of a conventional lock in which
the lock owner executes the critical section atomically beforeany
of the speculative threads. (In a conventional lock, the speculative
threads would be waiting at the acquire point.) On the one hand, this
implies that it is correct for speculative threads to consume values
produced by the lock owner. On the other hand, speculative threads
cannot commit while the owner is in the critical section. In the fig-
ure, threads B and E have completed the critical section and are
executing code past the release point,1 and C is still inside the criti-
cal section. All three threads remain speculative as long as A owns
the lock.
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Figure 1: Example of a speculative lock (a) and barrier (b).
Dashed and solid circles denote speculative and safe threads,
respectively.

Eventually, the lock owner (thread A) completes the critical sec-
tion and releases the lock. At this point, the speculative threads that
have also completed the critical section (threads B and E) can im-
mediately become safe and commit their speculative memory state.

1The fact thatB andE have completed the critical section is remembered
by the hardware. We describe the implementation in detail later.



They do so without acquiring the lock. This is race-free because
these threads have completely executed the critical section and did
not have conflicts with the owner or other threads. On the other hand,
the speculative threads still inside the critical section (only thread C
in our case) compete for ownership of the lock. One of them ac-
quires the lock, also becoming safe and committing its speculative
memory state. The losers remain speculative.

The action after the release is semantically equivalent to the fol-
lowing scenario under a conventional lock: after the release by the
owner, all the speculative threads past the release point, one by one
in some nondeterministic order, execute the critical section atom-
ically; then, one of the threads competing for the lock acquires
ownership and enters the critical section. In Figure 1(a), this cor-
responds to a conventional lock whose critical section is traversed in
(A;B;E;C) or (A;E;B;C) order.

2.4 Speculative Flags and Barriers
Flags and barriers are one-to-many and many-to-many synchroniza-
tion operations, respectively. Flags are variables produced by one
thread and consumed by others. Under conventional synchroniza-
tion, consumers test the flag and proceed through only when it re-
flects permission from the producer. Under Speculative Synchro-
nization, a flag whose value would normally stall consumer threads,
instead allows them to proceed speculatively. Such threads remain
speculative until the right flag value is produced, at which point they
all become safe and commit their state. Forward progress is guaran-
teed by the producer thread remaining safe throughout.

Conceptually, barriers are equivalent to flags where the pro-
ducer is the last thread to arrive. Under Speculative Synchroniza-
tion, threads arriving to a barrier become speculative and continue
(threadsG and I in Figure 1(b)). Threads moving toward the barrier
remain safe (threads F and H) and, therefore, guarantee forward
progress. When the last thread reaches the barrier, all speculative
threads become safe and commit their state.

3 IMPLEMENTATION
Speculative Synchronization is supported with simple hardware that
we describe in this section. In the following, we start by describing
the main hardware module. After that, we explain in detail how
it works for single and multiple locks first, and then for flags and
barriers.

3.1 Speculative Synchronization Unit
The main module that we use to support Speculative Synchroniza-
tion is the Speculative Synchronization Unit (SSU). The SSU con-
sists of some storage and some control logic that we add to the cache
hierarchy of each processor in a shared memory multiprocessor. The
SSU physically resides in the on-chip controller of the local cache
hierarchy, typically L1+L2 (Figure 2). Its function is to offload from
the processor the operations on one synchronization variable, so that
the processor can move ahead and execute code speculatively.

The SSU provides space for one extra cache line at the L1 level,
which holds the synchronization variable under speculation. This
extra cache line is accessible by local and remote requests. However,
only the SSU can allocate it. The local cache hierarchy (L1+L2 in
Figure 2) is used as the buffer for speculative data. To distinguish
data accessed speculatively from the rest, the SSU keeps one Spec-
ulativebit per line in the local cache hierarchy. The Speculative bit
for a line is set when the line is read or written speculatively. Lines
whose Speculative bit is set cannot be displaced beyond the local
cache hierarchy.

The SSU also has two state bits called Acquireand Release. The
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Figure 2: The shaded areas show the Speculative Synchro-
nization Unit (SSU) in a two-level cache hierarchy. The SSU
consists of a Speculative (S) bit in each conventional line in
the caches, an Acquire (A) and a Release (R) bit, an extra
cache line, and some logic.

Acquire and Release bits are set if the SSU has a pending acquire
and release operation, respectively, on the synchronization variable.
Speculative, Acquire, and Release bits may only be set if the SSU is
active, i.e. it is handling a synchronization variable. When the SSU
is idle, all these bits remain at zero.

Overall, we can see that the SSU storage requirements are mod-
est. For a 32KB L1 cache and a 1MB L2 cache with 64B lines, the
SSU needs about 2KB of storage.

3.2 Supporting Speculative Locks
To describe how the SSU works for locks, we examine lock request,
lock acquire, lock release, access conflict, cache overflow, and ex-
posed SSUoperation.

3.2.1 Lock Request

While we can use different primitives to implement a lock ac-
quire operation, without loss of generality, in this paper we use
Test&Test&Set (T&T&S). Figure 3 shows a T&T&S loop on lock
loc1. In the example and in the rest of the paper, a zero value means
that the lock is free.

L:ld $1,loc1  ; S1 
bnz $1,L    ; S2 
t&s $1,loc1 ; S3 
bnz $1,L    ; S4 

Figure 3: Example of Test&Test&Set operation.

When a processor reaches an acquire, it invokes a library proce-
dure (Section 4) that issues a request to the SSU with the address of
the lock. At this point, SSU and processor proceed independently as
follows:

SSU Side

The SSU sets its Acquire and Release bits, fetches the lock variable
into its extra cache line, and initiates a T&T&S loop on it to ob-
tain lock ownership (Figure 3). If the lock is busy, the SSU keeps
spinning locally on it until the lock is updated externally and a co-
herence message is received. (In practice, the SSU need not actually
“spin”—since it sits in the cache controller, it can simply wait for
the coherence message before retrying.)



Processor Side

As in TLS, in order to allow quick rollback of squashed threads,
we need to checkpoint the architectural register state at the begin-
ning of the speculative section. We envision this to be done with a
checkpoint mark or instruction that backs up the architectural regis-
ter map [35], or the actual architectural register values.2 The check-
point instruction is included in the library procedure for acquire
(Section 4), right after the request to the SSU. No flushing of the
pipeline is needed.

The processor continues execution into the critical section. Mem-
ory system accesses by the processor after the acquire in program
order are deemed speculative by the SSU for as long as the Acquire
bit is set. The SSU must be able to distinguish these accesses from
those that precede the acquire in program order. One conservative
method to ensure this is to insert a memory fence prior to perform-
ing the checkpoint. Unfortunately, such an approach, while correct,
would have too high a performance cost.

Instead, we use processor hints similar to the way ASI address
tags extend memory addresses issued by SPARC processors [33].
In our case, we only need a single bit, which we call the Processor
Tag, or P-Tagbit. The P-Tag bit is issued by the processor along
with every memory address, and is fed into the SSU (Figure 2). Our
checkpointing instruction is enhanced to also reverse the P-Tag bit
of all memory operations that follow it in programorder. This way,
the processor can immediately proceed to the critical section and
the SSU can still determine which memory accesses are before and
which are after the checkpoint in program order. The SSU then sets
the Speculative bit only for lines whose accesses have been tagged
appropriately by the P-Tag bit. Note that this mechanism does not
impose any restriction in the order in which the processor issues
accesses to memory.

With this support, cache lines accessed speculatively are marked
without affecting performance. Note that when a thread performs a
first speculative access to a line that is dirty in any cache, including
its own, the coherence protocol must write back the line to memory.
This is necessary to keep a safe copy of the line in main memory.
It also enables the conventional Dirty bit in the caches to be used in
combination with the Speculative bit to mark cache lines that have
been speculatively written.

At any time, if the thread is squashed (Section 3.2.4), the proces-
sor completes any nonspeculative work, flushes the pipeline, flash-
invalidates all dirty cache lines with the Speculative bit set, flash-
clears all Speculative bits, and restores the checkpointed register
state. To perform the flash-invalidate and flash-clear operations, we
need special hardware that does each of them in at most a few cycles.
More details are given in Section 3.2.4.

3.2.2 Lock Acquire

The SSU keeps “spinning” on the lock variable until it reads a zero.
At this point, it attempts a T&S operation (statement S3in Figure 3).
If the operation fails, the SSU goes back to the spin-test. However, if
the T&S succeeds, the local processor becomes the lock owner. This
is the case for thread C in the example of Section 2.3 after thread A
releases the lock. In this case, the SSU completes action: it resets the
Acquire bit and flash-clears all Speculative bits, effectively turning
the thread safe and committing all cached values. At this point, the
SSU becomes idle. Other SSUs trying to acquire the lock will read
that the lock is owned.

There is one exception to this mechanism when, at the time the
lock is freed by the owner, the speculative thread has already com-
pleted its critical section. We address this case next.

2Backing up architectural register values could be done in a handful of
cycles and would free up potentially valuable renaming registers.

3.2.3 Lock Release

The processor executes a release store to the synchronization vari-
able when all the memory operations inside the critical section have
completed.3 Under Speculative Synchronization, if the lock has al-
ready been acquired by the SSU and, therefore, the SSU is idle, the
release store completes normally. If, instead, the SSU is still trying
to acquire ownership for that lock, the SSU intercepts the release
store and takes notice by clearing its Release bit. This enables the
SSU to remember that the critical section has been fully executed by
the speculative thread. We call this event Release While Speculative.
Then, the SSU keeps spinning for ownership because the Acquire bit
is still set. Note that the execution of the speculative thread is not
disrupted.

In general, when the SSU reads that the lock has been freed ex-
ternally, before attempting the T&S operation, it checks the Release
bit. If the Release bit is still set, the SSU issues the T&S operation
to compete for the lock, as described in Section 3.2.2. If, instead, the
bit is clear, the SSU knows that the local thread has gone through a
Release While Speculative operation and, therefore, has completed
all memory operations prior to the release. As a result, the SSU
can aggressively pretendthat ownership is acquired and released in-
stantly. Therefore, the Acquire bit is cleared, all the Speculative bits
are flash-cleared, and the SSU becomes idle. In this case, the thread
has become safe without ever performing the T&S operation. This
is the action taken by threadsB and E in the example of Section 2.3
after thread A releases the lock.

As indicated in Section 2.3, this optimization is race-free since:
(1) the Release bit in the speculative thread is cleared only after all
memory operations in the critical section have completed without
conflict, and (2) a free lock value indicates that the previous lock
owner has completed the critical section as well. If, at the time the
speculative thread is about to become safe, an incoming invalidation
is in flight from a third processor for a line marked speculative, two
things can happen: If the invalidation arrives before the speculative
thread has committed, the thread is squashed. This is suboptimal,
but correct. Alternatively, if the thread has already committed, the
invalidation is serviced conventionally.

3.2.4 Access Conflict

The underlying cache coherence protocol naturally detects access
conflicts. Such conflicts manifest in a thread receiving an external
invalidation to a cached line, or an external read to a dirty cached
line.

If such external messages are received by lines not marked Specu-
lative, they are serviced normally. In particular, messages to the lock
owner or to any other safe thread never result in squashes, since none
of their cache lines is marked Speculative. Note that the originator
thread of such a message could be speculative; in this case, by nor-
mally servicing the request, we are effectively supporting in-order
conflicts from a safe to a speculative thread without squashing.

On the other hand, if a speculative thread receives an external
message for a line marked Speculative, the conflict is resolved by
squashing the receiving thread. The originator thread may be safe or
speculative. If the former, an out-of-orderconflict has taken place,
and thus the squash is warranted.4 If the latter, we squash the re-
ceiving thread, since our proposal does not define an order between
speculative threads. In any case, the originator is never squashed.

Once triggered, the squash mechanism proceeds as follows: The
SSU flash-invalidates all dirty cache lines with the Speculative bit

3Of course, by this time, under both conventional and Speculative Syn-
chronization, the processor may have executed code past the release point.

4More sophisticated hardware could disambiguate out-of-order name de-
pendences, and potentially avoid the squash. As indicated in Section 2.2, we
choose not to support it for simplicity.



set, flash-clears all Speculative bits and, if the speculative thread had
past the release point, it sets the Release bit again. In addition, the
SSU forces the processor to restore its checkpointed register state. In
this way, the thread quickly rolls back to the acquire point. The flash
invalidation is simply a flash clear of the Valid bit, qualified with the
Speculative and Dirty bits (NAND gating). Finally, note that we do
not invalidate cache lines that have been speculatively read but not
modified, since they are coherent with main memory.

If the squash was triggered by an external read to a dirty specu-
lative line in the cache, the node replies without supplying any data.
The coherence protocol then regards the state for that cache line as
stale, and supplies a clean copy from memory to the requester. This
is similar to the case in conventional MESI protocols where a node
is queried by the directory for a clean line in state Exclusive that was
silently displaced from the cache.

3.2.5 Cache Overflow

Cache lines whose Speculative bit is set cannot be displaced beyond
the local cache hierarchy, because they record past speculative ac-
cesses. Moreover, if their Dirty bit is also set, their data is unsafe.
If a replacement becomes necessary at the outermost level of the
local cache hierarchy, the cache controller tries to select a cache
line not marked speculative. If no evictable candidate is found, the
node stalls until the thread is granted ownership of the lock or it is
squashed. Stalling does not jeopardize forward progress, since there
always exists a lock owner. The lock owner will eventually release
the lock, and the node whose SSU then gains ownership (and any
speculative thread that had gone through a Release While Specula-
tive operation on that lock) will be able to handle cache conflicts
without stalling. Safe threads do not have lines marked speculative
and, therefore, replace cache lines on misses as usual.

3.2.6 Exposed SSU

At times it may be best not to allow threads to speculate beyond
a certain point. This can happen, for example, if a certain access
is known to be irreversible (e.g. I/O) or to cause conflicts. In this
case, the programmer or parallelizing compiler can force the spec-
ulative thread to spin-wait on the SSU state until it becomes idle
(Section 4). Thus, the thread will wait until it either becomes safe or
gets squashed. Naturally, if the SSU is already idle, no spinning will
take place. We call this action exposing the SSUto the local thread.
In general, although we envision Speculative Synchronization to be
transparent to the programmer and the compiler in practically all
cases (Section 4), it is important to provide a mechanism for the
software to have this capability.

3.3 Supporting Multiple Locks
Speculative threads may meet a second acquire point. This can hap-
pen if there are nested locks or several consecutive critical sections.
One approach for these two cases is to expose the SSU to the thread
prior to attempting the second acquire. However, a more aggressive
approach can avoid unnecessary stalls.

Upon receiving a lock acquire request from the processor (Section
3.2.1), the SSU checks its Acquire bit. If it is clear, the SSU is idle
and can service the request as usual. If the SSU is busy, we first
consider the more general case where the acquire request is for a
lock variable different from the one currently being handled by the
SSU. In this case, the SSU rejects the request, no checkpointing is
done, and the speculative thread itself handles the second lock using
ordinary T&T&S code. No additional support is required.

Handling the second lock using ordinary T&T&S code is correct
because, since the thread is speculative, accesses to that lock variable
are also considered speculative. Upon the thread reading the value

of the lock, the line is marked speculative in the cache. If the lock is
busy, the thread spins on it locally. If it is free, the thread takes it and
proceeds to the critical section; however, the modification to the lock
is contained in the local cache hierarchy, since this is a speculative
access. The lock is treated as any other speculative data.

There are two possible final outcomes to this situation. On the
one hand, the thread could get squashed. This will occur if there is a
conflict with another thread on any cached line marked speculative,
including the one that contains the second lock variable itself. In this
case, the squash procedure will roll back the thread to the acquire of
the first lock (the one handled by the SSU). As usual, all updates
to speculative data will be discarded. This includes any speculative
update to the second lock variable.

On the other hand, the SSU may complete action on the first lock
and render the thread safe. As always, this commits all speculatively
accessed data—including the second lock itself. If the thread was
originally spinning on this second lock, it will continue to do so
safely. Otherwise, any action taken speculatively by the thread on
the second lock (acquire and possibly release) will now commit to
the rest of the system. This is correct because, if any other thread
had tried to manipulate the second lock, it would have triggered a
squash.

Finally, there is a special case when the second acquire is to the
same lock variable as the one already being handled by the SSU. In
this case, the SSU holds the request until the thread becomes safe, or
until it completes execution of the first critical section (and the SSU
clears the Release bit), whichever is first. If the former, the SSU
completes action as usual and then accepts the new acquire request.
If the latter (case of Release While Speculative in Section 3.2.3), the
SSU simply sets again the Release bit and accepts the acquire re-
quest. This way, the SSU effectively merges the two critical sections
into a single one. In this case, a second checkpoint is not performed.
When the thread eventually commits, it will do so for both critical
sections at once. On the other hand, if the thread gets squashed, it
will roll back to the first (checkpointed) acquire.

3.4 Speculative Flags and Barriers
To implement speculative flags, we leverage the Release While
Speculative support in speculative locks (Section 3.2.3). Recall that,
in such a scenario, the SSU of the speculative thread is left with the
Release bit clear, and spinning until the lock is set by the owner to
the free value. When the lock is set to the free value, the speculative
thread becomes safe immediately, without the SSU ever perform-
ing T&S (since the Release bit is clear). This mechanism exactly
matches the desired behavior of a thread that speculatively executes
past an unset flag.

Consequently, on a speculative flag read, the SSU acts exactly as
in the case of a speculative lock request, except that the Release bit is
kept clear to allow Test but not T&S. The processor is allowed to go
past the unset flag speculatively. Naturally, unlike in a speculative
lock, in the event of a squash, the Release bit is not set back. We
explain later in Section 4 that, as part of a speculative flag request,
the thread supplies the “pass” value of the flag to the SSU.

It is possible that a thread speculating past a flag may try to access
the same flag again. The SSU handles this situation by simply hold-
ing up such an access, until the speculative thread either becomes
safe or gets squashed.

Barriers are often implemented using locks and flags as illustrated
in Figure 4 [13]. Since the SSU can implement both speculative
locks and flags, support for speculative barriers comes for free.

Under conventional synchronization, a thread arriving early to a
barrier updates barrier counter count and waits spinning on state-
ment S2. The counter update is in a critical section protected by
lock c. Under Speculative Synchronization, it is inadvisable for a



lock(c);
count++; // increment count

unlock(c);
}

unlock(c);

local_f = !local_f;

}

else { // not last one

if(count==total) { // last one

while(f != local_f); // spin (S2)

count = 0; // reset count
f = local_f; // toggle (S1)

Figure 4: Example of bit-reversal barrier code.

thread to enter this critical section while its SSU is busy, since a sec-
ond thread arriving at the barrier will surely cause conflicts on both
the lock and the counter, forcing a rollback of the first thread if it is
still speculative—all the way to the synchronization point handled
by its SSU. Even if the thread arrives at the barrier in a safe state,
the critical section is so small that it is preferable to reserve the SSU
for the upcoming flag spin in statement S2. Consequently, threads
execute this critical section conventionally and speculate on the flag.

To support this behavior, our library code for barriers (Section 4)
exposes the SSU to the thread before attempting to acquire c, so that
speculative threads have a chance to become safe and commit their
work. Then, conventional synchronization is used to acquire and
release c. Finally, when the thread reaches the flag spin (statement
S2), it issues a speculative flag request and proceeds past the barrier
speculatively. Later on, as the last thread arrives and toggles the flag
(statement S1), all other threads become safe and commit.

3.5 Other Issues
There are a few other related issues that we briefly consider:
Support for Multiprogramming. In a multiprogrammed environ-
ment, the operating system may preempt some of the threads of an
application. When a speculative thread is preempted, it is squashed
and the local SSU is freed up. Any new thread that runs on that pro-
cessor can use the SSU. When the first thread is finally rescheduled
somewhere, it resumes from the synchronization point. On the other
hand, safe threads are handled as in a conventional system; in par-
ticular, they are never squashed in a context switch. Finally, since
Speculative Synchronization is esentially a lock-based technique, it
may exhibit convoying under certain scheduling conditions. We ad-
dress this issue in Section 7.
Exception Handling. When a speculative thread suffers an excep-
tion, there is no easy way of knowing whether the cause was legit-
imate; it could be due to consuming incorrect values speculatively.
Consequently, the speculative thread is rolled back in all cases.
False Sharing. Since our implementation uses the memory line
as the unit of coherence, false sharing may cause thread squashes.
However, our implementation will benefit from the many existing
techniques that reduce false sharing. Any such technique that re-
quires per-word state in the caches will also require per-word Spec-
ulative bits.
Other Synchronization Primitives. While our discussion has as-
sumed the use of T&T&S, the SSU can be adapted to support other
types of synchronization primitives. For example, it could support
scalable primitives such as queue-based locks—in this case, each
SSU would spin on its own location in the queue, until the content
is flipped by the predecessor SSU in the queue. In general, each
synchronization primitive may have different operational and per-
formance implications. Further analysis of this issue is the subject
of future work.

3.6 Summary
The proposed implementation of Speculative Synchronization has
three key characteristics:

1. It supports speculative execution of barriers, flags, and locks in a
unified manner.
2. One or more safe threads exist at all times. Safe threads are never
squashed due to access conflicts or stalled due to cache overflow.
Thus, the performance in the worst case is typically in the same order
as conventional synchronization. Furthermore, all in-order conflicts
from safe threads to speculative threads are tolerated.
3. It is compatible with conventional synchronization: legacy code
that uses conventional synchronization can be run simultaneously
with Speculative Synchronization code in the same program.

The implementation also has several additional good aspects.
First, the hardware required is simple. Second, under the right condi-
tions (Release While Speculative case), speculative threads can com-
mit the execution of a critical section without ever having to acquire
the lock. Third, conflicting accesses are detected on the fly, and of-
fending threads are squashed and eagerly restarted. Fourth, commit
and squash operations take approximately constant time, irrespective
of the amount of speculative data or the number of processors. Fi-
nally, situations involving multiple locks are handled transparently,
without unnecessarily stalling, and at no extra cost.

4 SOFTWARE INTERFACE
Explicit high-level synchronization constructs, e.g. M4 macros and
OpenMP directives, are widely used by programmers and paralleliz-
ing compilers to produce parallel code. These synchronization con-
structs provide an opportunity to enable Speculative Synchroniza-
tion transparently. Specifically, we retarget such constructs to en-
capsulate calls to SSU library procedures. Such library procedures
access the SSU via a set of memory-mapped registers. The SSU
library comprises three procedures:

ssu lock(addr) requests a lock acquire operation on variable addr.
If the SSU accepts the request, the processor performs a register
checkpoint (Section 3.2.1) and the SSU initiates the lock acquire. In
this case, the procedure returns a nonzero value. If, instead, the SSU
rejects the request, typically because the SSU is already busy with
another variable, the procedure returns a zero.

ssu spin(addr,value) requests a spin operation on variable addr,
where valueis the “pass” value. If the SSU accepts the request, the
processor performs a register checkpoint and the SSU initiates the
spin. As before, the procedure returns a nonzero value. Similarly as
before, if the SSU rejects the request, the procedure returns a zero.

ssu idle() returns zero if the SSU is busy, or a nonzero value if it is
idle and therefore available.

These library procedures are enough to build macros for specu-
lative locks, flags, and barriers. Consider Table 1, which shows an
example of conventional M4 macros on the left side. The right side
shows the corresponding speculative M4 macros. The two groups of
macros are very similar. The differences are shown in bold face.

The speculative lock (SS LOCK) and speculative spin (SS SPIN)
macros first try to utilize the SSU, but they revert to the conventional
macros (LOCK, SPIN) if the request is rejected. The conventional
macro for barriers (BARRIER) uses the typical bit-reversal code. The
speculative version (SS BARRIER), first calls a new macro to expose
the SSU (SS EXPOSE). The SSU is exposed to guarantee safe state
before continuing (Section 3.4). Then, the counter is updated using
conventional locking. Finally, the spin is attempted using the SSU.



  LOCK($1.lock)
  $1.c++;
  if($1.c == NUMPROC) {
    $1.c = 0;
    $1.f = $1.lf[PID];
    UNLOCK($1.lock)

    UNLOCK($1.lock)
    SPIN($1.f,$1.lf[PID])
  }}’)

  } else {

BARRIER(‘{

UNLOCK(‘{

LOCK(‘{

  unlock($1);}’)

  lock($1);}’)

SPIN(’{
  while($1 != $2);}’)

  $1.lf[PID] = !$1.lf[PID];
SS_BARRIER(‘{
  $1.lf[PID] = !$1.lf[PID];
  SS_EXPOSE
  LOCK($1.lock)
  $1.c++;
  if($1.c == NUMPROC) {
    $1.c = 0;
    $1.f = $1.lf[PID];
    UNLOCK($1.lock)
  } else {
    UNLOCK($1.lock)
    SS_SPIN($1.f,$1.lf[PID])
  }}’)

SS_LOCK(‘{

    LOCK($1)}’)

SS_UNLOCK(‘{
  UNLOCK($1)}’)

  if(!ssu_lock($1))

SS_SPIN(‘{

    SPIN($1,$2)}’)
  if(!ssu_spin($1,$2))

  while(!ssu_idle());}’)
SS_EXPOSE(‘{

Conventional M4 Macros (Existing) Speculative M4 Macros (Proposed)

Table 1: Example M4 macros for conventional synchroniza-
tion operations and their corresponding speculative ones. The
barrier code uses the typical bit-reversal technique. The dif-
ferences are shown in bold face.

The programmer can enable Speculative Synchronization by sim-
ply using these macros instead of the conventional ones. Likewise,
parallelizing compilers can be trivially enhanced to generate code
with Speculative Synchronization. Indeed, a compilation switch can
be used to generate code with speculative macros (typically barriers)
rather than with conventional ones.

In summary, Speculative Synchronization has a clean, lean soft-
ware interface for both programmers and parallelizing compilers.
Legacy codes can run because conventional synchronization is still
fully functional. In fact, both types of synchronization can coexist
at run time in a program.

5 EVALUATION ENVIRONMENT
To evaluate Speculative Synchronization, we use simulations driven
by several parallel applications. In this section, we describe the ma-
chine architecture modeled and the applications executed.

5.1 Architecture Modeled
We use an execution-driven simulation framework [18] to model in
detail a CC-NUMA multiprocessor with 16 or 64 nodes. The system
uses the release memory consistency model and a cache coherence
protocol along the lines of DASH [21]. Each node has one proces-
sor and a two-level hierarchy of write-back caches. The processor
is a 4-issue out-of-order superscalar with register renaming, branch
prediction, and nonblocking memory operations. The cache sizes
are kept small to capture the behavior that real-size input data would
exhibit on actual machines, as suggested in [34]; larger cache sizes
would generally favor Speculative Synchronization because fewer
overflow-induced stalls would occur. Shared data pages are placed
round-robin in the memory modules, while private data pages are
allocated locally. Table 2 lists the main parameters of the architec-
ture. All traffic and resource contention are modeled in detail except
for contention at the network routers, where a constant delay is as-
sumed. We conservatively assess a 15-cycle penalty for a checkpoint
of architectural registers.

LD/ST
ALU
Issue
Processor

2048−entry 2−bit saturating counter
2 units, 16 LD, 16 ST
3 integer, 2 floating point
4−issue dynamic, 128−entry ROB
1GHz

Branch Prediction
Branch Penalty 7 cycles

Cache RT: L1, L2
Main Memory
Memory Bus
L2 Cache
L1 Cache
Memory

2ns, 12ns
100MHz SDRAM, interleaved, 60ns row miss
250MHz, split transaction, 16B width
500MHz, 256(64)KB, 64B lines, 8−way
1GHz, 16KB, 64B lines, 2−way
CC−NUMA, MESI protocol

Mem. RT: Local, Neighbor95ns, 175ns

Configuration

Pin−to−Pin Latency
Router
Network

16(64) processors
16ns
16ns
250MHz, pipelined
Hypercube, VCT routing

Endpoint (un)Marshaling

Table 2:Architecture modeled in the simulations. In the ta-
ble, RT stands for minimum round trip latency from the pro-
cessor. The number of processors and the L2 cache size in
parentheses correspond to the SPLASH-2 applications.

5.2 Applications Executed
We use five parallel applications from three suites that have differ-
ent characteristics. They are: one compiler-parallelized SPECfp95
application (APPLU); two Olden [3] codes annotated for paral-
lelization (Bisort and MST); and two hand-parallelized SPLASH-
2 [34] applications (Ocean and Barnes). These applications syn-
chronize using locks and barriers. In particular, APPLU and Bisort
are barrier-only codes, while all others use both locks and barriers.
Table 3 summarizes the characteristics of these applications.

The parallel APPLU code was generated by Polaris, a state-of-
the-art parallelizing compiler [2]. The Olden codes are pointer-
based applications that operate on graphs and trees. They are anno-
tated so that the compiler or the programmer can easily parallelize
them. We follow these annotations faithfully. The SPLASH-2 appli-
cations are fine-tuned, hand-parallelized codes. Barnes uses hash-
ing to synchronize over a limited number of locks. In our experi-
ments, we use two configurations of Barnes with a different number
of hashed locks: one with 512 locks (Barnes-Coarse) and one with
2048 locks (Barnes-Fine). The code in the original suite is Barnes-
Fine.

We execute the SPLASH-2 applications on 64 processors because
these applications scale particularly well; the rest of the applications
are executed on 16 processors because they are less scalable. Under
conventional synchronization, the average efficiency of the parallel
execution of these applications for the chosen numbers of proces-
sors is 49%. In all cases, we warm up the cache hierarchy before
starting to collect execution statistics. Finally, we simulate all the
applications to completion except for APPLU, where we reduce the
number of iterations because they all exhibit a similar behavior.

6 EVALUATION
In this section, we evaluate the applications under conventional syn-
chronization and Speculative Synchronization (BaseandSpec, re-
spectively). We first assess the overall effectiveness of Speculative
Synchronization, and then analyze the factors that contribute to it.

6.1 Overall Effectiveness
Figure 5 shows the execution time of the applications on theBase
andSpecsystems. The bars are normalized toBaseand broken down
into five categories.Useful is the time spent in computation that is
ultimately profitable. It includes processor busy time, as well as stall



Application
APPLU
Bisort
MST

Ocean
Barnes−Fine

Barnes−Coarse

Parallelization
Compiler

Annotations
Annotations

Hand

Description
LU factorization

Bitonic sort
Minimum spanning tree

Ocean simulation

Data Size

258x258
512 nodes
16K nodes
Reference

N−body problem Hand 16K particles

Processors
16
16
16
64

64

Barriers/Locks
Yes/No
Yes/No
Yes/Yes
Yes/Yes

Yes/Yes(2048)
Yes/Yes(512)

Table 3: Applications used in the experiments.
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Figure 5: Execution time of the applications under conventional (Base) and speculative (Spec) synchronization. Bars are
normalized to Base. Ocean and Barnes run with 64 processors, while the other applications run with 16 processors. Barnes-
Coarse also shows in brackets the execution times normalized to Barnes-Fine’s Base.

due to memory and pipeline hazards. It is subdivided into Useful
Safe and Useful Speculative, depending on whether execution was
safe or speculative, respectively. Of course, Useful Speculative only
appears in Spec. Sync is the time spent spinning at synchronization
points. Squashed is the time wasted by speculative threads on exe-
cution that gets ultimately squashed. Finally, Overhead is the time
taken to handle squash operations, including draining the processor
pipeline and load/store buffers, and restoring the processor’s check-
pointed register state.

Under Base, applications spend on average 19.4% of their time
spinning at synchronization points. Naturally, the impact of Spec-
ulative Synchronization is largely bounded by this figure. In prac-
tice, Speculative Synchronization reduces the original synchroniza-
tion time by an average of 34%, if we combine the residual synchro-
nization time (Sync), the squashed execution time (Squashed), and
the squash overhead (Overhead) of Spec. As a result, the average
execution time of the applications in Figure 5 decreases by 7.4%.
Across applications, the reduction in execution time ranges from a
small value in Barnes-Fine to a significant 15% in MST.

The fraction of the code executed speculatively is the sum of Use-
ful Speculative plus Squashed. The combined size of these two
categories is necessarily small in applications with little synchro-
nization, such as APPLU. On the other hand, frequent synchroniza-
tion provides an opportunity to speculate more; this is the case for
MST and, to a lesser extent, Ocean, where Useful Speculative plus
Squashed account for about 50% and 22% of the total Spec time,
respectively. On average for all applications, about half of this time
proves to be useful (Useful Speculative).

Ideally, the total useful time in an application should remain con-
stant as we go from Base (Useful Safe only) to Spec (Useful Safe plus
Useful Speculative). In practice, however, we see that the total use-
ful time changes slightly. The reason is constructive or destructive
memory effects by speculative computation. On the one hand, spec-
ulative execution that gets ultimately squashed can have the positive
effect of prefetching useful clean data into the caches. This is the
effect observed in APPLU and Bisort. On the other hand, squashes

involve invalidating cache lines modified speculatively. The result
may be the negative effect of destroying locality that was originally
present in the caches. This is the effect observed in MST. In gen-
eral, it is hard to predict whether the effect will be constructive or
destructive.

Focusing on the non-useful execution, we see that it is largely
composed of residual synchronization and squashed execution time;
the overhead of the squash mechanism (Overhead) accounts for lit-
tle. Residual sychronization is due to a speculative thread bumping
into a barrier (case of exposed SSU in Section 3.4), or into a lock
that is busy (case of multiple locks, Section 3.3). Both residual syn-
chronization and squashed execution time represent areas for further
improvement of Speculative Synchronization. Residual synchro-
nization is relatively large in both Barnes-Fine and Barnes-Coarse;
squashed execution time is sizable in Ocean and MST. These two
categories are discussed in Section 6.2 in detail.

Finally, the numbers in brackets on top of the Barnes-Coarse bars
show the execution time of this application normalized to Barnes-
Fine’s Base. We can see that Barnes-Coarse Base takes 10% longer
to execute than Barnes-Fine Base. This is largely due to the coarser
synchronization. However, if we apply Speculative Synchronization
(Barnes-Coarse Spec), its execution time comes down to only 2%
longer than Barnes-Fine Base. This shows that Speculative Synchro-
nization can indeed compensate for conservative synchronization.

6.2 Contributing Factors
We now focus on the time lost to synchronization and related over-
heads. We compare the synchronization time in Base with the time
lost to residual synchronization, squashed computation, and squash
overhead in Spec. The results are shown in Figure 6. We break down
synchronization time into barrier (Barrier Sync) and lock (Lock
Sync) time—there are no speculative flags per se in these codes. We
break down the time lost to squashed computation into three cate-
gories, depending on the reason for the squash: True Data, False
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Figure 6: Factors contributing to synchronization time and related overheads for the Base and Spec systems. The results
are normalized to Base. Ocean and Barnes run with 64 processors, while the other applications run with 16 processors. The
percentages at the top of the bars reflect the fraction of synchronization in Base.

Data, and 2nd Lock. True Data and False Data are computation
squashed due to conflicts induced by same-word accesses and false
data sharing, respectively. Recall that the Speculative bits are kept
on a per-line basis and, therefore, false sharing causes conflicts. 2nd
Lock is computation squashed due to a speculative thread conflicting
in a second synchronization variable. Such a variable is necessarily
a lock, since the SSU is exposed on barriers (Section 3.4).

Figure 6 shows that, in general, the synchronization time of these
applications in Base is dominated by barriers—in fact, APPLU and
Bisort synchronize exclusively through barriers. Nevertheless, MST
and Barnes-Coarse exhibit significant lock activity. This makes it
important to attack synchronization due to both locks and barriers.

As shown in Figure 6, Speculative Synchronization significantly
reduces the contribution of both lock and barriers. Still, the Spec
bars show some residual synchronization time. This is caused by
speculative threads stalling at a second synchronization point. The
large majority of this residual synchronization time is spent in bar-
riers, which can never be crossed by threads that are already spec-
ulative (exposed SSU). In Bisort, for example, residual barrier time
appears at the top part of a tree. As processors move toward the root,
the number of processors with work to do decreases. Idle processors
start synchronizing at every level, with nothing to do but to wait for
others. As they cross one barrier speculatively, they immediately
bump into the next one, where they stall. In Barnes, speculative
threads also stall at barriers. However, contention on the locks is
significantly reduced. Often times, by the time a lock is released by
its owner, several speculative threads have already completed their
critical sections concurrently (Release While Speculative, Section
3.2.3). At that point, they all commit without competing for the
lock. This reduces Lock Sync time (Figure 6).

Focusing on the squash time, we see that only Ocean and MST ex-
hibit a relatively large fraction of squashed work. In Ocean, the main
source of squashes is false sharing (False Data). In MST, the main
contributors to the squash time are same-word access conflicts (True
Data) and access conflicts on second-lock variables (2nd Lock), in
that order. It is important to devise techniques to minimize all these
sources of squashes. We address this issue next.

6.3 Eliminating Remaining Overheads
The main four overheads that remain in the Spec bars of Figure 6 can
be attacked with changes to the SSU and the system. We examine
each case in turn.
False Sharing. In general, techniques that reduce false sharing in
shared memory multiprocessors also benefit Speculative Synchro-
nization. Some of these techniques would require keeping per-word

Speculative bits. We have to be careful, however, not to hurt per-
formance in other ways. For example, while data padding in Ocean
may reduce false sharing, it may also give up spatial locality present
in the application.
True Sharing. A more sophisticated Speculative Synchronization
protocol can reduce the cases where same-word conflicts cause
squashes. For example, out-of-order WAR and WAW conflicts need
not cause squashes if the system supports multiple versions of a vari-
able across processors. Many systems for TLS incorporate forms of
multiple version support. The cost is more hardware support and a
more complicated protocol.
2nd-Lock Squash. To avoid second-lock squashes, we can expose
the SSU before each lock as in barriers, so that a speculative thread
waits to become safe. Then, it can use its SSU to enter the sec-
ond lock speculatively. This avoids second-lock squashes at the ex-
pense of disallowing a processor to speculate simultaneously in mul-
tiple critical sections. For our particular applications, this approach
causes most of the 2nd Lock time to to simply mutate into residual
synchronization. In fact, the overall execution time is slightly higher.
Residual Synchronization. To minimize residual synchronization,
we can design a more sophisticated SSU that handles multiple spec-
ulative epochs with multiple sets of Speculative bits. Incidentally,
this support can also solve the problem of 2nd Lock. This multi-
epoch support, which complicates the SSU in a nontrivial way, re-
sembles that of TLS.

Interestingly, by adding all these enhancements to Speculative
Synchronization, namely support for multiple epochs, multiple data
versions, and per-word speculative state, we would obtain a system
that comes close to current proposals for TLS. Understanding the
full interaction between Speculative Synchronization and TLS is the
subject of our current research.

7 ADAPTIVE SPECULATIVE
SYNCHRONIZATION

There are a few proposals for hardware lock-free optimistic synchro-
nization in critical sections. These schemes have some good fea-
tures that complement those of Speculative Synchronization. In this
section, we describe two such schemes that have similar hardware
simplicity as ours; Section 8 describes other related work. Then,
we outline an adaptive scheme that extends Speculative Synchro-
nization to capture the positive aspects of lock-free synchronization,
while preserving all the advantages of our original solution. We call
the scheme Adaptive Speculative Synchronization.



Critical sections
Yes
No

TMCharacteristic

Applicability
Commit without lock acquire

Convoying
Safe thread

Action on overflow Not handled

No

Yes (if successful)
No (if successful)

Locks

SLE

Grab lock,
squash all contenders

Locks, flags, barriers

Safe thread: not affected

Speculative Synchronization

Speculative thread: compete until acquire; then continue

Release While Speculative (RWS)

Basic

Possible
Yes

Action on conflict inside
critical section Squash Squash receiver Receiver is safe: continue

Receiver is speculative: squash receiver
No
No
Yes

Possible
Yes
No

No
Yes

Squashes in critical path
Programming effort
On−the−fly rollback

Yes (if no conflicts/overflow or if RWS)
No (if no conflicts/overflow)

As needed

Adaptive

Table 4: Comparing the speculative mechanisms of TM and SLE to Speculative Synchronization. Receiver denotes a thread
that receives a coherence message due to an access conflict inside the critical section.

7.1 Lock-Free Optimistic Synchronization
7.1.1 Transactional Memory

Herlihy and Moss’s Transactional Memory (TM for short) [16] pro-
poses lock-free optimistic synchronization in critical sections via
special transactional instructions and support in the cache hierar-
chy to hold speculative data. In general, TM requires that the code
be written in a lock-free manner [15]. All threads execute critical
sections speculatively, and the coherence protocol helps detect con-
flicts. The code can check whether conflicts have been flagged for a
thread. If so, the thread discards all changes and jumps back to the
beginning of the critical section. If at the time a thread completes the
critical secion no conflicts have been flagged, the thread can commit.

7.1.2 Speculative Lock Elision

Concurrently to our work [25], Rajwar and Goodman propose Spec-
ulative Lock Elision (SLE) [27]. SLE dynamically converts lock-
based into lock-free codes, by removing acquire and release opera-
tions in the instruction stream from the processor pipeline. As in
TM, all threads execute critical sections speculatively. SLE also
leverages the coherence protocol to detect conflicts. Compared to
TM, SLE presents some important advantages: SLE requires no pro-
gramming effort, since codes are lock-based and the elision mecha-
nism is transparent; SLE can fall back to conventional synchroniza-
tion if needed (see discussion below); lastly, SLE features on-the-fly
thread rollback and restart (as in Speculative Synchronization).

7.1.3 Discussion

We limit our discussion to speculation in critical sections, since nei-
ther TM nor SLE supports speculation on barriers or flags. As lock-
free proposals, TM and SLE allow, under the right conditions, to ex-
ecute critical sections without the need to secure a lock. In Specula-
tive Synchronization, this behavior is possible after a Release While
Speculative operation (Section 3.2.3). Still, Speculative Synchro-
nization requires one thread to grab and own the lock in every ac-
tive critical section. As a result, speculative threads must wait for
the lock to be freed by the owner before they can commit. This
makes Speculative Synchronization subject to convoying. In con-
ventional locks, convoying occurs when a lock owner is preempted
by the scheduler, and other threads are left spinning for the lock.
In Speculative Synchronization, preempting a lock owner prevents
speculative threads from committing. A number of techniques have
been proposed to avoid preempting a lock owner [6, 17, 24]. Never-
theless, in general, convoying is a concern.

On the other hand, TM and SLE share a shortcoming—in the
presence of conflicts, their speculative mechanisms do not embed a
forward progress guarantee. Indeed, since all threads execute the
critical section speculatively, any such thread that receives a coher-

ence message due to an access conflict inside the critical section
is squashed. As a result, repetitive conflicts may cause threads to
livelock unless special action is taken. Specifically, TM relies on
software-level adaptive backoff to increase the probability of even-
tual success. In SLE, after a certain number of failed retries, one of
the speculative threads abandons lock-free mode and explicitly ac-
quires the lock. Unfortunately, SLE and lock-based synchronization
are mutually exclusive; therefore, once a thread explicitly grabs the
lock, all other threads in that critical section get squashed and start
spinning on the (now busy) lock.

Another problem occurs if speculative threads overflow their
speculative buffers. In SLE, a speculative thread that is about to
overflow its speculative buffer can abandon lock-free mode and ex-
plicitly acquire the lock. As before, all other threads in that critical
section get squashed and start spinning on the (now busy) lock. TM
does not provide a solution for the problem of overflow.

Meanwhile, in the presence of conflicts or overflow, the existence
of a lock owner at all times gives Speculative Synchronization two
advantages. First, the lock owner can receive coherence messages
due to access conflicts inside the critical section without getting
squashed; in the meantime, speculative threads can all execute inside
the critical section without being concerned about forward progress,
which is guaranteed by the lock owner. The second advantage is
that any number of speculative threads that are about to overflow
their caches can stall, compete for the lock (which is held by the
owner) and, upon acquiring it, continue; no squashing of any thread
is involved.

The first four columns of Table 4 summarize this discussion. In
the table, Receiver denotes a thread that receives a coherence mes-
sage due to an access conflict inside the critical section.

7.2 Proposed Adaptive Extension
We now extend the SSU to also implement lock-free synchroniza-
tion in critical sections, and thus show that an adaptive protocol that
combines the best of both worlds is possible. The basic idea behind
Adaptive Speculative Synchronization is to operate in a lock-free
manner, but fall back to Speculative Synchronization by producing
a lock owner if forward progress is compromised. Speculation is
never disabled. Barriers and flags are still handled speculatively as
in our base mechanism.

Upon a speculative lock request, the SSU reads in the lock vari-
able, but it does not try to secure ownership. Therefore, all threads
that access the critical section do so speculatively. This is similar to
SLE, except that a thread can venture into the critical section specu-
latively regardless of whether the lock is busy or free. As the spec-
ulative thread completes execution of the critical section, the SSU
tests the value of the lock. If free, the thread commits, lock-free
style. If not, the SSU falls into Release While Speculative mode



(Section 3.2.3), and commits only when the lock is freed by the
owner. At no time is an acquire operation attempted on the lock
variable.

If a speculative thread detects a conflict during the execution, or
if the speculative thread is about to overflow its cache, its SSU pro-
ceeds to compete for the lock. There are two possible outcomes
to this situation. If the SSU secures ownership, the thread becomes
safe, guaranteeing forward progress. If, instead, another thread owns
the lock, forward progress is guaranteed by that other thread; in
this case, the speculative thread rolls back (case of conflict, Section
3.2.4) or stalls while its SSU keeps competing for lock ownership
(case of cache overflow, Section 3.2.5).

Therefore, in the absence of conflicts or cache overflow, the SSU
implements lock-free Speculative Synchronization in critical sec-
tions. If conflicts or cache overflow do occur, SSUs smoothly fall
back to the original lock-based Speculative Synchronization. Notice
that, even when the lock is grabbed by a thread, the other threads
(which are speculative) are allowed to continue. Overall, the SSU
operates in lock-free mode except as needed, while preserving the
advantages of Speculative Synchronization. The last column of Ta-
ble 4 summarizes Adaptive Speculative Synchronization.

8 RELATED WORK
Optimistic Concurrency Control (OCC) [20] sets the foundation for
optimistic synchronization, based on the notion of “apologizing ver-
sus asking permission” [14]. Transactions execute without synchro-
nizing, after which they undergo a validation phase, and then commit
(if atomicity is preserved), or abort and restart.

Herlihy uses optimistic synchronization to construct lock-free and
wait-free data objects [15]. While the technique may work well for
small, simple structures, it is unclear how to deal efficiently with
larger, complex objects with high copy overhead. Rinard uses fine-
grain optimistic synchronization in compiler-driven parallelization
[29]. Still, conventional synchronization is necessary under multi-
ple, interdependent updates to different objects. In general, opti-
mistic synchronization requires nontrivial programming effort.

Several hardware proposals exist for lock-free optimistic synchro-
nization. Two important proposals that relate closely to ours are Her-
lihy and Moss’s Transactional Memory [16] and Rajwar and Good-
man’s Speculative Lock Elision (SLE) [27]. We address these ex-
tensively in Section 7.

Stone et al. [32] propose a hardware optimistic synchronization
mechanism called Oklahoma Update. Speculative state is limited
to specialized reservation registers within the processor. Requests
for exclusive access to speculative data are deferred to the commit
phase, called Oklahoma Update, making such an operation poten-
tially slow and traffic-intensive. True conflicts at this phase are re-
solved by buffering external requests (e.g. invalidations), and selec-
tively delaying responses. Progress is guaranteed only if enough
such buffering is provided. Conflicts due to false sharing need a
backoff mechanism to guarantee forward progress. None of these
problems affects our proposal.

Building on SLE [27], Rajwar and Goodman recently propose
Transactional Lock Removal [28], to preserve lock-free behavior
even in the presence of conflicts. They use timestamps to dynam-
ically order threads, buffering external requests and selectively de-
laying responses on the fly based on this order. Special messages
are used to avoid deadlocks. Enough buffering resources must be
provided to handle conflicts. Cache overflows are handled by dis-
abling the mechanism and falling back to conventional lock-based
synchronization.

Sato et al. [30] address speculation across barriers. They discuss
how to modify caches and the coherence protocol to support specu-
lation. However, they do not propose any concrete implementation

of the speculative barrier itself. Their evaluation assumes a conser-
vative consistency model, in-order processors, and a constant-delay
model of processor and memory operations.

Gupta’s Fuzzy Barrier [11] attacks barrier imbalance by decou-
pling barriers into two phases, moving between them nonconflicting
code originally after the barrier. This approach requires dependence
information at compile time.

Gharachorloo et al. [8] propose allowing loads to execute spec-
ulatively ahead of incomplete stores that precede them in program
order. They do not allow reordering of store operations, utilizing
hardware exclusive prefetches instead. Speculation is limited by the
maximum number of uncommitted instructions, and by the proces-
sor’s buffering capacity. The behavior of the branch predictor in an
acquire loop may adversely affect the effectiveness of the scheme.

Pai et al. [26] first propose a synchronization buffer to offload an
acquire loop, to improve the behavior of the branch predictor in [8].
They also propose Fuzzy and Speculative Acquires to achieve fine-
grain synchronization, which require compiler support to identify
the (non)conflicting accesses in critical sections.

Gniady et al. [9] propose SC++, an aggressive implementation
of SC that allows reordering of load and store operations by main-
taining an in-order history queue of the speculatively retired instruc-
tions. Consistency violations trigger a recovery procedure that uses
the history queue to reconstruct the state at the instruction at fault.
The cost of this recovery grows with the amount of speculative work,
and may result in slowdowns. SC++ is shown to match the perfor-
mance of RC for “well-behaved applications.”

Rather than attacking reordering in general, we choose to special-
ize on speculative execution of widely used synchronization primi-
tives, namely barriers, locks, and flags. This allows our hardware to
remain simple, yet effective. Our checkpoint/recovery mechanism,
combined with the cache support, allows us to retire a large number
of speculative instructions, and quickly roll back in the event of a
misprediction—independently of the amount of speculative work.
Furthermore, under the right conditions, speculative threads can
commit a critical section without ever acquiring the associated lock.

Gharachorloo and Gibbons [7] propose hardware that leverages
the coherence protocol to detect violations of sequential consistency.
Adve and Hill [1] use explicit synchronization to order contending
threads in a critical section, but leverage the coherence protocol to
achieve fine-grain synchronization of memory accesses. They em-
ploy reserve buffers to selectively defer coherence messages on con-
flicting addresses.

9 CONCLUSIONS
We have presented Speculative Synchronization, which applies the
philosophy behind Thread-Level Speculation to explicitly parallel
applications. Threads speculatively execute past active barriers,
busy locks, and unset flags instead of waiting. The hardware checks
for conflicting accesses and, if a violation is detected, the offend-
ing speculative thread is rolled back to the synchronization point
and restarted on the fly. In any speculative barrier, lock, or flag, the
existence of one or more safe threads at all times guarantees for-
ward progress, even in the presence of conflicts or speculative buffer
overflow. All in-order conflicts from safe to speculative threads are
tolerated without causing squashes. Speculative Synchronization re-
quires simple register checkpointing and cache hardware, can be
made transparent to programmers and parallelizing compilers, and
can coexist with conventional synchronization at run time.

For critical sections, we have extended our scheme into Adaptive
Speculative Synchronization, which captures the positive aspects of
lock-free synchronization. Threads operate in a lock-free manner,
but the system falls back to Speculative Synchronization by produc-
ing a lock owner if forward progress is compromised.



We have evaluated 5 compiler- and hand-parallelized applications
under Speculative Synchronization. The results are promising: the
time lost to synchronization is reduced by 34% on average, while
the overall execution time of the applications is reduced by 7.4% on
average. We have also identified ways of further improving Specu-
lative Synchronization.

We are currently extending this work in several directions.
Specifically, we are analyzing how the SSU best supports other
types of synchronization primitives. We are also evaluating Adap-
tive Speculative Synchronization. Finally, we are analyzing the full
interaction between Speculative Synchronization and TLS.
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