
Pivot Tracing
Jonathan Mace, Ryan Roelke, Rodrigo Fonseca

Brown University



Problem
It’s often difficult to judge what instrumentation should be implemented at 

development time

Debug logs can lack the information needed for your issue and/or have a lot of 

irrelevant information

Configuration of nodes might be dynamic

It would be nice to be able to issue different queries for what to monitor at runtime 

and trace the path of execution





Solution
Piggyback a tuple onto each message containing relevant information such as 

hostname or process id and propagate the tuple throughout execution

Issue novel happened-before join queries at runtime which are evaluated by agent-

threads in the processes







Dynamic Instrumentation
“Java version 1.5 onwards supports dynamic method body rewriting via the java.lang.

instrument package

The Pivot Tracing agent programmatically rewrites and reloads class bytecode from 

within the process using Javassist [44].”





Development Overhead?
“Pivot Tracing relies on developers to implement Baggage propagation when a request 

crosses thread, process, or asynchronous execution boundaries. In our experience, this 

entails adding a baggage field to existing application-level request contexts and RPC 

headers”

~50-200 LOC modification per system

Requires thorough knowledge of the code to know how to propagate the tuples



Performance Overhead?
“Pivot Tracing has a zero-probe effect: methods are unmodified by default, so 

tracepoints impose truly zero overhead until advice is woven into them.”

Baseline overhead 0.3% (no queries installed, only modifications to fields to include 

“baggage” and running PT Agent threads)

With queries from paper installed, maximum of 14.3% overhead

Among the queries tested, even the most sophisticated ones required a baggage size of 

less than 137 bytes



Performance Overhead? (cont.)
Although latency curve looks slightly super-linear, even with 256 tuples to pack, 

serialize, deserialize, and unpack, the total latency incurred was only 5 + 1 + 14 + 22 = 

42 microseconds

“The most noticeable overheads are incurred when propagating 60 tuples in the 

baggage, incurring 15.9% overhead for Open. Since this is a short CPU-bound request 

(involving a single read-only lookup), 16% is within reasonable expectations”



Performance Overhead? (cont.)
“JVM HotSwap requires Java’s debugging mode to be enabled, which causes come 

compiler optimizations to be disabled…[However], our HDFS throughput experiments 

above measure only a small overhead between debugging enabled and disabled”

“Reloading a class with woven advice has a one-time cost of approximately 100ms, 

depending on the size of the class being reloaded”



Case Study: HDFS Replica Selection Bug









Discussion
Dependent on Java?



Discussion
A user need to be very familiar with the code to use pivot tracing. He needs to know 

the exact name of the clients, processes and methods. Therefore, the tracing system 

can only be used by the developers, but not regular users?



Discussion
“In the worst case Pivot Tracing may need to pack an unbounded number of tuples in 

the baggage, one for each tracepoint invoked”

Not sure how significant the overhead would be when passing the ‘baggage’ objects in 

a large cluster (evaluation was only based on a 8 node cluster)



Discussion
Security vulnerabilities? Dynamically generating code and reloading it? (hot-swapping)



Discussion
More evaluation between existing systems?



Discussion
Possible to apply Pivot Tracing to wireless sensor networks (WSN)?



Conclusions

This is an important research problem: CS425 MPs gave me a deep appreciation for 

the difficulty of debugging even small and simple distributed systems, and any tools 

that could simplify the process is great


