
INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

Storage management and caching in PAST,

a large-scale, persistent peer-to-peer storage utility

Antony Rowstron and Peter Druschel

Presented by Anchal Agrawal

March 29, 2016

1/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

WHAT IS PAST?

PAST is a peer-to-peer storage system that offers caching and
replication semantics in addition to P2P properties such as a
self-organizing node overlay network.

2/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

KEY TAKEAWAYS

I Meant as an archival storage system, not a
general-purpose file system

I File replication by storing a file at k nodes
I Support for caching popular files
I Storage management for nodes with various storage

capacities and files of different sizes
I Uses Pastry for query routing and maintaining a node

overlay network

3/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

PASTRY

Pastry is an efficient and self-organizing P2P routing protocol.
Each node stores:

I A leaf set containing nodes with numerically closest IDs.
I A routing table with entries of nodeIDs with matching

prefixes of the current nodeID.
I A neighborhood set containing nearby nodes. Used only

during node addition and recovery.

Exchanging keep-alive messages helps detect node failures.

4/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

PASTRY BOOK-KEEPING

Figure 1: A sample routing table along with leaf and neighborhood sets.

5/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

PASTRY ROUTING

Figure 2: Routing a query with key d46a1c.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure routing for structured peer-to-peer
overlay networks.

6/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

PAST FILE OPERATIONS

I Insert

Figure 3: Inserting fileID d46a1c.

7/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

PAST FILE OPERATIONS

I Lookup

I As soon the request reaches a node with the fileID, it is
returned and the query is not forwarded.

I Reclaim ”weak delete”

I The client sends a reclaim certificate which is used to verify
that the owner is issuing the request.

I After a reclaim, it is not guaranteed that a lookup will
succeed and the file won’t exist in the system.

8/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

SECURITY

I Each node and user hold a smartcard associated with a
public/private key.

I Store receipts and file/reclaim certificates ensure
verification of operations.

I The system assumes that most nodes are well-behaved and
an attacker can’t control smartcards.

I Pastry’s routing can be randomized to prevent malicious
nodes from intercepting messages.

9/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

STORAGE MANAGEMENT

Two goals:

I Balance the remaining global storage as system utilization
approaches 100%.

I Keep k replicas of files.

Not all k closest nodes may be able to accommodate a file due
to:

I Different file sizes
I Different storage capacities of nodes
I Number of files assigned to a particular node

10/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

REPLICA DIVERSION

If a node A can’t store a file, it picks a node B in its leaf set
that’s not among the k closest nodes and doesn’t have a replica
already. A then stores a pointer to the file on B.

What if A or B fails?
I If A fails, another node C which is the k+1th closest stores a

file pointer to B.
I B’s failure is handled by Pastry’s node rejoining scheme.

11/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

REPLICA DIVERSION: EXAMPLE

Figure 4: Replica diversion.

12/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

FAILURE OF NODE A

Figure 5: A fails after replica diversion.

13/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

FAILURE OF NODE B

Figure 6: B fails after replica diversion.

14/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

REPLICA DIVERSION: POLICIES

To decide whether to accept a replica or not, nodes use a
threshold

SD/FN

where SD := file size and FN := remaining storage on a node

Primary replica nodes use a threshold tpri and secondary nodes
use tdiv, where tpri > tdiv. The size of an accepted file is large
when t is large.

15/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

ANOTHER STRATEGY: FILE DIVERSION

If a node’s leaf set is approaching full capacity, a different fileID
is generated for the file by using a different salt. This directs the
file to a different region of the node space.

16/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

HANDLING CHURN

A node joining the system may become one of the k closest
nodes for certain files or may cease to be so. This creates
overhead, which is avoided by storing pointers to files. The
files are later transferred offline.

Leaf set changes are discovered by keep-alive messages and
replicas are moved between nodes gradually.

17/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

CACHING

Lookups for popular files are optimized by storing them at
more than k nodes. Files are cached at all nodes through which
a lookup or insert is routed, if possible.

The GreedyDual-Size cache replacement policy is used, which
uses weights to rank files. The weight is given by

Hd = c(d)/s(d), where c(d) := cost of a file and s(d) := file size.
The file with the minimum Hd is evicted when the cache is full.

18/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

EXPERIMENTAL RESULTS

I The authors have tested the storage management and
caching capabilities of the system.

I Two workloads used:
I Set of web proxy logs with 4M entries containing ∼1.86M

unique URLs, totaling 18.7GB.
I File data of ∼2M files from several filesystems, totaling

166.6GB.
I Parameters:

I Replication factor k = 5
I b = 4 (nodeIDs and fileIDs have base 2b)
I 2250 PAST nodes

19/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

EVALUATING INSERTS AND UTILIZATION

These tests measure the fraction of successful inserts and
system utilization. Nodes with several normal distributions of
storage capacities were used.

Table 1: Distributions of node storage capacities in MB.

20/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

STORAGE TESTS

In the first test, replica and file diversion were disabled. 51.1%
inserts failed and storage utilization was 60.8%.

The second test compares results with leaf sets of sizes 16 and
32 with tpri = 0.1 and tdiv = 0.05.

Table 2: Results with different storage distributions and leaf sets.

21/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

VARYING DIVERSION PARAMETERS tpri AND tdiv

Figure 7: Varying tpri with tdiv = 0.05. Figure 8: Varying tdiv with tpri = 0.1.

tpri = 0.1 and tdiv = 0.05 provide a good tradeoff between
utilization and low insert failures.

22/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

CACHING

This test compares the GreedyDual-Size (GD-S) algorithm with
Least-Recently-Used (LRU).

Figure 9: Cache hit rate and routing hops with GD-S, LRU and no caching.

23/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

OBSERVATIONS

I Replica and file diversion improve utilization by up to
34-38%.

I A larger leaf set improves file insertion rates and
utilization but increases churn overhead.

I Caching reduces query hops even when the system is near
full utilization.

I Unless utilization is very high, insertion failure and
diversion overhead are low.

24/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

COMPARISON WITH CFS

I CFS (Cooperative File System) is a P2P storage system
based on Chord, which uses finger table entries to
maintain a node’s neighbors.

I While PAST nodes store entire files, CFS nodes store file
blocks.

I CFS optimizes churn overhead while PAST optimizes
query latency.

I PAST enforces per-user storage quotas, whereas CFS limits
a per-IP storage quota to x% of the global capacity.

25/26



INTRODUCTION CORE IDEAS EVALUATION DISCUSSION

THOUGHTS

I File encoding (e.g. Reed-Solomon) would have reduced
storage overhead for high availability.

I PAST doesn’t provide searching or strong deletion
semantics. Files are immutable.

I If the global storage decreases under high utilization,
storing k replicas of files becomes impossible. PAST uses
storage quotas to ensure that demand is less than supply.

I Tests don’t provide details of churn in the system.
I Tests don’t cover related systems such as OceanStore and

CFS.

26/26


	Introduction
	What is PAST?
	Key Takeaways

	Core ideas
	Pastry
	Pastry book-keeping
	Pastry routing
	PAST file operations
	PAST file operations
	Security
	Storage management
	Replica Diversion
	Replica Diversion: Example
	Replica Diversion: Example
	Replica Diversion: Example
	Replica Diversion: Policies
	Another strategy: File Diversion
	Churn
	Caching

	Evaluation
	Experimental Results
	Storage
	Storage
	Storage
	Caching
	Observations

	Discussion
	Comparison with CFS
	Thoughts


